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Abstract—This paper introduces a new network science metric
to evaluate the relative load on different links and nodes of a
communication network. Motivated by the definition of random-
walk betweenness in graph theory, we define the notion of traffic-
aware betweenness (TAB) for data networks, where usually an
explicit (or implicit) traffic matrix governs the distribution of
external traffic into the network. We study the relationship
between TAB and average network utilization and show that the
average normalized traffic-aware betweenness, which is referred
to as traffic-aware network criticality (TANC) is a linear function
of end-to-end effective resistances (or network criticalities) of the
graph. As a result, TANC is in general is a (convex+concave)
function of link weights. We find a subset of admissible traffic
matrices, in which the problem is convex. We construct a
semidefinite program to solve this convex optimization problem
and evaluate its optimal solution on some well-known graph
topologies.

I. INTRODUCTION

Freeman [1] introduced a very useful metric in graph theory
referred to as shortest-path betweenness centrality. For node k
the shortest-path betweenness centrality with respect to flows
from source node i to destination node j is defined as the
proportion of instances of the shortest paths from node i to
j that traverse node k. The overall shortest-path betweenness
centrality of node k is the sum of the centralities over all
source-destination pairs. Link betweenness is defined likewise.
Later, a series of other related metrics defined by various
researchers in the field of network science, including flow-
betweenness [2], [3] and random-walk betweenness [4] each
one addressing some limitations of shortest path betweenness.
However, previous definitions of betweenness (shortest-path
betweenness, flow-betweenness, random-walk betweenness)
are purely topological and are oblivious about the traffic
between different source-destination pairs, while in commu-
nication networks the external traffic is a major factor in
analyzing the behavior of networks. Here we introduce a new
notion of betweenness, Traffic-Aware Betweenness (TAB), to
account for traffic in a network. This new definition can apply
to all different versions of betweenness, but our derivations
are for traffic-aware random-walk betweenness (TARWB). We
assume that the traffic between every node pair is given by a
traffic matrix Γ = [γs(d)].

The paper is organized as follows. Section II reviews
previous work on random-walk betweenness and network
criticality, and introduces necessary notations. In section III the

relationship of packet networks and betweenness centrality is
studied. The proposed metrics traffic-aware betweenness and
traffic-aware network criticality (TANC) are introduced and
investigated in section IV. The optimization problem to min-
imize traffic-aware network criticality is discussed in section
V, followed by two case studies of network planning for well-
defined graphs in section VI. Conclusions are presented in
section VII.

II. RANDOM-WALK BETWEENNESS AND NETWORK
CRITICALITY

In this paper, we define a network as an undirected weighted
graph G(N,E,W ), where N and E are the set of nodes and links
respectively, and W is the symmetric link weight matrix.

Our definition of random-walk betweenness follows New-
man [4]. Consider a finite-state irreducible Markov Chain with
transition probabilities pij of transitioning from state i at time
t to state j at time t + 1 (discrete time). The Markov chain
can be represented by a state transition diagram with states
as nodes in a graph and edges corresponding to allowable
transitions, and labels associated with the edges denoting the
transition probabilities. The Markov chain can be viewed as
a random walk on the n-node graph with next-step transition
probabilities pij .

We are interested in quantifying the betweenness of a
node in the random-walk corresponding to the above Markov
chain. Consider the set of trajectories that begin at node s

and terminate when the walk first arrives at node d, that
is, destination node d is an absorbing node. We define the
betweenness bsk(d) of node k for the s − d trajectories as the
average number of times node k is visited in trajectories from
s to d. Note that bdk(d) = 0 for k not equal to d since such
walks are terminated at step zero.

Let Bd = [bsk(d)] be the n×n matrix of betweenness metrics
of node k for walks that begin at node s and end at node d.
Note that the dth row of the matrix is zero. It is shown in [5]
that matrix Bd can be written as:

Bd = (I − Pd)−1Θd (1)

Θd = [θsk(d)] =

{
1 if s = k 6= d

0 otherwise

Matrix Pd is also the same as P except that its dth row and
dth column are zero vectors. In this paper we are interested



in a special type of random-walks referred to as weight-based
random-walk. The weight-based random-walk is defined on a
Markov chain with transition probability matrix P according
to the following rule:

pij =


wij∑

k∈A(i) wik
if j ∈ A(i)

0 otherwise
(2)

where A(i) is the set of adjacent nodes of i and wik ≥ 0 is the
weight of link (i, k).

