Examples 00000 Open problems

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Has this been solved? Some Open Problems in Online Algorithms

Arkaprava Choudhury

University of Toronto arka@cs.toronto.edu https://www.cs.toronto.edu/~arka/

DCS Undergraduate Summer Research August 29, 2022

Open problems

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Presentation Overview

1 Introduction

- Definition
- Analysis

2 Examples

- Prophet secretary
- Packing problems
- 3 Open problems

4 Ending

Examples 00000 Open problems

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition

Online algorithms

The online framework

A model of algorithms accepting an input instance given as an unknown sequence of inputs (agents, in this case).

Examples 00000 Open problems

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition

Online algorithms

The online framework

A model of algorithms accepting an input instance given as an unknown sequence of inputs (agents, in this case). After each input agent is presented, the algorithm makes a decision (either *revocable* or *irrevocable*).

Examples 00000 Open problems

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Definition

Online algorithms

The online framework

A model of algorithms accepting an input instance given as an unknown sequence of inputs (agents, in this case). After each input agent is presented, the algorithm makes a decision (either *revocable* or *irrevocable*).

Analysis

We are not concerned with the time complexity of online algorithms. Neither are we concerned with their space complexity...

Examples 00000 Open problems

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition

Online algorithms

The online framework

A model of algorithms accepting an input instance given as an unknown sequence of inputs (agents, in this case). After each input agent is presented, the algorithm makes a decision (either *revocable* or *irrevocable*).

Analysis

We are not concerned with the time complexity of online algorithms. Neither are we concerned with their space complexity... So... how does one analyse such an algorithm?

Examples 00000 Open problems

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Analysis

Analysing online algorithms

Performance of online algorithms

We analyse online algorithms with respect to their performances on sequences of inputs, as compared with the optimal offline solution, if the items were already known.

Competitive ratio

The worst case ratio between the result of an online algorithm and the best-case result.

Examples 00000 Open problems

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Analysis

Input order models

Adversarial order model

In analysis, adversary can choose both the input items and the sequence of items to be fed to the online algorithm.

Random order model

In analysis, adversary can choose the input items but the sequence to be fed to the online algorithm is chosen uniformly at random.

Examples •0000 Open problems

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Prophet secretary

Secretary problem

Classic formulation

You are sequentially presented, in random order, items from an adversarially selected set of items. Upon encountering each item, you can either choose to reject it permanently, or accept it, and end the program. You wish to maximize the value of the item you accept.

Examples

Open problems

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Prophet secretary

Prophet secretary

Prophet...?

The word **prophet** implies that the items are drawn independently from a set of distributions.

Prophet secretary

Simply the secretary problem with the input items drawn independently from some (set of) distribution(s)

Prophet inequalities

Prophet secretary, but with adversarial order of items.

Multi-item prophet secretary / inequalities

Generalization to a case where we can accept multiple items subject to some feasibility constraints

Examples 00●00 Open problems

Prophet secretary

Feasibility constraints

Examples

Open problems

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Prophet secretary

Feasibility constraints

Matroids

A matroid $\langle E, \mathscr{I} \rangle$ is a tuple of a base set E and a

downward-closed collection of subsets $\mathscr{I} \subseteq \mathscr{P}(E)$ such that

- $\bullet \ \emptyset \in \mathscr{I}$
- If $A, B \in \mathscr{I}$ with |A| < |B|, then there exists $x \in B \setminus A$ s.t. $A \cup \{x\} \in \mathscr{I}$

Examples

Open problems

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Prophet secretary

Feasibility constraints

Matroids

A matroid $\langle E, \mathscr{I} \rangle$ is a tuple of a base set E and a

downward-closed collection of subsets $\mathscr{I} \subseteq \mathscr{P}(E)$ such that

- $\bullet \ \emptyset \in \mathscr{I}$
- If $A, B \in \mathscr{I}$ with |A| < |B|, then there exists $x \in B \setminus A$ s.t. $A \cup \{x\} \in \mathscr{I}$

Matroid feasibility constraint

Given a matroid constraint $\langle E, \mathscr{I} \rangle$, you can take a subset A of items from the set of items E only if $A \in \mathscr{I}$.

Examples

Open problems

Packing problems

Knapsack and bin-packing

Online knapsack problem

You have one knapsack with a fixed capacity, and you are presented items sequentially. You can either choose to pack an item, or revoke it forever. You wish to maximize the amount of items you packed.

Online bin-packing problem

You have a fixed number of items, of varying sizes, and an unlimited supply of bins to pack the items into. After allocating an item to a bin, you may not change its position. You wish to minimize the number of bins used in the end.

Open problems

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Packing problems

Generalized assignment problem

Intuition

Think of this as just a generalization of both the knapsack and bin packing problem.

Examples 00000 Open problems

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Open problems in ROM

Problem	Upper bound	Lower bound
Matroid prophet secretary	_	1-1/e
Matroid prophet inequality	0.745	1-1/e
Online knapsack	_	1/6.65
Online bin-packing	10/11	2/3
Online GAP	_	1/6.69

Table: Online problems and known bounds on competitive ratio

Open problems

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Open problems in ROM

Problem	Upper bound	Lower bound
Matroid prophet secretary	_	1 - 1/e
Matroid prophet inequality	0.745	1-1/e
Online knapsack	_	1/6.65
Online bin-packing	10/11	2/3
Online GAP	_	1/6.69

Table: Online problems and known bounds on competitive ratio

Gaps in bounds

Any differences in these bounds mentioned above are open problems yet to be resolved in online algorithm design.

Examples 00000 Open problems

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

References

S. Ehsani, M. Hajiaghayi, T. Kesselheim, S. Singla Prophet Secretary for Combinatorial Auctions and Matroids Symposium on Discrete Algorithms (SODA) 2018.

J. Correa

Posted Prices for a Random Stream of Customers

ACM Proceedings EC'17 (2017).

📕 H. Beyhaghi, N. Golrezaei, R. Paes Leme, M. Pal, B. Sivan

Improved Revenue Bounds for Posted-Price and Second-Price Mechanisms

Operations Research 69(6) (2021).

Examples 00000 Open problems

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

References

Improved Online Algorithms for Knapsack and GAP in the Random Order $\operatorname{\mathsf{Model}}$

Algorithmica 83(6) 2021.

- S. Albers, A. Khan, L. Ladewig

Best Fit Bin Packing with Random Order Revisited

Algorithmica 83(9) 2021.

Best Fit Bin Packing with Random Order

SODA 1996.

Examples 00000 Open problems

Acknowledgements

UofT ■ Prof. Allan Borodin Funding

UofT Dept of Comp Sci

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The End

Questions? Comments?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで