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Abstract—This paper looks at the network robustness problem
from a new perspective. Inspired by Darwin’s survival value, a
graph-theoretical metric, betweenness, in combination with net-
work weight matrix is used to define a global quantity, network
criticality, to characterize the adaptability of a network to the
changes in network conditions. We show that network criticality
can be interpreted as the average cost of a journey between any
two nodes of a network, or as the average of link betweenness
sensitivity of a network. We investigate communication networks
in particular, and show that in order to maximize the carried
load of a network, one needs to minimize network criticality.
We show that network criticality is a monotone decreasing
and strictly convex function of weight matrix. This leads to a
well-defined convex optimization problem to find the optimal
weight matrix assignment. We investigate the solution of this
optimization problem for the weight assignment and compare
our results with existing methods.

I. INTRODUCTION

Darwin’s theory describes the process of natural selection
by which each slight variation, if useful, is preserved. Every
process receives a survival value as a result of natural selection
that quantifies its overall sensitivity or robustness to the exter-
nal variations. In this paper we are looking for an appropriate
survival value for communication networks. The survival value
indicates how adaptable a system is to unexpected events.

Darwin’s theory does not consider any ”final target” for
the evolutionary changes in the nature, but one can see
that viewing survival as the goal can lead to an implicit
optimization problem. Therefore we arrive at the view that
the first goal is to keep the system alive under unforeseen
circumstances.

In any network, from small designed networks, to large-
scale social networks, and even to the Internet, connectivity is
a crucial factor as it is essential for communication. Therefore,
the first parameter to consider as a candidate for ”survival
value” is the connectivity of the graph. Any communication
network should evolve in a way that maximizes the probability
of future connectivity. This implies that the optimization must
address the real-time efficiency and performance of the whole
network as a short-term goal, while striving to maintain and
improve the survival value of the network as a long-term
goal. Another important factor in determining the robustness
of a network is the network’s response to traffic shifts. This
includes the effect of changing in the sources and sinks
of traffic. This paper tries to find such survival value and
investigate its main attributes.

A wealth of literature is available on network robustness and
its different aspects. [1] investigates the relationship between
node similarity and optimal connectivity, and arrives at the
result that a network provides maximum resistance to node
destruction if it is both node-similar and optimally connected.
The paper then describes a number of ways to design robust
networks satisfying these conditions. But this paper considers
only the effect of topology in the robustness of a network.

In [2] a way to design backbone networks is proposed that
is insensitive to the traffic matrix (i.e., that works equally well
for all valid traffic matrices), and that continues to provide
guaranteed performance under a user-defined number of link
and router failures. The main idea is that the traffic destined for
a sink d is forwarded to intermediate hops with equal splits to
all nodes, and then it is forwarded to the destination d. Delay
propagation is one of the shortcomings of this method.

In [3] a framework for robust routing in core networks is
proposed based on the idea of ”link criticality” and ”path
criticality”. In [4] we presented an analysis of betweenness
centrality, and provided a framework for robustness analysis.
Further development of the idea of criticality is provided in
[5], where a mathematical framework for the definition of
criticality is proposed within the context of Markov chain
theory. In this paper we quantify the robustness using the
concept of criticality from [5]. We will show that some critical
features and metrics of real networks are directly related to
the network criticality. We consider network criticality as the
survival value and study its robustness properties.

The rest of this paper is structured as follows. Section II
summarizes our previous findings about network criticality.
Section III provides some properties of network criticality.
Section IV establishes the importance of network criticality
as survival value by introducing the relationship between
network criticality and some other important graph properties,
i.e. average cost, average path length, and connectivity. In
section V we propose a convex optimization problem for
network criticality. Section VI provides a case study on one of
the classical problems in communication networks, capacity
assignment, by using the proposed optimization problem to
design optimal capacities, and compares the results with two
well-known solutions in the literature. The paper is concluded
in section VII.



II. NETWORK CRITICALITY

In this section we summarize the results of our previous
work on robustness [5].

A. Network Model

We model a network with an undirected weighted graph
G = (N, E, W ) where N is the set of nodes, E is the set of graph
links, and W is the weight matrix of the graph. Throughout
this paper we assume that G is a connected graph. We assume
that SLA (Service Level Agreement) parameters are already
mapped to the weights by some appropriate method. Some of
these methods are discussed in [6]. This permits us to abstract
different business policies and/or SLA’s as parts of the weight
definition. In this paper we are interested in the study of the
weights and their effect on robustness.