We now introduce network criticality [5], [6], to quantify
the robustness of a network. We start by defining node/link
criticality.

Definition 2.1: Node criticality is defined as the random-
walk betweenness of a node over its weight (weight of a node
is defined as the sum of the weights of its incident links).
Link criticality is defined as the betweenness of a link over
its weight.

Let ηk be the criticality of node k and ηij be the criticality
of link l = (i, j). It is shown in [5], [6] that ηi and ηij can be
obtained by the following expressions:

bsk(d)

Wk
= l+dd − l

+
sd − l

+
dk + l+sk (3)

τsd = l+ss + l+dd − 2l+sd or τsd = utsdL
+usd (4)

τsd =
bsk(d) + bdk(s)

Wk
(5)

ηk =
bk

Wk
=

1

2
τ , τ =

∑
s

∑
d

τsd (6)

ηij =
bij

wij
= τ (7)

where L+ is the Moore-Penrose inverse of graph Lapla-
cian matrix L [7], n is the number of nodes, and uij =

[0 ... 1 ... − 1 ... 0]t (1 and −1 are in ith and jth positions
respectively). We define the average network criticality as
τ̄ = 1

n(n−1)
τ .

Observation 2.2: Equations (3) to (7) show that node crit-
icality (ηk) and link criticality (ηij) are independent of the
node/link position and only depend on τ (or τ̄) which is a
global quantity of the network.

Definition 2.3: We refer to τsd as end-to-end network crit-
icality and τ as network criticality.
End-to-end network criticality has a nice interpretation in
electrical circuits. If we assume that our network is a resistive
electrical network with link conductances equal to the weights
of the corresponding links, then τsd is the resistance distance
or effective resistance seen between two end points s and d

[8], and τ is the total effective resistance of the network with
many useful interpretations [9].

One can see that τ is a global quantity on the network
graph. Equations (6) and (7) show that node (link) betweenness
consists of a local parameter (weight) and a global metric
(network criticality). τ can capture the effect of topology
through the betweenness values. The higher the betweenness
of a node/link, the higher the risk (criticality) in using the
node/link. Furthermore, one can define node/link capacity as
the weight of a node/link, then the higher the weight of a

node/link, the lower the risk of using the node/link. Therefore
network criticality can quantify the risk of using a node/link
in a network which in turn indicates the degree of robustness
of the network.

In this paper we extend the definition of betwenness, and
network criticality by considering the effect of an explicit
traffic matrix in the system. In our previous works ([5], [10])
we implicitly assumed that the average input traffic to all the
nodes of the network are uniform. In this work we consider
a general traffic matrix [γs(d)] and will introduce traffic-aware
versions of betweenness and network criticality.

III. PACKET NETWORKS AND RANDOM-WALK
BETWEENNESS

We now show that random-walk betweenness is closely
related to packet network models. Consider a packet switching
network in which packets arrive to packet switches from out-
side the network according to independent arrival processes.
Each external packet arrival has a specific destination and the
packet is forwarded along the network until it reaches said
destination. We suppose that packet switches are intercon-
nected by transmission lines that can be modeled as single-
server queues. Furthermore, suppose that packet switches use
a form of routing where the proportion of packets at queue i

forwarded to the next-hop queue j is pij .
We calculate the total arrival/departure rate of the traffic

to/from each node. The total input rate of node k (internal
plus external) is denoted by xk. After receiving service at the
ith node, the proportion of customers that proceed to node k

is pik. To find xk we need to solve the following set of linear
equations (see [11]):

xk = γk +

n∑
i=1

xipik (8)

where γk is the external arrival rate to node k. Note that
equation 8 is essentially similar to KCL (Kirchhoff’s Current
Law). If we denote −→x = [x1, x2, ..., xn] and −→γ = [γ1, γ2, ..., γn],
then equation (8) becomes:

−→x = −→γ +−→x P (9)

Suppose we focus on traffic destined to node d, then node d

is an absorbing node, and we suppose that the arrival rate at
node d is zero (since said arrivals do not affect other nodes)
and equation (9) can be written as:

−→xd = (−→γd +−→xdPd)Θd (10)

where −→xd and −→γd are the same as −→x and −→γ except for the dth

element which is 0. Matrix Pd is also the same as P except
that its dth row and dth column are zero vectors. Equation (10)
can be solved for −→xd.

