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Abstract—This paper studies the effect of congestion in mission
critical networks and explores the network topologies which are
appropriate for highly congested networks. Theoretical concepts
of ”graph theory” are the deriving points to understand the
critical situations in telecommunication networks and help find
the best topologies based on the network conditions. Towards
this end, we evaluate the ”betweenness centrality” of network
topologies. We assign a robustness index to each network using
the result of our evaluation. This ”Network Robustness Index”
(NRI) can be used to rank different networks based on their
robustness to the congestion. One would be able to choose ap-
propriate network topologies in different situations based on the
value of NRI. NRI guides the network evolution towards a robust
topology which is resilient against congestion. The evolution is in
the direction of decreasing the chance of congestion.

Index Terms—Robustness, Graph-Theory, Betweenness, Con-
gestion, Network Design Problem.

I. INTRODUCTION

One of the crucial problems in network management is
to make the whole communication system ”robust” to pos-
sible changes in different parameters of the network due to
uncertainties. This is specially important in Mission Critical
Networks (MCN), where these unexpected changes in system
parameters may cause disaster. First we give our definition of
robustness. There are three major type of changes that may
affect the performance of the network [1]:
1. Network topology and connectivity. This includes changes
in capacity of the links.
2. Community of interest.
3. Traffic Matrix.
Throughout this paper, we call a ”network topology” robust
if it can resist against uncertainties which are the result of
changes in topology, traffic or community of interest. Our
stress in this paper is in traffic surges that might guide network
to the congestion mode.

In [1] the goal was to find a robust routing plan for the core
network that allows the network service provider to manage
the assignment of flows to the paths primarily at the edge of
the core network and obtain close to maximum throughput.
The network topology was already designed and established,
only incremental changes due to failures could happen. In
contrast, this work is dedicated to the initial network design
problem considering the congestion minimization as the goal.
Network design problem (NDP) is a well studied subject In
communication systems. We believe that the network design

including topology design and capacity assignment is an
integrated part of the network management system and should
evolve according to the dynamic changes in the network
parameters and conditions.

We give the details for topology design considering the
congestion minimization as the goal while the capacity is
assumed to be known. We assume that every single node
can be modeled with a capacitated queue. Obviously if the
external input rate of the traffic starts growing, after a while
the input rate would be more than the service rate of the queue
and this makes accumulation in the queue buffers and finally
the congestion is happening. In this research we are trying to
explore the range of network topologies, which are appropriate
for this queue-based congestion effect. We investigate the
properties of appropriate topologies using the metrics from
graph-theory.

The rest of this paper is organized as follows. Section II
reviews previous works on network design and robustness
problem in networks. In section III the network design
problem is investigated.Further, details of our analytical
results and the design guidelines for topology selection and
capacity allocation. Simulation results and validation are
provided in section IV and the paper is concluded in sectionV.

II. PREVIOUS WORK

A wealth of literature is available about network robustness
and different aspects of it. In [2] some facts from graph-
theory are reviewed which are important for the development
of robust network topologies.

Robustness to the traffic uncertainty is investigated from
different standpoints. In [3] a framework for robust routing in
core network is proposed based on the idea of ”link criticality”
and ”path criticality”. Betweenness centrality [4], a metric
from graph theory, is used to measure the criticality of a link.
Suppose that we are measuring the centrality of node k. The
betweenness centrality is defined as the share of times a node
i needs a node k in order to reach a node j via the shortest
path. Link betweenness can also be defined in the same way.
A modified version of the link betweenness is used in [3]
to define link criticality. Suppose nij is the number of paths
between source-destination pair (s,d) and nikj is the number
of paths between i, j containing the specific link k . Then
betweenness of node k for i (source) and j (destination) is
given by nikj

nij
. The overall betweenness of a link is defined



as the sum of all betweennesses for link k when i, j are
changing. This gives an indication of how critical the link
is in the network topology. Based on this interpretation of the
betweenness centrality, the Path Criticality Routing (PCR) is
proposed in [3] to find the least biased paths to run the flow.
In [1] the idea of criticality is extended to the DiffServ case,
where one has to choose the robust routing plan at the presence
of QoS. In [2] a number of graph properties are listed which
are useful for determining the robustness of a network against
changes in network topology. There is also an abundance of
literature for oblivious routing ([5], [6]).