Consider a finite-state irreducible Markov Chain with tran-
sition probabilities pij of transitioning from state i at time
t to state j at time t + 1 (discrete time). The Markov chain
can be represented by a state transition diagram with states
as nodes in a graph and edges corresponding to allowable
transitions, and labels associated with the edges denoting the
transition probabilities. The Markov chain can also be viewed
as a random walk on the n-node graph with next-step transition
probabilities pij according to the following rule:

pij =






wij∑
k∈A(i) wik

if j ∈ A(i)

0 otherwise
(1)

where A(i) is the set of adjacent nodes of i and wik ≥ 0 is the
weight of link (i, k).

We are interested in quantifying the betweenness of a node
in the random-walk corresponding to a Markov chain. Con-
sider the set of trajectories that begin at node s and terminate
when the walk first arrives at node d, that is, destination node
d is an absorbing node. We define the betweenness bsk(d) of
node k for the s−d trajectories as the average number of times
node k is visited in trajectories from s to d.

Let Bd = [bsk(d)] be the n×n matrix of betweenness metrics
of node k for walks that begin at node s and end at node d.
Further, let Pd be the matrix of transition probabilities when
the random walk is modified so that state d is an absorbing
state. We use P (i|j) to show the truncated (n−1)×(n−1) matrix
that results from removing ith row and jth column of matrix
P . It is shown in [5] that:

Bd(d|d) = (I − Pd(d|d))−1 (2)

B. Definition of Network Criticality

We now introduce network criticality, the metric that we
proposed in [5], to quantify the robustness of a network. We
start by defining node/link criticality.

Node criticality is defined as the random-walk betweenness
of a node over its weight (weight of a node is defined as the
sum of the weights of its incident links). Link criticality is
also defined as the betweenness of a link over its weight.

Let ηk be the criticality of node k and ηij be the criticality of
link l = (i, j). It is shown in [5] that ηi and ηij can be obtained
by the following expressions:

τsd = l+ss + l+dd − 2l+sd or τsd = ut
sdL+usd (3)

τ =
∑

s

∑

d

τsd, τ̂ =
1

n(n − 1)
τ (4)

η(k) =
bk

Wk
=

1

2
τ =

n(n − 1)

2
τ̂ (5)

ηij =
bij

wij
= τ = n(n − 1)τ̂ (6)

bsk(d)

Wk
= l+sk − l+sd − l+dk + l+dd (7)

where L+ = [l+ij ] is the Moore-Penrose inverse of graph
Laplacian matrix L, n is the number of nodes, and uij =

[0 ... 1 ... − 1 ... 0]t (1 and −1 are in ith and jth position).
Observation 2.1: Equations 3 to 6 show that node criticality

(ηk) and link criticality (ηij) are independent of the node/link
position and only depend on τ (or τ̂) which is a global quantity
of the network.

Definition 2.2: We refer to τ as the network criticality and
τ̂ as normalized network criticality.
One can see that τ̂ is a global quantity on network graph
G. Equations 5 and 6 show that node (link) betweenness
consists of a local parameter (weight) and a global metric
(network criticality). τ̂ can capture the effect of topology and
community of interest via betweenness, and the effect of traffic
via weight (by appropriate definition of weight). The higher
the betweenness of a node/link, the higher the risk of using
the node/link. Furthermore, one can define node/link capacity
as the weight of a node/link, then the higher the weight of a
node/link, the lower the risk of using the node/link. Therefore
network criticality can quantify the risk of using a node/link
in a network which in turn indicates the degree of robustness
of the network.

This motivates the rest of our work in this paper. We
consider network criticality as the survival value of a network.
This survival value is a network-wide metric to capture and
optimize network robustness. In this paper our goal is to
investigate τ̂ as a function of weight matrix (W ). We aim
to find an appropriate weight matrix that can optimize the
survival value (and robustness as a result) of a network.

III. SOME FACTS ABOUT NETWORK CRITICALITY

In this section we establish some lemmas which will be
central to our other derivations.

Lemma 3.1: Network Criticality τ is equal to 2nTr(L+).
Equivalently, normalized network criticality τ̂ is 2

n−1Tr(L+).
Proof: Since τsd = l+ss + l+dd − 2l+sd, we have

τ =
∑

s,d

τsd

=
∑

d

∑

s

l+ss +
∑

s

∑

d

l+dd − 2
∑

s

∑

d

l+sd

= n
∑

s

l+ss + n
∑

d

l+dd − 2 × 0 = 2n
∑

i

l+ii



Therefore

τ = 2nTr(L+)

τ̂ =
1

n(n − 1)
2nTr(L+) =

2

n − 1
Tr(L+)

This completes the proof of lemma 3.1.

