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Complexity Reduction for “Large Image” Processing

Nikhil R. Pal, Senior Member, IEEEBNnd James C. Bezdekellow, IEEE

Abstract—We present a method for sampling feature vectorsin 120 MB. (Not all segmentation algorithms maintain partition
large (e.g., 2000x 5000x 16 bit) images that finds subsets of pixel matrices.)
locations which represente “regions” in the image. Samples are DDSM images seem big today (so big that printing or dis-
accepted by the chi-square %2) or divergence hypothesis test. A . . . S . .
framgwork ¥hat captur?es thekid)ea of effigient ex%/epnsionof image playlngaglnglelmage atfulll resolut‘l‘on '_S aI”rnost|mp055|bIe), but
processing algorithms from the samples to the rest of the popu- technological advances will soon “shrink” them to reasonable
lation is given. Computationally expensive (in time and/or space) proportions, justas (256, 256, 256) images are manageable now.
image operators (e.g., neural networks (NNs) or clustering models) However, new technology also whets the appetite for new sensors
are trained on the sample, and then extended noniteratively to the \yhich will produce concomitantly larger and larger complexity

rest of the population. We illustrate the general method using fuzzy . . - - S
c-means (FCM) clustering to segment Indian satellite images. On triples. The technology cycle will probably continue to limit

average, the new method can achieve about 99% accuracy (rel- 1arge image” processing at full resolution in near real-time
ative to running the literal algorithm) using roughly 24% of the  speeds for the next few decades. Processing of large data sets
image for training. This amounts to an average savings of 76% in such as these cannot be done in a reasonable time. Hence, there

CPU time. We also compare our method to its closest relative inthe i continuing need for methods that effectively “reduce” the
group of schemes used to accelerate FCM: our method averages a PR : :
speedup of about 4.2, whereas the multistage random sampling ap- complexity triple of large images. Evenwhen large images can be

proach achieves an average acceleration of 1.63. brought into memory, the computations to process such images
. canbe very high. This creates a bottleneck even for “near-real-
Index Terms—Accelerated fuzzyc-means (AFCM), algorithmic  e» gnplications, such as online weld-defect detection and
extensibility, complexity reduction in large images, image sam- . -
pling. control of the welding process for fixing the defects [2], [3].
Processing of very large databases, particularly for data-
mining applications, poses many other practical problems. For

. INTRODUCTION example, in applications such as document categorization, it is
ET F = [fi],,, be a digital image with intensity value desirable to apply clustering hmgedata sets (terabytes of data).
fi; atpixel(i, 5, fi; € G =1{0, 1, ..., L—1}. The time Usually, such data sets cannot be brought into main memory for

and space complexity associated with procesdiniltering, prqcessing,. and hgnce, the use of objectiye f_unction driyen clus-
segmentation, edge detection, etc.) increaseshyiffor L. We  tering algorithms likeuzzyc-meangFCM) is either very time-
call (I, J, L) thecomplexity tripleassociated with. consuming or_|mp053|ble to use. For such ap_phcatlons, many
Ten years ago, an 8-bit image with 65536 pixék, J, L) heuristic algorithms have been developed, which usually make
= (256, 256, 256), was considered “large,” and presented tifig€ Pass (or very few passes) through the data [S]-[11]. None
and space problems to the computers of the early 1990s. To&’é#he algorithms in [5]-{11] optimize an objective function.
“large” images typically have complexity triples on the order of N [5], Fayyad and Smyth provide a nice discussion of the
(2000, 5000, 65 536), which is the complexity triple for many geroblems f{iced _whlle processing massive data sets. They sug-
the images in theigital database for screening mammograph)geSted an iterative scheme where they first generate a random
(DDSM)[1]. As a second example, images taken by the IndigMPlesS from the entire data se’. Next, they construct a
remote-sensing satellite (IRS-1A, IRS-1B) contain 2500 scaiPdel Ms (apply a probabilistic clustrermg algorithm) fd.
lines with 2520 pixels per scan line. Each image requires 6 MB'EN: they appiys to the entire datal and find the residual
of memory (assuming each pixel requires 1 byte). Normally, f@PiNts £ from X', which do not fit any of the clusters with a
each scene there are four spectral bands resulting in four ima%&-g.h probability. IfR is reasonably large, then clustering can be
each of size 6 MB. Therefore, each frame consists of 24 MB BErformed on it again, or else a sample fréhean be selected
data. Segmentation of such an image into regions is often v ?thhe entire process can be repeated. The terminal number of
useful. However, when fuzzy-means (FCM)-type clustering clusters may be greater.than the_ initial numbt_ar_qf clusters, qnd
algorithms are used, for example, if there are five classes thtgﬁ scheme |nvo_Ives various choices su_ch as initial sample size,
the memory required for just one partition matrix (assuming'4resnold to decide on high membership, etc.