While there are strong results for robustness of the networks,
the relationship between the network topology, robustness,
congestion, and their interactions is left unattended. In
this paper we are trying to answer this question: Is there
any specific topology or a class of topologies which are
more resilient against congestion? The proposed work is
a continuation of our previous research on quantifying the
robustness by link and path criticality ([1], [3]). In fact,
this work is an analytical description of those results and
is justifying the reason behind choosing betweenness as
the main metric for criticality measurement and shows how
this can be used to achieve robustness at the presence of
congestion.

III. NETWORK DESIGN PROBLEM (NDP)

In this section we investigate a method for designing the
network topologies which are robust according to our defini-
tion of robustness.

A. Modeling the behavior of networks with queue-based con-
straints

We start by introducing the notions and metrics. In this pa-
per, we consider the probabilistic definition of the node (link)
betweenness as the main metric to quantify the criticality. In
[7] a probabilistic interpretation of the betweenness is defined
based on random walks. The betweenness of a node (link)
k for source-destination pair (s,d) is the expected number of
times that a random walk passes node k in its journey from
source i to destination j. The total betweenness of node k is
the sum of this quantity over all possible (s,d) pairs. Now, the
node (link) criticality is simply defined as the random-walk
betweenness of that node over its capacity.

ηk =
bk

ck
(1)

In equation 1 ηk, bk, ck show the criticality, the betweenness,
and the capacity of node k respectively.
The main goal to introduce criticality of the nodes (and links in
a similar way) is to be able to sort different networks based on
their robustness to the changes in traffic demand, topology, and
community of interest (source-destination pairs). Our stress in
this section is on the effect of input traffic.
To this end, we consider a network which is shown by its
graph G=(N,L). Based on our definition of the betweenness,

we can quantify the criticality as follows. Each node has a
certain probability to send its data to the adjacent nodes. Let’s
assume a random walk at node s wants to go to node d as
its final destination. Destination node is an absorbing state for
this random walk and the walk is stopped in destination. The
probability for a random-walk previously originated at node i
and destined for node j to pass node k in next step is shown
by pskd.

pskd = {0 if s=d
wsk∑

q∈A(s) wsq
otherwise

where A(s) is the set of adjacent of nodes s and wsk is the
weight of link (s, d) if any. The first condition in equation 2 is
due to the fact that the destination node d is an absorbing node,
and any random-walk coming to this state, will be absorbed
or equivalently bdkd = 0. The betweenness of node (link) k
for the source-destination pair (s, d) is shown by bskd defined
as the expected number of times that a random walk from s
to d traverses k.
Note that the path from i to k could be of length 0 to infinity.
If we show the probability values pskd with matrix Pd, then
for all k != d, the probability of entering node k at qth step for
different values of s and k can be obtained from corresponding
members of the matrix Pd

q and in case of k = d it would be
0. In our calculations, we treat the destination d as a fixed
point and write all matrices based on this assumption. At the
end we obtain the general response for our metrics by adding
up the results for different destinations. In other words, matrix
Pd can be viewed as routing matrix to destination d with the
property that it starts from node s (rows of the matrix) and
traverses node k (columns of the matrix) at least once before
reaching at d. Hence one can write this relationship in matrix
form as follows:

Bd = [bskd] = {
∑∞

q=0 P q
d if k !=d

0 otherwise

Bd = [bskd] =
∞∑

q=0

P q
d × Θj

where, bskd is the node betweenness of k for source-destination
pair (i,j) and Bd is it’s matrix. Further

Θj = [θskd] = {1 ifs=k !=d
0 otherwise}

In words, Θd is the Identity Matrix unless its dth column
which is zero. Hence:

Bd = (
∞∑

l=0

P q
d ) × Θj = (I − Pd)−1 × Θd

1) Identifying the robustness of a network: In order to
determine the robustness of a given topology to the congestion,
one needs to know how the traffic is feeding to the network and
how the load is being processed. We consider the case that the
traffic demands come at the nodes of the network with Poisson
rate λ and assume that our network is a Jackson network [8].
Based on Jackson’s theorem [8], if the input traffic to each
one of the nodes is an independent Poisson process and the
servers have exponentially distributed service rates, then each
node can be modeled by a M/M/1 queue. Every node has a