Lemma 3.2: τ̂ can be written as: τ̂ = 2
n−1

∑n
i=2

1
λi

, where
0 = λ1 ≤ λ2 ≤ ... ≤ λn are eigenvalues of graph Laplacian L.

Proof: We know from linear algebra that the trace of a
square matrix is equal to the sum of its eigenvalues. On the
other hand, the non-zero eigenvalues of L+ are reciprocals of
the non-zero eigenvalues of L. Lemma 3.2 is then a direct
result of Lemma 3.1.

Lemma 3.2 will establish a connection between network
criticality and the spectrum of graph Laplacian.

Lemma 3.3: For any weight matrix W of links of a graph:
V ec(W )t∇τ + τ = 0, where V ec(W ) is a vector obtained by
concatenating all the rows of matrix W.

Proof: Suppose we scale all the link weights in a graph
with factor t, then by equation 6:

τ(tV ec(W )) =
bij

twij

Note that the transition probabilities psk(d) are invariant to the
scaling of the weights based on their definition in equation
1. Therefore matrix Pd is also invariant to the scaling of the
weights. As a direct result matrix Bd (and each one of its
elements bsk(d)) is invariant to the scaling of the weights based
on equation 2. This verifies that any node betweenness bk =
∑

s,d bsk(d) is invariant to the scaling and finally equation 6
asserts that any link betweenness bij is invariant to the scaling
of the link weights. Therefore

τ(tV ec(W )) =
1

t
τ(V ec(W )) (8)

By taking the derivative of τ with respect to t, we have

V ec(W )t∇τ =
−1

t2
τ(W ) (9)

It is enough to consider equation 9 at t = 1 to get V ec(W )t∇τ+

τ = 0.

IV. SOME INTERPRETATIONS OF NETWORK CRITICALITY

In this section we try to shed more light on the concept
of network criticality as the survival value for network by
providing some interpretations of it.

A. Network Criticality and Average Path Cost

We assume certain cost to travel along a path and study the
effect of network criticality τ on average cost incurred by a
message during its walk from source s to destination d.

We consider the following scenario. For each link l = (i, j)

there is a cost zl = z(i, j). Note that this cost is different from
the weight of the link. After a random-walk starts from source

node s, at each step it traverses one link, incurs a cost, and
continues until it is absorbed by destination d. We wish to
calculate the average cost of this journey. Theoretically, the
number of hops of a path that is taken by random-walk can
be infinite.

Using the properties of Markov Chains one can calculate
the average cost ϕ(s, d) incurred by paths between source s

and destination d:

ϕ(s, d) = E{
∞∑

k=0

z(dk, dk+1)} where s = d0 (10)

We expand equation 10 using elementary probability.

ϕ(s, d) =
∑

d1,d2,...

p(d1, d2, ...|d0 = s)(
∞∑

k=0

z(dk, dk+1))

=
∑

d1

psd1{z(s, d1) +
∞∑

k=1

p(d2, ...|d0)z(dk, dk+1)}

ϕ(s, d) =
∑

j

psjz(s, j) +
∑

j

psjϕ(j, d) (11)

Equation 11 has a recursive form, which we will express in
matrix form. We relabel the nodes so that node d is the last
node. We also define fs =

∑
j psjz(s, j). Equation 11 can be

written as:
−→
φ d(d|d) =

−→
f (d|d) + Pd(d|d)

−→
φ d(d|d)

−→
φ d(d|d) = (I − Pd(d|d))−1−→f (d|d) (12)

where −→
φ d = [φ(s1, d),φ(s2, d), ...,φ(sn, d)], −→

f = [fs1 , fs2 , ..., fsn ].
Now we can use equation 2 to write the cost as a function of
betweenness. In order to simplify the notation, we substitute
psk(d) with psk in the following equations. This is safe because
node d is an absorbing node and it does not have any effect on
the transition probability of other node pairs. In the following
equations we work with reduced matrices where the effect of
absorbing state is already considered by removing the row and
column corresponding to node d.

−→
φ d(d|d) = Bd(d|d)

−→
f (d|d) or

ϕ(s, d) =
n∑

k=1

bsk(d)fk =
n∑

k=1

bsk(d)
∑

j

pkjz(k, j) (13)

Now we are ready to calculate the average cost over all
node-pairs.

ϕ̄ =
1

n(n − 1)

∑

s,d

ϕ(s, d)

=
1

n(n − 1)

∑

k

(
∑

s,d

bsk(d)
∑

j

pkjz(k, j))

=
1

n(n − 1)

∑

k

(
∑

j

pkjz(k, j)bk)

One can use relation 5 to find the relationship between average
cost and criticality.

ϕ̄ =
1

n(n − 1)

∑

k

(
∑

j

pkjz(k, j)
1

2
τWk)

=
1

2n(n − 1)
τ

∑

k

(
∑

j

wkj

Wk
z(k, j)Wk)

=
1

2
τ̂

∑

k

(
∑

j

wkjz(k, j)) (14)



Observation 4.1: Equation 14 shows that the average net-
work cost is the product of normalized network critical-
ity and total weighted graph cost (

∑
k(

∑
j wkjz(k, j))). If

∑
k(

∑
j wkjz(k, j)) is fixed at constant value C (maximum

budget) then the average network cost is proportional to the
criticality of the network.

This interpretation of network criticality is important be-
cause in many practical situations we aim to minimize the
average cost of a network. For example most of the traffic
engineering algorithms try to minimize a kind of cost in the
system. Another example is network planning (or re-planning).
In network design we have an optimization criteria where a
cost metric is minimized.

B. Network Criticality and Average Hop Length

Network Criticality is also related to the average hop length
of a walk. The following important result relates the average
length of random-walk to the network criticality.

Lemma 4.2: Let T be the average length (number of hops)
of a random-walk over all source-destination pairs, and W̄ be
the average weight of all nodes. Then:

T =
n

2
W̄ τ̂

Proof: It is enough to consider the special case of unit
cost z(i, j) = 1 for all the links of the network in equation 14.

Lemma 4.2 reveals that the average hop length of a random-
walk is proportional to the product of normalized network
criticality and average node weights. If we fix the total weight
of a network at a budget C, then the average hop length
of a walk would be proportional to the normalized network
criticality, therefore, the normalized network criticality can
quantify the average path length for the network flows.

C. Network Criticality and Average Betweenness Sensitivity

Another interpretation for network criticality is based on
the betweenness of different network links. Since τ =

bij

wij
, we

have for wij > 0:

∂τ

∂wij
=

1

wij

∂bij

∂wij
−

τ

wij
or wij

∂τ

∂wij
=

∂bij

∂wij
− τ (15)

By adding the results of equation 15 for different links of the
network one can see:

∑

(i,j)∈E

wij
∂τ

∂wij
=

∑

(i,j)∈E

∂bij

∂wij
− mτ (16)

Combining equation 16 and Lemma 3.3 results in:

τ =
1

m − 1

∑

(i,j)∈E

∂bij

∂wij
(17)

where m is the number of links of the network.
Observation 4.3: According to equation 17 network criti-

cality τ can be interpreted as the average of link betweenness
derivatives or sensitivities with respect to link weight.

Equation 17 suggests an effective approach to design rout-
ing and flow assignment algorithms. If we can estimate the

variation of each link betweenness with respect to its weight
(i.e. ∂bij

∂wij
), then we can use this variation as a cost to develop

routing strategies to find min-cost paths.

D. Network Criticality and Algebraic Connectivity

Fiedler [7] defined algebraic connectivity as the first non-
zero eigenvalue (λ2) of the Laplacian matrix of a connected
graph (recall that the first eigenvalue of Laplacian matrix for
a connected graph is zero). Algebraic connectivity is an upper
bound for node connectivity and link connectivity. Therefore,
the further λ2 is from zero, the higher the node and link
connectivity of a graph.

We now establish lower and upper bounds for network
criticality based on algebraic connectivity.

Theorem 4.4: Normalized network criticality satisfies the
following bounds : 2

(n−1)λ2
≤ τ̂ ≤ 2

λ2
.

Proof: Lemma 3.2 can be used to obtain spectral bounds
for network criticality. Since λ2 is the smallest non-zero
eigenvalue of graph Laplacian and all the eigenvalues are non-
negative, we have:

τ̂ =
2

n − 1

n∑

i=2

1

λi
≤

2

n − 1
×

n − 1

λ2
≤

2

λ2
(18)

This establishes the upper bound for normalized network
criticality. To get the lower bound we observe that:

τ̂ =
2

n − 1

n∑

i=2

1

λi
≥

2

n − 1

1

λ2
(19)

combining inequalities 18 and 19 completes the proof of
theorem 4.4.