A-byte representation of reals) will be approximatekys x 4 = Ganti et al. [9] considered clustering of large databases in

“distance space” where the distance between two objects can
be obtained by satisfying the triangle inequality. This method is
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supports cluster splitting when the distance between a new oloce suites of imagesF = (I, Fs, ..., F}), that are collo-
ject and the closest cluster exceeds a threshold. To direct a roated in time and space, and thign J, L) is associated with
object, BUBBLE computes the distance between the new aflach of thefys. For example, a typicahagnetic resonance
ject and all sample objects at all internal nodes encounterediotage (MRI)hast = 3 gray values associated with spatial
its way to a leaf node. To avoid this time-consuming procedecation (¢, j): spin lattice relaxation timéZ'1,;), transverse
these authors use the fast map (FM) algorithm of Faloutsos amthxation time(7'2;;), and proton densityp;;). Let f;; =
Lin [10] in BUBBLE-FM algorithm. (T1i;, T2, pi5) € G3,1 <4 < 1,1 < j < J. Wecall

Recently, Domingos and Hulten [12] proposed a statisticgl a pixel-basedntensity vectorssociated witfi, j). Many
method that can be used to simulate clusters in a large deémsors produce multispectralimages. For example, satellite im-
set using the crisi-means algorithm based on samples. Theges can have as manytas 15 channels; in generaf;; € G*.
method is based on using the Hoeffding bound [13] on the errorimage processing algorithms often use pixel intensity values
in estimating the mean of arandom variable basediolepen- (f;,) or vectors (f;;). However, many techniques depend
dent observations. Here, the error is defined as the deviationodf information possessed by features extracted fidngor
the computed mean from the true mean that would be obtairgyl Haralick and Shapiro [14] provide an encyclopedic de-
if an infinite number of observations were used. The methegription of many features used for various image processing
can find the number of examples that should be used to attaiggerations. Specifically, we may extract feature vector
desired bound on the error. This interesting method can be usgd= (z; ;;, =2 45, ..., xpyij)T € RP? associated with spatial
with any data set once the bound is worked out, but the proceduj@ation(i, 4)in F or F. x;; might be built fromf;; alone; or
given in [12] is applicable only to the crigpmeans algorithm. fromf;; and intensity vectors in a spatial neighborhoo¢iof).

The problem that we are dealing with is a little different fronfor example, itf;; = (T1;;, T2i;, pi;), we can simply take
the problemin [12], and a bound similar to the one given for crigpw = f;; € G°. If we definem;; andsd;; as, respectively, the
k-means is yet to be worked out. We deal with problems assogi,erage and standard deviationZaf;;, 7°2;; or p;; over some
ated with processing large images, and hence, our problem Mysighborhood ofi, j), x;; could bex;; = (m;;, sdi;) € R,
recognize and account for tepatialcomponent associated withgy it could bex;; = (T, T2, pij, mij, sdij) € G x R?,
feature vectors extracted from an image. We present a gengiial
methodology for reducing both the time and space complexityWhenxU € R¥ is extracted fron¥' usingf;; andsome of
of certain (but not all) image processing algorithms. Our meth@d neighborsx;; is awindow-basefiature vector. Ifi, 5) is
is also sample-based, but once the sample is selected, it capiyrded as a ¥ 1 window, thenf;; andf;; are special cases
used with any learning scheme (includitigneans). This aspect of , ;. In the discussions that follow, we assume that each pixel
of our method makes it attractive, as different types of calculgr 7' (or F) is equipped with a feature vectay; (possibly ex-
tions can de done on the selected sample; i.e., the sample Qiding border rows and columns of the image). We denote the
tained is independent of the processing that will be applied todb5tre vectorgx;, } asX. Ignoring border effects, we assume

Our method is useful today, and will continue to be usef k| = I.J,s0X andF are in one-to-one correspondence. Be-

asl, J, andL increase. The basic idea begins with statisticah,;se of this. we sometimes refer ¥ as “the image,” even
hypothesis testing on random samples drawn fignSimple though it is really a representation Bfor F.

statistical tests such as the chi-squas® Er divergence test are
used to assess the appropriateness of a sample. A sampleghamage Sampling

passes the test |s_processed, and the results are then extende\(’*{le want a sampleX, of X so that the corresponding set
to the rest of the image.