−→xd = −→γd ×Θd × (I − Pd ×Θd)−1 (11)

To find the relationship of betweenness Bd and the input arrival
rate xk we notice that pdk(d) = 0 which means that Pd = Θd×Pd.



Thus:

Pd ×Θd = Θd × Pd ×Θd

Θd − Pd ×Θd = Θd −Θd × Pd ×Θd

Θd × (I − Pd ×Θd)−1 = (I − Pd)−1 ×Θd

Using equation (1) we will have:

Θd × (I − Pd ×Θd)−1 = Bd (12)

We substitute equation (12) in (11) to find the relationship
between the node traffic and node betweenness.

−→xd = −→γd ×Bd (13)

If we denote the kth element of −→xd and −→γd by xk(d) and γk(d)

respectively, we have:

xk(d) =
∑
s

γs(d)bsk(d) (14)

Now we can find the total load at node k by adding the effect
of all destinations in equation (14).

xk =
∑
d

xk(d) =
∑
s,d

γs(d)bsk(d) (15)

IV. TRAFFIC-AWARE BETWEENNESS

In this section we develop an expression for traffic-aware
betweenness motivated by equation (15).

Definition 4.1: Let Bd = [bsk(d)] be the betweenness matrix
and let the traffic matrix be Γ = [γs(d)]. We denote the total
external traffic by γ =

∑
s,d γs(d). We define traffic-aware

betweenness (TAB) of node k as:

b′sk(d) =
γs(d)

γ
bsk(d) (16)

b′k =
∑
s,d

γs(d)

γ
bsk(d) (17)

Note that definition 4.1 is generally applicable for the different
types of betweenness. If we consider bsk(d) as the shortest-path
betweenness, then definition 4.1 gives traffic-aware shortest-
path betweenness, and so on.

A. Traffic-Aware Random-Walk Betweenness (TARWB)

In this section we develop traffic-aware random-walk be-
tweenness, where bsk(d) denotes the random-walk betweenness
(weight-based random-walk). In order to derive an appropriate
expression for TARWB we notice that:

b′k =
∑
s,d

γs(d)

γ
bsk(d)

=
1

2

∑
s,d

(
γs(d)

γ
bsk(d) +

γd(s)

γ
bdk(s)) (18)

But, from equation (5) we know that:

bsk(d) + bdk(s) = Wkτsd (19)

Substituting equation (19) in (18) will result in:

b′k =
1

2

∑
s,d

(
γs(d)

γ
bsk(d) +

γd(s)

γ
(Wkτsd − bsk(d)))

=
Wk

2

∑
s,d

γd(s)

γ
τsd +

1

2

∑
s,d

(
γs(d)

γ
−
γd(s)

γ
)bsk(d) (20)

Now we write bsk(d) in terms of different elements of the
matrix of end-to-end network criticalities Ω = [τsd]. Using
equations (3) and (4) we have:

τsd + τdk − τsk = 2(l+dd − l
+
sd − l

+
dk + l+sk)

= 2
bsk(d)

Wk

Thus

bsk(d) =
Wk

2
(τsd + τdk − τsk) (21)

Substituting equation (21) in (20) will result in:

b′k =
Wk

4

∑
s,d

(
γs(d)

γ
+
γd(s)

γ
)τsd

+
Wk

4

∑
s,d

(
γs(d)

γ
−
γd(s)

γ
)(τdk − τsk) (22)

Observation 4.2: According to equation (22), the normal-
ized traffic-aware betweenness ( b

′
k

Wk
) can be written as a linear

function of τsd’s. Since τsd is a convex function of link
weights ([9]), the normalized traffic-aware betweenness is also
a convex function of link weights.

Observation 4.3: There are two special cases of interest in
equation (22).

1) γs(d) = γ
n(n−1)

∀ s− d pairs
When the average traffic between all source-destination
pairs are equal, equation (22) is reduced to b′k = Wk

τ̄
2

,
where τ̄ = τ

n(n−1)
which is the original definition of

random-walk betweenness just with a normalization
coefficient 1

n(n−1)
.