Theorem 4.4 shows the relationship between network crit-
icality and connectivity. Since normalized network criticality
is upper bounded by the reciprocal of algebraic connectivity,
improvement of connectivity (increasing λ2) improves the
robustness as well (decreasing the upper bound of τ̂), but it is
important to note that increasing connectivity at the same time
decreases the lower bound of network criticality, which in turn
causes more variance in network criticality. In other words, we
can’t uniformly improve the robustness of a network just by
increasing the connectivity.

E. Network Criticality in Communication Networks

In this section we show the importance of network criticality
in the study of communication networks. Let λ be the average
input rate of the network, and let the weight of each link be
the capacity of the link (i, j) = l (i.e. wij = cij = c(l)). Further,
let xk be the average load on node k and ck be the capacity
of node k. By applying Little’s formula and using lemma 4.2
we have:

xk = λπkT = λ
Wk∑
i Wi

n

2
W̄ τ̂ =

λ

2
Wk τ̂ (20)

But Wk is the total capacity of node k, therefore

xk ≤ Wk ⇒
λ

2
Wk τ̂ ≤ Wk ⇒ λ ≤

2

τ̂
(21)



We can summarize these results in theorem 4.5.

Theorem 4.5: To maximize the carried load of a network,
one needs to minimize the (normalized) network criticality,
where the link weight is defined as the link capacity:

max
W

λ =
2n(n − 1)

minW τ
=

2

minW τ̂

V. OPTIMIZATION OF NETWORK CRITICALITY

Different interpretations of network criticality, in particular
theorem 4.5, show that network criticality should be minimized
in order to have robust behavior in different applications. The
following theorem proves that the minimization of network
criticality is in fact doable.

Theorem 5.1: τ is a strictly convex function of graph
weights. Further, τ is a non-increasing function of link weights.

Proof: We note that function f(X) = Tr(X−1) is strictly
convex on X, if X is positive definite (see [8]). Therefore,
considering well-known equation L+ = (L + J

n )−1 − J
n [8] (J

is an n×n matrix whose entries are all equal to 1),we can see
that τ = 2nTr(L+) = 2nTr(L + J

n )−1 − 2n is strictly convex on
matrix L+ J

n (since L is positive semi-definite, L+ J
n is always

positive definite).
It is also not difficult to show that ∂τ

∂wij
= −2n‖L+uij‖2,

which is always non-positive, therefore, τ is a monotone
decreasing function of link weights.

Theorem 5.1 has some direct consequences.

Observation 5.2: The problem of finding graph weights to
optimize network criticality is a convex optimization problem
and all the related literature can be used to solve it.

Observation 5.3: Due to the fact that the τ is a strictly
convex function of the weights, an optimization problem
with some constraints has a unique solution. As τ is a
non-increasing function of weights, our optimization problem
would be to minimize network criticality where some con-
straints are imposed on weight matrix.
The ultimate goal is to find a method to minimize network crit-
icality. Hence, we consider the minimization of τ under some
constraints. Motivated by equation 14. we set

∑
(i,j)∈E zijwij =

C as a reasonable constraint for our optimization problem.
One can consider C as the maximum budget for total network
weight. The main optimization problem is then:

Minimize τ̄

Subject to
∑

(i,j)∈E zijwij = C , C is fixed (22)

wij ≥ 0 ∀(i, j) ∈ E

Optimization problem 22 can be converted to a semi-definite
programming problem. Suppose we let Γ =( L + J

n )−1, then
Γ can be written as a semi-definite inequality as follows. We

consider matrix Θ =

(
Γ I

I L + J
n

)
. The necessary and suffi-

cient condition for positive semi-definiteness of Θ is that its

Fig. 1: Kleinrock’s Network

Schur complement ([8]) be positive semi-definite. By applying
Schur complement for matrix Θ, optimization problem 22 can
be converted to the following semi-definite program:

Minimize
2

n − 1
Tr(Γ) −

2

n − 1
(23)

Subject to
∑

i,j

zijwij = C

(
Γ I

I L + J
n

)
≥ 0

A. Capacity Planning

Let the weight of a link be equal to the link capacity, that is,
wij = cij ∀(i, j) ∈ E (cij denotes the capacity of link (i, j)). We
investigate the capacity assignment problem in which network
topology and traffic load γij ∀(i, j) ∈ E are assumed known and
fixed. This requires that we add constraints cij ≥ γij ∀(i, j) ∈ E

to optimization problem 22. The rest is the same and our semi-
definite approach can be used to solve the capacity assignment
problem.