Fig. 1. Network of queues

limited processing power and can process input traffic at the
rate of µ and the traffic demands that are not serviced yet, are
queued. We need to find the range of input rate λ that keeps the
queue in stable condition (in other words we need to rule out
the invalid values of λ that make the M/M/1 queue unstable
according to Jackson’s theorem). To this end, we calculate the
total arrival/departure rate of the traffic to/from each node.
The steady state input rate of the messages into the node s
destined for d via node k is assumed to be xskd and it is
equal to the probabilistic share of each and every other node
in s in addition to the share of external traffic in node s (for
destination d via node k). We also assume the total output
rate of each node s to destination d via node k is yskd (which
is equal to xskd in steady state). The share of every other
node on the stationary input rate of s (for d through k) is∑n

t=1 ystd × ptkd (Figure 1).
Considering the external traffic rate of λ at node s, on

average κs is passing through node k to its destination node
d. Hence, one can write the stationary arrival rate of traffic
to node k as follows (bearing in mind that in steady state
yskd = xskd):

xskd = {
∑ n

t=1 xstd×ptkd + κs ifs=k !=d
0 otherwise (2)

in matrix form:

Xd = (





κ1 0 0 0 0
0 κ2 0 0 0
0 0 . 0 0
0 0 0 . 0
0 0 0 0 κn




+ Xd × Pd) × Θd

so : Xd × (I − Pd × Θ) =





κ1 0 0 0 0
0 κ2 0 0 0
0 0 . 0 0
0 0 0 . 0
0 0 0 0 κn




× Θj

But κs is the share of average input rate λ on node s,
which can be written as the product of λ and the stationary
probability of node s shown by πs. This means that:




κ1 0 0 0 0
0 κ2 0 0 0
0 0 . 0 0
0 0 0 . 0
0 0 0 0 κn




= λ ×





π1 0 0 0 0
0 π2 0 0 0
0 0 . 0 0
0 0 0 . 0
0 0 0 0 πn




(3)

finally : Xd = λ × Π × Θd × (I − Pd × Θd)−1

where matrix Π represents the diagonal matrix with
[π1 π2 ... πn] as its main diagonal.
To find the relationship of betweenness B and the input arrival
rate X we notice that Pd = Θd × Pd since pdkd = 0. Hence:

Θd × (I − Pd × Θd) = (I − Pd) × Θd

or Θd × (I − Pd × Θd)−1 = (I − Pd)−1 × Θd

this means that : Xd = λ × Π × Bd (4)

Equation 4 asserts that

xskd = λ × πs × bskd (5)

Now we use the fact that the stationary probability of any
node s in a Markovian network is equal to the normalized
betweenness of that node:

πs =
bs∑
i bi

(6)

Replacing equation 6 in equation 5 results in

xskd = λ × bs∑
i bi

× bskd (7)

To obtain total input rate at any node k one can write

xk =
∑

s

∑

d

xskd

=
∑

s

∑

d

λ
bs∑
i bi

× bskd

=
λ∑
i bi

×
∑

s

bs

∑

d

bskd

≤ λ∑
i bi

× bmax ×
∑

s

∑

d

bskd

=
λ∑
i bi

× bmax × bk

where bmax is the maximum node betweenness in the graph.
Now we calculate the average input rate for all the nodes.

x̄ =
∑

k xk

n

≤ 1
n
× λ∑

i bi
× bmax ×

∑

k

bk

=
λ

n
× bmax

x̄ ≤ λ

n
× bmax (8)



If the service rate of any node queue be µ and the capacity
of a node k be ck (ck is the sum of the capacity of the links
incident to the node k), considering equation 8

max(x̄) ≤ µc∗

λ

n
× bmax ≤ µc∗

λ

µ
≤ n × c∗

bmax
(9)

λ

µ
≤ n

( bmax
c∗ )

λ

µ
≤ n

ηmax
(10)

c∗ in equation 9 shows the capacity of the node whose
betweenness is maximum amongst all the nodes. Furthermore,
according to our definition of criticality, bmax

c∗ in equation 10
is indeed the maximum node criticality of the graph (ηmax).
We can summarize these results in theorems 3.1, and 3.2.