The remainder of this paper is organized as follows. Sectioncﬁ pixels I, adequately represents tspatial distributionof

: . ; . ray values or¥'. Since there is a one-to-one correspondence
discusses feature extraction and our image sampling meth .
. . . : . befweenF” and X, and our sample should capture the spatial
Section lll defines the class of extensible algorithms for whic

our method is useful. Section IV is a case study of the applic?’:l—araCte”StICS of?, t.he selection .OKS can be done by finding
a samplef; ¢ F using hypothesis tests.

tion of image sampling and algorithmic extension forimage seg-", . o . "
mentation by FCM clustering. Section V discusses the tradeoffAn image/” can be partitioned into a set ofhomogeneous

between saved time and lost accuracy when using extensi gmg}n}?Fi’ F?’ e’ Fcf ljip]Fjlz ¢EVZh7é ) UTﬁLFZ n
algorithms. Section VI contains computational examples usiﬁ and|Fi| = n; (3;_, n: = 1J) [15]. Each segment; con-
|

satellite images that illustrate our new approach to complex nts afl fﬁ t (.Jf pixels thsttﬁhopgfullly) lrepre_sentsrz]i meanlntgful
reduction. Finally, conclusions are given in Section VII. art of In€ 1mage, and the pixel values in each segment usu-

ally fall within a small range of gray values. In other words,
appropriately chosen ranges of gray values correspond to dif-
ferent meaningful spatial segments of the image. We emphasize
This section discusses feature extraction from two-dimethat our image sampling schemerist intended for, nor is it
sional images (or sets of them), and sampling methods for sgistricted to, any particular application such as image segmen-
of feature vectors in images. tation. Therefore, the choice ofis not an issue here, and we
will not discuss it. However, the concept of image segmentation
provides some insight into the image sampling method, so we
The complexity triple(, J, L) is associated with a singlewill explain how the samples can be selected if tight value
channell x J imageF with L gray levels. Many sensors pro-of ¢ and the actuat segments are known. Then we show how

Il. FEATURE EXTRACTION AND IMAGE SAMPLING

A. Features and Feature Extraction
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to extend the same sampling concept to the case when neithdistinguished characteristics (features) of different segments are
nor the actual segments are known. functions of the spatial distributions of gray values. For ex-

If we know F;, we can draw a samplg, ; from F; so thatthe ample, two binary textures having exactly the same gray level
gray level distribution ovef ; statistically matches that @f;. histograms may look completely different due to different spa-
This may be done by comparing the histogram of gray valugial distributions of gray values over the pixels. This is the reason
over F, ; with that of F;. Let P, and P, ; be the probability for selecting random samples from the image instead of from
distributions of gray values ovéf; andF’, ;, respectively. I, the histogram. We discuss problems that we can encounter if
and P, ; match statistically, then we can take = |J;_, F, ; Wwe choose the samples from the histogram. Let there be just
as a representative sampleof four gray levels: 1, 2, 3, and 4, with frequencies = 10 000;