VI. CASE STUDY

In order to show the robustness properties of network
criticality, we investigate the capacity assignment problem as
defined in [9] for two different network topologies.

A. Kleinrock’s Network

We compare our capacity planning method with Kleinrock’s
method for capacity assignment [9] and Meister’s extension
[10] using the example of telegraph network in Kleinrock
illustrated in Fig. 1(see [9], pp. 22-23). In this example the link
cost factors zij are all considered equal to unity. Kleinrock’s
method finds capacities of the links in such a way to minimize
the average delay of the network under the independence
assumption and when the link loads are known.

One problem with Kleinrock’s approach is that it assigns
very long delays to the links with small loads. Meister’s
method is an alternative approach which assigns equal delays
to all the links, of course at the expense of a large deviation
from optimal average network delay which can be achieved
by Kleinrock’s solution. The proposed solution in this paper
assigns capacity of the links in a way to balance the individual
link delays so as to have acceptable link delays while still
we have a good average network delay. Table I shows the
capacity assigned to the links using all the methods. The
second column of table I shows the individual link loads.



Link Load Kleinrock Meister Criticality Method
1 3.15 27.93 27.00 29.63
2 3.55 29.85 27.40 33.31
3 0.13 5.16 23.98 12.67
4 3.64 30.28 27.49 32.95
5 0.82 13.46 24.67 13.36
6 3.88 31.38 27.73 33.64
7 9.95 53.99 33.80 36.43

TABLE I: Capacity Assignment using 3 Different Methods

Method Average Network Delay Network Criticality
Kleinrock 44.72 1.06
Meister 55.01 0.80

Criticality Method 49.30 0.56

TABLE II: Average Network Delay and Network Criticality
using Different Methods

Columns 3, 4, and 5 show the optimal capacity assignment
using Kleinrock’s method, Meister’s method, and our proposed
method (which we call it criticality method) respectively.
The minimum average network delay for these methods are
given in the second column of table II. In the criticality

Link Kleinrock Meister Criticality Method
1 40.36 41.93 37.76
2 38.02 41.93 33.60
3 198.67 41.93 79.71
4 37.54 41.93 34.12
5 79.10 41.93 79.71
6 36.36 41.93 33.60
7 22.71 41.93 37.76

TABLE III: Individual Link Delays using 3 Different Methods

method we actually optimize the robustness (not the average
delay as it is the case in Kleinrock and Meister), therefore
it is not surprising to see that the average delay obtained by
criticality method is between two extremes of Kleinrock (to
minimize the average network delay) and Meister (to minimize
the maximum link delay). We can see this fact from the
values of τ obtained from these capacity assignment methods.
The value of network criticality in all of these methods is
shown the third column of table II. This table shows that the
criticality in the proposed method has the minimum value as
expected, and the network criticality in Meister’s method is
less than Kleinrock’s method, therefore, Meister’s method is
more robust than Kleinrock’s. Table III shows individual link
delays for all three methods. This table also reveals that the
criticality method provides more robust solution.

B. Trap Network

Our next example is the trap network shown in Fig. 2. We
assume that all link costs are 1 except for the cost of link (3, 4)

which is equal to 5, that is z34 = z43 = 5. We also assume that
the total cost is equal to C = 1000. Optimal link weights are
shown in Fig. 2. One can see that the link (3, 4) is effectively

Fig. 2: Trap Network

down. This means that the topology of the trap network is
changed. In fact, if we set w34 = w43 = 0 in the optimization
problem, and if we use the equal cost for all the links, the
optimal link weights would be the same as shown in Fig. 2.

VII. CONCLUSION

In this paper we investigated the properties of a global
graph metric, network criticality, and considered it as the
survival value for a network, because it can quantify some
of important network quantities, such as average cost, path
length, and connectivity. We showed that network criticality
is a strictly convex function of link weights and investigated
the convex optimization problem of minimizing the network
criticality under some constraints on the weight matrix. We
also found a semi-definite programming representation of this
problem which permits us to use available literature on semi-
definite programming to solve the optimization problem and
find the optimal weights. Capacity assignment problem can be
considered as a special case of this general problem where the
weight of a link is equal to its capacity.
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