Theorem 3.1: Consider a network topology G(N,L), and
assume there is external expected input traffic rate of λ for
each node of the network. Let xmax be the maximum expected
arrival rate of all the nodes bmax be the total betweenness of
the node with maximum expected input rate, then:

xmax =
λ

n
× bmax

Theorem 3.2: To maximize the offered load of a network,
one needs to minimize the maximum criticality of all the nodes
in the network.
Proof: The proof is a direct result of equation 10. According
to this equation, the offered load λ

µ is proportional to the
reciprocal of the maximum node criticality. This means that
to maximize λ

µ one needs to minimize ηmax.

The importance of theorem 3.2 lies in the fact that it
proposes an optimization problem which is suitable for
network topology design and shows the direct relationship
between the topology of the network and the network
robustness against congestion. While theorem 3.2 provides a
powerful framework for network design problem (NDP), it
needs more mathematical work to extract the attributes and
behavior of the criticality function, which is beyond the scope
of this paper and will be addressed in our future research
papers.
If we assume that the capacity of the nodes are fixed, then
according to equation 9, a similar optimization problem based
on the analysis of the node betweenness can be extracted. In
next section we investigate the behavior of node betweenness
in more details and obtain two different optimization problems
to characterize the robustness of a network.

2) Analysis: As it is clear from the previous section, one
needs to satisfy xk < xm condition to avoid congestion. The
best topology is the one that maximizes the marginal input
rate xm or equivalently minimizes the maximum node (or link)

betweenness bm which is an optimization problem. In order to
analyze the system behavior, one needs to know the reaction
of the control system to the changes in input rate λ. Two
boundary conditions are considered, λ → 0+ and λ → λm−

(congestion mode). In order to analyze the system behavior
in these conditions, we first derive the average queue length
in each one of the nodes and the total number of waiting
messages in the whole system. According to the queueing
theory [8] , the average length of the M/M/1 queue in node p
is:

l̄p =
ρp

1 − ρp
=

xp

µ

1 − xp

µ

=
λ×bp

n

1 − λ×bp

n

where we assumed µ = 1. Now, the total queue length in the
whole network is:

L̄ =
∑

p∈N

l̄p =
∑

p∈N

λ×bp

n

1 − λ×bp

n

a) λ → 0+

In this situation the total queue length can be approximated
by

L̄ &
∑

p∈N

λ × bp

n
=

λ

n
×

∑

p∈N

bp = λ × b̄

This result shows that, when the external input traffic rate is
small, one needs to minimize the average node betweenness
of the graph.
b) λ → λm−

The total queue length in this case would be:

L̄ & max(
1

1 − λ×bp

n

) =
1

1 − λ
n × max(bp)

Clearly, when the external traffic rate is close to the marginal
value (congestion mode), in order to minimize the total queue
length, one needs to minimize the maximum betweenness
among all nodes. The results are summarized in theorem 3.3.

Theorem 3.3: In a network G(N,L) with Poisson
distribution and rate λ, let each node be modeled with
an M/M/1 queue, then to minimize the congestion, one
needs to minimize the maximum node/link betweenness
(or equivalently the topological node/link criticality) of the
graph G(N,L). Further, when the load is low, the average
graph betweenness should be minimized to achieve the best
goodness.

Theorem 3.3 suggests that the maximum node betweenness
and minimum node betweenness of a topology can be used
to quantify the robustness of topology to the congestion.
We choose to have the maximum deviation of the node
betweenness as our main congestion robustness metric.
We define the network robustness index (NRI) as follows:

NRI(G) =
n∑

i=1

(Bi − B̄)2 (11)



IV. EVALUATION

In this section we investigate different network topologies
and experience the effect of topology in NRI of a network.

A. Star Network versus Full Mesh

We begin with star network as the most centralized topol-
ogy. star network has the least average node betweenness
among the set of all graphs that can be built on N nodes.
It is not difficult to show that:

NRI(Star) =
n

n − 1
(12)

For large networks the NRI for star network approaches
unity. For complete network or full mesh which is the most
decentralized topology (in contrast to star which is the most
centralized one), the network robustness index is zero. These
are two extremes for NRI. While star network has the highest
NRI and lowest average node criticality (betweenness), the
full-mesh has the lowest NRI with the same average criticality.
As a result, one reasonable design guideline for designing
appropriate network topologies is to move towards a com-
plete graph (or at least regular graph) when the network is
working near the congestion point most of the time, while the
centralized version is a suitable choice for situations that the
network is small and its working point (in terms of traffic)
is far from congestion. In brief one can say near complete
graphs networks are appropriate for core or backbone while
star topology is useful for edge.