In most cases, neithernor theF;s are known, but this doesne = 20000; n3 = 30000; andny = 40000, respectively.
not pose a problem. We impose some pseudosegmetftsogn Now selection of one pixel with gray value 1, two pixels with
dividing [0, L — 1] into = cells, {C;}, ¢ < » < L. Although gray value 2, three pixels with gray value 3, and four pixels with
the number: of segments in the pattern recognition sense is ngtay value 4 will be enough to satisfy a goodness-of-fit test such
known, it is always possible to get a reasonable upper bound &srthe divergence test. Thé test demands the minimum cell
¢, i.e., we can always choosera> c. For example, in the casefrequency to be five [16], [17]. Therefore, selection of 5, 10, 15,
of MR or CT images of a brain, the possible number of tissuand 20 pixels with gray levels 1, 2, 3, and 4, respectively, would
types is seven or eight (if there is a tumor); similarly, for satellitee enough to satisfy the” test. However, such a sample cannot
images, it is not difficult to get a conservative estimate of thepresent the information content of any nontrivial image. The
number of land-cover types. Let; be the count (frequency) of important point is that an image is not characterized by just its
gray levels in imagd” corresponding to cell’;, >°;_, m; = gray values, but also by the coordinates at which different gray
1J,and letg; = |F, ;|/N = N;/N = sample probability of a values occur.
gray value falling in cellC;; N = >°!_ N;. The partitioning ~ We represent the characteristics of a pixel by a feature
of the gray scale imposes a partiton Bn " = {S;, ..., S}, vector, where the feature values are computed based on the
Si £ ¢V, 5,NS; =¢,i#j,andJ._, S; = F. If asample neighboring pixels (for a single- or multi-channelimage), or the
F, of size N is drawn, andF, is a good representative ¢f, feature values consist of corresponding pixel values of images
then every segmerfi; will be well represented in the sampleof different channels (for a multi-channel image). Therefore,
and N; /N will be approximately equal ten;/IJ Vi. Next, the spatial locationsof the selected pixels along with their
we test the “goodness” of fit between= {¢; = N;/N;i = gray values are very important. Moreover, we need a faithful
1,2, ...,7yandp ={p; =m;/IJ;i=1,2,...,7}.Once a representation of each meaningful (unknown) segment of the
representative sample of pixels is accepted, we identify the image in the sample. Therefore, the sampling scheme should
corresponding set of feature vectors associated with pixels have pixels from each meaningful segment. Consequently,
in I,. the sampling should be tied to the spatial distribution of gray

Some questions still remain to be answelthat value of-  values. This is similar in spirit to a stratified sampling scheme,
should be used? Should each cell have equal widim@lated but in stratified sampling, the different stratas are known. What
question isWhy not use = ¢? A final question isHow do we Wwe do know is that each stratasually corresponds to a range
test the match between the two probability distributignand ~ of gray levels which is associated with a spatial region on the
q? Usually, the number of meaningful segments in an imagemage plane. Therefore, if we draw samples spatially and the
is between two and ten. If the meaningful segments are knovgtiay level distribution in the sample closely matches the gray
we can consider each segment as a strata, and use a sepl@¥ge distribution over the entire image, then we expect the
test of hypothesis on each segment to ensure that it is faif@mple to adequately represent each meaningful segment in
fully represented in the sample. However, neitharor thec the image. Therefore, we define an initial threshold,e.g., 1%,
segments are known. Therefore, we need to test the hypothégighe number of samples. Thus, in the 4-level image example
on a sample drawn from the entire image. Consequently, the gégcussed above, we will first select 1000 pixels. If the selected
of evenr = 10 cells to partitiong may be too coarse to capturePixels are not uniformly distributed over tispatiallattice, the
the desired level of spatial detail of the image in the samp@oodness-of-fit test may not be satisfied, so we will increase the
The value of- will impact the level of spatial detail that is sup-number of samples. Regarding cell width, an unbiased choice
ported by the sample. A high value ofusually includes more would be to use equal widths (except for boundary cells, which
points in the sample, which provides better results but increag@sild be different). However, the observed data may dictate
the computational cost. This tradeoff decision must be made pgoling, which creates unequal widths, even though we intend
the designer. The best results, in terms of agreement betw&ehave (and start with) equal width cells.
the parameters estimated frdip and those frond”, can be ex-  For the goodness-of-fit test, we make the following assump-
pected withr = L. However, whenL is large, this can be a tions.

disadvantage. For example, a 16-bit image has 65 536, but » I, is a random sample oV independent and identically
for practical purposes, taking = 256 should be fine, as 256 distributed observations (spatial locations). Each observa-
segments are much more than the number of meaningful seg- tion is characterized by its gray value.

ments expected in an image. » The gray values associated with these locations can be

We want to relate the sampling to the spatial distribution of  classified intor nonoverlapping categories that exhaust
gray values over different segments of the image, because the all classification possibilities. That is, the categories are
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mutually exclusive and exhaustive. The number of grayo reason to suspect the hypothesis [20]. For such tests, very
values falling into a given category is called thieserved low values ofx? (a > 0.999) do not necessarily give more
frequencyof the category. confidence about the hypothesis because generally this situation
We want the random sampl€, drawn fromF' to reflect its arises due to the use of asymptotic formulae when the number
characteristics [18]. Thus, we test the goodness-of-fit betweehDOF is large [20].

the observed (based dn) and expected (based &) frequen- However, the present situation is a little different from the
cies for ther categories. This can be done by testing the folssual test for goodness-of-fit. We want to get a saniplevhich
lowing hypothesis: is as representative as possible of the populakiolm this case,
Hy: the sample has been drawn from a population that fdhe higher the value aof (evena > 0.999), i.e., the lower the
lows the distribution of gray values iA. value ofy?, the better the sample is for our purposes. Since it is
against: common to accept the hypothesisifis greater than 0.05, we
Hy: the sample has not been drawn from a population th&@y also accept the sample if the compuéds such thatv is
follows the distribution of gray values if. greater than 0.05 (acceptance at the 5% level of significance).

Agreement between the observed and expected frequen&igh the problem at hand, a more conservative approach would
can be measured using thé testfor goodness-of-fit or the be to set the level of significance at a higher value. The higher

divergencebetween two probability distributions [17], [19]. Wethe value ofy, the cl_ose_r the distributional crharacteristigaﬁgf
briefly describe these two test statistics. to F. For example, iff'; is selected atr = 0.95, then the differ-

Chi-Square ¢2): The chi-square test statistigy) measures ence between the two probability distributions is negligible and

the agreement (or disagreement) between sets of obs@yid hence, the difference between the sets of parameters estimated
and expectedE; ) frequencies. This statistic is computed as PY X (corresponding td;) and that by.X (associated td”)
is expected to be negligible as well. Our computational experi-

, " (0 - Ei)? ments confirm this.
X = Z T E )
i=1 ¢ [ll. EXTENSIBLE ALGORITHMS
Divergence: The divergence between two probability distri- In this section, we divide image processing operations into
butionsg (obtained from the sampl&, of N independent ob- two families: algorithms which arefficiently extensiblérom
servations) ang (representing the populatiaf) measures the X5 to X — X,; and those which are not. Let: R? — R?
difficulty of discriminating between the two distributions. Letoe an image processing algorithm. Sin€e X, andX — X,
= {p1, pQ’ ook, @ = {as @, oo @), Yo p = are subsets oR?, we can represent most (but not all) image
Zk 19x = 1. Here,p;, = population probability of thekth processing operations with functions of this form. When €
cell = Ey./IJ = my/IJ andg, = sample probability of the R” is the feature vector associated with spatial location) in
kth cell= O /N = N /N. The divergence is computed as  aninputimagd”,y;; = A(xj;) is the result associated with the
same location in an output imag¥[ ], produced by applying
A to everyx € X.
=N Z ;i) 1log(pi/a;)- (2) Some functions used in image processing are “one-pass”
operators; that isA does not depend on parameters that must be
) L ) estimated with training data before[F] is created. One-pass
Note that/(p, ¢) 2 0, with equality if and only ifp; = 4;,  fynctions arenot efficiently extensible. An example of this

J=12...7 o i type is the Sobel edge operator [21]. Le}; be the vector
For large samplesg® or J(p, q) is distributed approximately (frs for f5 fos f5 for fro fon fO)T c R9 of intensities in

asx? with » — 1 degrees of freedom (DOF). Thus, if the com="3 "3 window whose center pixel is locaticfd, j) = 5,

2
plutte%vallue 05(2 ?r J)(p, N ngql:?:]to or g;eater tilianetlhe tab; where the window pixels are indexed left to right, then top to
ulated value o for r — at the significance level, we bottom, (see Fig. 2, Section VI). Next, define an estimate of the

reject the ngll h_ypotheQSis at that S|gn|f|ca_nce level. gradient vector of the underlying picture function(at ;) to
The application ofy= to a sample of sizéV can be called e R2 as follows:
Zij

“adequate” in most practical applications provided none of the
expected frequencies is too small. When the expected frequency

) : . : 21,45 = Bu(xij)
of a particular category is less than five, then that category is

pooled with an adjacent category [16], [17]. Pooling is carried =Uot+2fs+fr) = (i +2fa+fs) (3a)
out until the minimum frequency requirement is met. When cat- 22,55 = Ba(xi5)

egories are pooled, we must recompute the DOF based on the =(fs+2f6+ fo)— (fr+2fs+ f7). (3b)
new number of categories. Thus, the number of DOF forthe

and divergence tests may differ for the safe 71,45 i an estimate of the gradient &, j) in the vertical

The x? tests the significance of the discrepancy between théection, while z, ;; is the same in the horizontal direc-
observed and expected frequencies. Thus, the basic objectios. Equations (3a) and (3b) are compactly represented by
is to check whether the fit is open to suspicion. bebe the writing z;; = B(x;;), whereB = (By, Bs): R? — R? and
probability thaty? shall exceed any specified value. Then, foz;; = (21 i5, 22, ij)T. There areinfinitely manySobel edge
the computed value of?, if « is between 0.1 and 0.9, there isdetectors based on; [22]. The most common Sobel operator
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uses the Euclidean norm af; to estimate the magnitude ofantee tha’rAA(x) = A*(x) forx € X — X, we have at best
the gradient at pixel, 7) A*[X] = A[X;] U A[X — X;]. Our hope is that the loss of
accuracy due to extendingy to X — X, with 8 is balanced by
Yij = Na(zij) = /21, + 73 ;- (4) adecrease in overall CPU time.
_ . We have pointed out thatl, would take less time o
The_ (Euclldean) Sobel operatdp, can be defined as the com-than onX, U (X — X,); therefore, this is an example where
position of B followed by N> (tx/tx,) < 1. Whenever the ratio is less than one or even close
to one, there is little merit in estimatirjand using it to ex-
Yij = Az(%ij) = (N20B)(xy). ®)  tendA to X — X,. On the other hand, . can be significantly
Applying A; to the 9-vectorgx;, } extracted from¥” results less thart x for_ computationallyintensivA_s (r_1eura| networks
in the Sobel edge imagé, [F] = [y:,]7-.. Thresholdingd,[F] (NNs), clust_erln_g methods, vector quantization, etc.). For algo-
produces a standard black and white Sobel edge image.  1thms of this kind,(tx /tx,) — oo as(/, J, L2 — 09, SO
The application of4, to the imagest, X,, andX — X, pro- the loss of accuracy incurred by usm\dX] lfor A"[X.] may be
duces the imaged [ X], 42[.X,], andA,[X — X,], respectively. more than offsgt by_the_ ove_raII reduction in CPU time.
If FisI x J,|X|= (I —2)(J —2) because (3) cannot extract S_lnceA at this point is quite general, we cannot gO¢l.J) .
9-vectors for the border rows and columnsfafNonetheless, €Stimates ofx, orix, so it seems reasonable to use the ratio
if X is extracted from¥ before the application afi,, we have (tx/tx,) = tacc @s a measure of thebserved efficiencyf
Ao[X] = A[X,] U A[X — X,]. The time it takes to produce extensible image processing algorithms. Nonextensible algo-
A, X] by first splitting X into X, U(X — X,) is actuallylonger rithms yield¢,.. < 1 (as is the case foA_Q,_the Euclidean .
than the time needed to compute[X] directly from X ( be- Sobel edge opera'ltor)..COnversely, the efficiency of extending
cause it takes time to create and t&s). Consequently, working 4 10 (X — X;) with 8 increases ag,.. — oo. We callt..
with subimages, as developed in Section Il for “one-pass” funfllacceleration factoachieved by the use of sampling and ex-
tions such as the Sobel operatbr, cannot reduce (and a(:t%l||yten5|on, qnd say th:fﬁ is efficiently extensiblé@ and only if its
increasetheir time and space complexity. This is an exampRcceleration factor is greater than one
from the class of image processing operators whichatef-

ficiently extensible from¥, to X — X,. A: R? — R%is efficiently extensibles ¢,.. > 1. (6e)
On the other hand, many imaging operators depend on a set _ _ o
of unknown parameters, e.g,,in some parameter spafke In The questions that need to be answered regarding efficiently

this case, multiple passes (usually iterations) thrakigit some €xtensible imaging operations aow much time do they save?
other set ofraining data.X,, are needed to estimate (or learn) &hdHow bad is the approximatioA [X] ~ A*[X]? Generally,
“best”d € Q before the outputimage can be constructed. We i€ answers will depend on the image to be processed and the
dicate the dependence Afon@ and.X,, by writing A(X,,; §). A to be used, as well &4 J, L). As that seem amenable to
Suppose we find an optimal (in some well-defined sense) $&tr efficient extension method usually spend a lot of time com-
of parameter®), and once found, the vectgr = A(x; @), Puting distances if.X x X) C (R? x R?), S0t often de-

x ¢ X, can be calculated noniteratively. We cannot expeBgnds implicitly orp, the number of features extracted frdm

that A(x; 6) = A(x; 8*), where@* is the optimal set of pa- Furthermore,.. can also depend on the number of classes
rameters found wheA is trained withX* = X, U {x}, butit as well as the rati¢pX,|/|X| = N/IJ. Therefore, in general,
may be the case tha(x; 8) ~ A(x; 8*). For convenience, we tacc iS @ quite complex functiott,.. = (1, J, L, p, N, c), of
let A = A(X,,; 0), A* = A(X; %) in what follows. If there at least six integers. Exact complexity analysis may be possible
are severaks ¢ X,,, the time saved by calculating the(x)s for someAs, but will be impossible for most. The best one may
noniteratively may be worth the sacrifice in accuracy due to tfé€ able to do is measure the acceleration fatforfor actual
approximation ofA*(x) by A(x). We callA: R? — R? an trials, and assess the loss due to using output inHGgE in-

extensible functiomhen stead ofA*[.X] in terms of disagreement between the two (i.e.,
average error), as well as visually. This will be demonstrated in
A = A(X,,; 0) depends o# € Q. (6a) Section VI.
8 requires iterative estimation usigg,.. (6b) Before we present our computational study, we offer some

" . . gualitative remarks about efficient extensibility for large-scale
A(x) can be calculated noniteratively . X ; ;
images. Our method is most appropriate for operations on

forx & Xi,. (6¢) images where iterative estimation (learning) is necessary, and
If 6" is optimal forX O X, whereA can be extended t§ — X, asin (6¢). Almost all clas-
thenA(x) ~ A*(x) Vx € X. (6d) sification functions represented by NNs and fuzzy systems fall

into this category. For example, segmentation, edge detection,
In the present context, leX;, = X,, the data set obtainedand classification by any supervised learning scheme [23]-[25]
by samplingX, as described in Section Il. Lek, denote the should benefit by extension as long as the approximation in (6d)
overall time it takes to: 1) construct,; 2) estimated for A; is acceptable. The same remark applies to most unsupervised
and 3) compute{A(x): x € X — X,}. Lettx be the overall learning models used for image processing (e.g., segmentation
time it takes to: 1) estimat®* for A*; and 2) computeA*[X] and edge detection with clustering algorithms, when these are
(this time can be zero, depending An. Since there is no guar- extensible).
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Generally, it will be clear from the nature &f whether sam- To state the necessary conditionsfo; }, letl;, = {i|1 < i <
pling £ and extending\ to X — X, is a better strategy (whenc, dixar = 0}andl = {1, 2, ..., ¢} — Ix. Thus,I; is the set
there is a choice) than findind* with X and computing\*[X] of indexes of centroids which are identical to some data point
directly. Furthermore, iff’ is so large thatX (and possibly xi. If I # ¢, setu;;, = 0 Vi € I} and arbitrarily assign the
X — X,) cannot be loaded into memosgmetype of sampling remaining
scheme may be thenly choice. Now we turn to an example of

extensibility based on segmentation with clustering. uixs such thaty  u;, = 1. (11a)
icly
IV. FCM AS AN EXTENSIBLE ALGORITHM . 2/(u-1)
FOR IMAGE SEGMENTATION _ o dirnt
If I, = ¢, win = Z(d )
In this section, we illustrate the scheme outlined in Sections Il j=1 \TIkM
and Il by casting the FCM clustering algorithm in this frame- 1<i<c1<k<N. (11b)

work. We use only one subscript to specify a pixel and its asso-

ciated feature vector. Given a set of feature veclomxtracted ~ The FCM algorithm consists of guessikg(or /), and then
from an image, many clustering algorithms can be used to s@fernating between (11) and (10) until eithgr, e, — Uoal|
mentF by clustering inX [24], [26]. FCM is frequently used OF [[View — Voul| is less than a user-specifigdrmination
for image segmentation; typical applications include mediclresholde. FCM is an example oflternating optimization