2) γs(d) = γd(s) ∀ s− d pairs
In the case of symmetric traffic demand matrix, equation
22 can be simplified as follows.

b′k
Wk

=
1

2

∑
s,d

γd(s)

γ
τsd (23)

Equation (22) can be written in the following form:

b′k
Wk

=
1

2
(
1

2

∑
s,d

(
γs(d)

γ
+
γd(s)

γ
)τsd

+
1

2

∑
s,d

(
γs(d)

γ
−
γd(s)

γ
)(τdk − τsk)) (24)

In analogy with the notion of bk
Wk

= τ
2

and using equation (24)
we can define Traffic-Aware Node Criticality (TANOC) τ ′k:

τ ′k =
1

2

∑
s,d

(
γs(d)

γ
+
γd(s)

γ
)τsd

+
1

2

∑
s,d

(
γs(d)

γ
−
γd(s)

γ
)(τdk − τsk) (25)



We can also define point-to-point traffic-aware criticality (be-
tween points s and d) for a node k as follows:

τ ′sd(k) =
1

2
(
γs(d)

γ
+
γd(s)

γ
)τsd +

1

2
(
γs(d)

γ
−
γd(s)

γ
)(τdk − τsk) (26)

Observation 4.4: Equation (25) shows that TANOC de-
pends on the node position.

Observation 4.5: By averaging over k in equations (25) and
(26) we obtain a measure of average traffic-aware criticality.
Let τ ′sd = 1

n

∑
k τ
′
sd(k), then

τ ′sd =
1

2
(
γs(d)

γ
+
γd(s)

γ
)τsd +

1

2n
(
γs(d)

γ
−
γd(s)

γ
)(τd∗ − τs∗) (27)

where τi∗ =
∑
k τik. Similarly, Let τ ′ = 1

n

∑
k τ
′
k, then:

τ ′ =
1

2

∑
s,d

(
γs(d)

γ
+
γd(s)

γ
)τsd

+
1

2n

∑
s,d

(
γs(d)

γ
−
γd(s)

γ
)(τd∗ − τs∗) (28)

We refer to τ ′ as Traffic-Aware Network Criticality (TANC).
Observation 4.6: If we suppose that the traffic matrix Γ is

symmetric, then TANOC will be:

τ ′k =
∑
s,d

γd(s)

γ
τsd = τ ′ (29)

In this case, according to equation (29), TANOC is
independent of the node position.

V. MINIMIZATION OF NETWORK UTILIZATION

Node utilization is defined as the load of a node normalized
by its capacity (or in a more general sense by its weight), the
utilization of node k is equal to Vk = xk

Wk
. We denote the

average network utility by V̄ =
∑

k Vk

n
. Considering equations

(15), (17), and using b′k
Wk

= 1
2
τ ′k, one can see that Vk = γ

2
τ ′k and

V = γ
2
τ ′. Therefore, minimizing average network utilization is

equal to minimizing traffic-aware network criticality. Since τ ′

is a linear combination of convex functions (τij), we arrive at
the result that minimizing average network utilization can be
formulated as a (convex+concave) optimization problem since
the coefficients could be positive or negative.

We now consider minimization of a general linear function
of effective resistances (or end-to-end network criticalities) as
τα =

∑
s,d αsdτsd. Traffic-aware network criticality is clearly

one example of τα with appropriate selection of coefficients
(according to equation (28)). In fact, on can show (by rear-
ranging equation (28)) that for TANC we have:

αsd =
γsd + γds

2γ
+
γ∗s − γs∗

nγ
(30)

In this paper we are interested in cases where τα is con-
vex. Therefore we have to guarantee that the coefficients of
τsd = τds are non-negative, that is αsd + αds ≥ 0 ∀s, d ∈ N .
This provides a subset of admissible traffic sets given in the
following:

γsd + γds ≥
1

n
(γs∗ − γ∗s + γd∗ − γ∗d) ∀s, d ∈ N (31)

In the rest of the paper we assume that our traffic matrices
belong to this convex subset of all possible choices.

In order to construct the optimization problem, we add
a maximum budget constraint to the problem. We assume
that there is a cost zij to deploy each unit of weight on
link (i, j). We also assume that there is a maximum budget
of C to establish all network links. This constraint means
that ∑(i,j)∈E wijzij = C. Now we can write our optimization
problem as follows:

Minimize τα

Subject to
∑

(i,j)∈E zijwij = C ,C is fixed (32)
wij ≥ 0 ∀(i, j) ∈ E

Theorem 5.1: The condition of optimality for optimization
problem (32) can be written as:

min
(i,j)∈E

C

zij

∂τα

∂wij
+ τα ≥ 0

More specifically:

w∗ij(C
∂τα

∂wij
+ zijτα) = 0 ∀(i, j) ∈ E (33)

where w∗ij denotes the optimal weight for link (i, j).
Proof: The steps of the proof are similar to what we have

done for the case of uniform traffic in [5]. We omit the details
of the proof due to the lack of space.