B. Simple 4-node network

Fig. 2 shows four networks built on 4 nodes starting from
star and ending with complete network on 4 nodes.

Fig. 2. Maximum node betweenness for 4-node topologies

C. Abilene network

Our third example is the Abilene network [9]. The topology
of Abilene network is shown in Fig. 4. We have examined the
Abilene network. The betweenness of all the nodes are listed
in table (a). Node 5 has the maximum betweenness which is

equal to 0.391. The average betweenness of the network is
0.252 and the network robustness index is NRI(Abilene) =
0.112. Comparing with star topology there is great improve-
ment but still a little far from the optimal case which is the
complete graph with NRI=0.

Fig. 3. Abilene Network Topology

In order to investigate the effect of link failure on the
robustness of the network, we failed link (4, 5) and measured
the betweenness for the reduced topology (note that the
network is still connected). The new node betweennesses are
shown in table (b) of Fig. 4. In the new configuration the
maximum betweenness is 0.598 and belongs to node 6. The
average node betweenness is 0.273 and the network robustness
index is NRI(Abilene1) = 0.273. This result is expected
since the removal of link (4, 5) destroys some of the paths
between end nodes and put more traffic on the rest of the
network.

D. Random Graphs

We finally examined the network robustness index of ran-
dom graphs. We used random graphs of type Erdos-Renyi [10]
with different number of nodes and probability for the links.
The result show that for n > 8 and p > .5 (p is the probability
of having a link between two nodes), the NRI was always
less than 0.03. This is in line with the results of [2]. In [2]
has been shown that random graphs are more robust to the
network failure. Our results show that random networks are
also more resilient against congestion in the network. In Fig.
4 an Erdos-Rrnyi random graph with 10 nodes and probability
of 0.9 for creating a link between two nodes is shown. The
random-walk betweenness of the nodes are also shown. It can
be seen that the betweenness is fairly uniform (although not
equal) among the nodes and the network robustness index is
NRI=0.02.

E. NRI in Practical Networks

This section provides the result of measurements on a
practical network shown in Fig. 5. We started our experiment
by measuring the average betweenness and NRI for this
network. The average betweenness was 0.1497 and the NRI
was 0.0065. This result is shown in the first row of the table
of Fig. 6. The NRI suggests that the network robustness
should be good. To evaluate the robustness, we consecutively
failed links of the network one at a time and measured the



Fig. 4. Erdos-Renyi Random graph: n=10, p=0.9

Fig. 5. Test Network

average betweenness and NRI for reduced networks in each
step. Each line of the table of Fig. 6 shows one step including
the failed link (column 1), the average betweenness (column
2) and NRI (column 3). The results are also plotted in a graph
as well. The graph shows that the network is fairly robust
to the link failure and its NRI does not have a big dramatic
increase in first 10 link removal ana after that starts increasing.

V. CONCLUSION

We investigated the effect of network topology on the
congestion of networks and proposed an analytical approach
to the network design problem (NDP) with the goal of having
more robust network topology. We used the variance of the

Fig. 6. Test of Network Sensitivity to the Link Failure

node betweenness array of the graph as the network robustness
index (NRI) and ranked different networks with their NRI,
starting from complete graph with NRI = 0 to the star with
NRI ≈ 1.

The problem of capacity assignment is also considered and a
proposal is developed for the optimal assignment of capacities
using the concept of effective resistance of a graph.

There are different venues for further investigation. One
possible future work is to integrate the results of our inves-
tigation into a consolidated framework for the first phase of
network management which is the design of a robust network
topology and to maintain the appropriate properties of the
network (such as low betweenness, good connectivity) by
developing appropriate algorithms. Another research proposal
is to explore the effect of connectivity as one of the critical
features of a network topology and to develop a procedure to
design well-connected networks.
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