A. Semidefinite Program (SDP) to Minimize τα

In this section we find a semidefinite program to solve
optimization problem (32). To this end we notice that:

τα =
∑
s,d

αsdτsd

=
∑
ij

αsdu
t
sdL

+usd

=
∑
ij

αsdTr(usdu
t
sdL

+)

= Tr(UαL
+) (34)

where Uα =
∑
sd αsdUsd and Usd = usdu

t
sd. It is easy to see

that Uα is a symmetric matrix with the sum of the entries
of its rows equal to zero, and for αsd + αds ≥ 0 ∀s, d ∈ N ,
it is a positive semidefinite matrix (sufficient condition). As
we stated earlier, in this paper we only consider the case of
αsd+αds ≥ 0 ∀s, d ∈ N , and the general case will be reported in
our future papers. In terms of the traffic matrix we consider a
subset of admissible set of traffic matrices that guarantee the
positive semi-definiteness of Uα. More precisely, we consider
those traffic matrices which satisfy equation (31).

For the set of traffic matrices given by (31), optimization
problem (32) can be converted to the following semidefinite
programming problem (SDP):

Minimize
∑
s,d∈N αsdtsd (35)

Subject to Tr(ZtW ) = C ,C is fixed

diag(V ec(W )) � 0(
tsd utsd
usd L+ J

n

)
� 0 ∀s, d ∈ N



Fig. 1. Optimal Weight Assignment for Parking-Lot to Minimize τ49

where V ec(W ) is a vector obtained by concatenating all the
rows of weight matrix W and diag(x) means a diagonal matrix
with main diagonal equal to vector x.

Optimization problem (35) provides a framework for de-
signing appropriate link weights to minimize the average
network utilization. One can then derive different algorithms
for traffic engineering in communication networks to minimize
average network utilization. In this paper we concentrate on
the first goal and try to solve optimization problem (35)
for some representative networks. Optimization problem (35)
can be solved with standard methods for solving semidefinite
programs. There are also various commercial and academic
software tools to solve semidefinite programs. We used open-
source CVX package [12], [13] for our examples in this paper.

VI. CASE STUDY

In this section we solve optimization problem (35) for
two different network topologies: parking-lot and general tree
topology.

A. Parking-Lot Network

We consider a parking-lot network on 12 nodes as shown
in Fig. 1. First we study the case where there is traffic only
between two specific nodes a and b (i.e. γij = 0 ∀i, j ∈ N

except for γab = γba). In this case using equation (28), traffic-
aware network criticality (and average network utilization) can
be written as: τ ′ = γabτab. Therefore, we effectively minimize
end-to-end effective resistance or network criticality between
two end points a and b by allocating the weights along the links
between a and b. In order to be more specific let’s assume a = 4

and b = 9 in parking-lot topology for Fig. 1. We assume that
the cost of all links are equal to 1 and the maximum budget
is set to C = 2000. Then the optimal weight assignment to
minimize τ49 in the parking-lot topology is highlighted in Fig.
1 by thick lines.

Fig. 1 shows that the optimal distribution of weights is along
the shortest path from source node (node 4) to the destination
node (node 9) and the weights are evenly distributed among
the links on the shortest path. In fact, in the minimization
of point-to-point network criticality (effective resistance), the
resulting graph is not continuous.

As another example consider the same network, but now
suppose that all the elements of traffic matrix are equal to 1.
Then solving the optimization problem (35) will result in the
optimal distribution of weights as given in Table I.

Link Optimal Link Weight
(1,3) 77.2654
(2,3) 77.2654
(3,5) 121.0498
(4,5) 77.2656
(5,6) 77.2653
(5,8) 139.7768
(7,8) 77.2655
(8,9) 77.2656
(8,10) 121.0496

(10,11) 77.2655
(10,12) 77.2655

TABLE I
OPTIMAL WEIGHTS FOR PARKING-LOT IN CASE OF EQUAL TRAFFIC

Finally, consider a nonuniform traffic matrix as defined in
the following equation: γi(j) = 1

(i+j)2
∀i, j ∈ N, i 6= j. Table

II gives the optimal weight assignment in this case. It is seen

Link Optimal Link Weight
(1,3) 138.3109
(2,3) 125.3322
(3,5) 144.1829
(4,5) 93.0090
(5,6) 74.2826
(5,8) 119.2677
(7,8) 67.6480
(8,9) 57.5601
(8,10) 82.9718

(10,11) 50.2098
(10,12) 47.2251

TABLE II
OPTIMAL WEIGHTS FOR PARKING-LOT: γi(j) = 1

(i+j)2

that link (5, 8) is not the most critical one anymore, because of
the nonuniformity in traffic. The highest load is now shifted to
the link (3, 5), therefore, this links need special attention. For
example, in case we want to design backup mechanisms, for
this traffic matrix link (3, 5) needs highest shared bandwidth.

B. A General Tree Network

In this section we derive a general formula for WNC of a
tree with a nonuniform traffic matrix [γij ]. We note that a tree
is an acyclic simple graph, which means that there is exactly
one path between every two nodes of a tree. It follows that
network criticality of a tree can be found from the following
equation.

τα =
∑

(i,j)∈E

λij

wij
(36)

where λij denotes the total traffic passing through link (i, j)

(λij is the sum of those components of the traffic matrix whose
end-to-end path traverses link (i, j)). Using equation (36) we
have:

∂τα

∂wij
= −

λij

w2
ij

(37)



Considering the condition of optimality given by equation (33)
and using equation (37) we get:

∂τα

∂wij
= −

λij

w2
ij

= −
zijτα

C

Therefore

⇒ wij = (
λijC

zijτα
)
1
2 (38)

From the constraint of the optimization problem we have∑
(i,j)∈E zijwij = C, hence:

∑
(i,j)∈E

(
λijzijC

τα
)
1
2 = C (39)

τα = (
∑

(i,j)∈E
(
λijzij

C
)
1
2 )2 (40)

Now it is enough to substitute τ from equation (40) in equation
(38) to have optimal weight for tree.

wij = (
λijC

zij
)
1
2 ×

1∑
(i,j)∈E(

λijzij
C

)
1
2

Finally

wij =
C

zij
×

(λijzij)
1
2∑

(i,j)∈E(λijzij)
1
2

(41)

Equation (41) shows that the optimal weight of a link in a
tree is proportional to the square root of λij .

1) Capacity Planning for a Tree: The capacity assignment
problem for a tree when the link loads are known can be solved
by applying the following changes in equation (41):

wij → cij − λij

C → C −
∑

(i,j)∈E
zijλij

The optimal capacity assignment for a tree would be:

cij = γij +
C −

∑
(i,j)∈E zijγij

zij
×

(λijzij)
1
2∑

(i,j)∈E(λijzij)
1
2

(42)

There is a close analogy between our result and Kleinrock’s
result for capacity assignment. In [11] Kleinrock showed that
under the independence assumption the optimal capacity (to
minimize average delay of the network) of a link is propor-
tional to the square root of the link rate. Note that λij is the
link load, as a result, equation (42) is similar to the Kleinrock’s
equation for optimal capacity ([11], §5.7, equation 5.26). This
result is not surprising because the network criticality of a tree
according to equation (36) is equal to τ =

∑
(i,j)∈E

λij

cij−λij

(considering wij = cij − λij). This is the same expression that
is used in [11] to find the average delay of a network ([11],
§5.6, equation 5.19), therefore, the minimization of network
criticality is equal to the minimization of the average network
delay when the network is a tree.

VII. CONCLUSION

In this paper we defined a new metric, random-walk traffic-
aware betweenness (TAB) for the nodes and links of a graph
as an extension to the previous definition of random-walk
betweenness. We investigated the properties of TAB and
showed that for the case of generic random-walk, where the
transition probabilities are proportional to the link weights,
the TAB normalized by the weight can be written as a
linear function of end-to-end network criticalities. This led
to the definition of traffic-aware network criticality (TANC)
as an extention of the effective resistance. We established a
semidefinite program for the optimization problem with some
appropriate constraints and studied its behavior for parking-lot
and general tree topologies.

We need to investigate the properties of the optimization
problem to minimize TANC in detail. We plan to use traffic-
aware network criticality to evaluate different existing data-
center topologies at the presence of a traffic matrix and
propose suggestions and new directions to design data-center
topologies in general.
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