[27]-[29] and satellite image analysis [30], [31]. (AO). Many other image processing operators are AO algo-
Let X = {x;,Xo,...,Xn},Xx € RP, be a finite rithms. For example, the E-M algorithm, when used to estimate

data set;c (2 < ¢ < N) be the number of clusters; the parameters of normal mixtures, is a statistically motivated
V = (vi, Vo, ..., V.), v; € R” be the set of cluster pro- AO method that is used heavily in image processing [32]. All
totypes; and/ = [ui].xn be a fuzzyc-partition of X. The AO algorithms are good candidates for efficient extension
elementu;;, represents the membershipxof in theith cluster. when dealing with large images, because they usually require
Fuzzy partition matrices satisfy three constraints intensive and iterative calculation during the training phase. We
mention that Bezdek and Hathaway [40] have recently shown
that, under fairly mild conditions on the objective functia,
AO algorithms converge globally (from any initialization in the
constraint space). Reference [40] also contains a statement of
the local result, which guarantegdinear convergence for AO

0< Z win < N Vi=1,2 ..., c (7) when initialized sufficiently close to a solution. The proofs of

k=1 these results can be found in [41].
Each calculation ot/ at (11) is a function of{; andV, and

We denote the set of all x V matrices that satisfy (7) by s is the function we will extend fronk, to X — X,. Let B

Mjen. Whenw, € {0, 1} Vi, kin (7), Myen reduces o e g function that assigns a fuzzy label vectaxfogiven a set
Mh..n, thecrispe x N c-partitions ofX. Each columnot/ € ¢ cantroidsv: ie.. letB: R? — Ny, be

M, is a crisp label vector in the sé&f,. = {e1, ..., e.} C

0,1}, e; = (0,0,...,1,0,...,0)", where the “1” occurs B(xi; V) = (Uig, - -5 Uek) s k=1 ...,N. (12)
at theith address. Each column of € M. is afuzzy label

vector, i.e., a vectom = (u1y, ..., u.x) whose entries sat- The value ofu; in (12) is calculated with (11) fof < i < c.
isfy the first two constraints in (7) The parameters that FCWhen FCM terminates at an optimal pélf, V), B(x; V) =

estimates ar& andV. These are found by minimizing B( ) is used to generate fuzzy label vectors for each spatial
location (pixel) inX — X,.

C
0<wup <1, > wp=1 Vk=1,2,..., N,
=1
and

e X Arranging these vectors as a matrix, ef@,, results in a x
Z Z win) % — vill3 8) (1.J) fuzzy partition of X' which, after rearrangement of the
=1 k=1 columns oftU, and vectors in¥X, yields the block matrix
wherey > 1 and the inner product induced norm, that is, the -
distance betweer;, andv;, is Ue = [UCXN ex(LJ— Nﬂ ex1J (13)

i — vill3r = (x — Vi) TM () — v;) = dhpy- (9)  The first block oflU. is the partition/.. v found by applying
FCM to X,. The second block of, is ch(u ~), the matrix

M in (9) is anyp x p positive definite matrix. First-order neces—f memberships extended 6 — X, usmgB( ).
sary conditions for a local extremum gf, are well known [4].  The matrixU, is then used to approximaté& , which is a part

The prototype must satisfy of an optimal pair(U*, V*) for J, at (8) found by applying
N FCM toall of X, instead of justX,.
S (uin) X, The I?st step”needed to produce the*desired segmentation of
v; = k=1r ’ 1<i<e (10) Fis to “harden” each colu_mrj df. or U*. The usual (but b)_/
N no mean®nly) way to do this is to use the “max-membership”

,El(u”“)u hardening rule; i.e., defing: N;. — Ny, as follows. Letu =
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(wig, -- -, uck)T € Ny, be the fuzzy label vector fat;,, € X. applied to the whole data set. Based on empirical studies, Cheng
Thenh(u) = e; & w;, = max;{u;i}. Thus,x; is assigned et al.report that mrFCM reduces CPU time on average by about
the cluster in which it has the maximum membership value. F60%, but no space reduction is possible. Chenhgl. did not
example, ifc = 3 and the membership vector fag, isu;, = provide a guideline about how to terminate their incremental
(0.4, 0.1, 0.5)%, thenh(uz) = h(0.4, 0.1, 0.5) = (0, 0, 1) = process.
es, sothe pixel corresponding g, is assigned to cluster 3. This  Quite independently, but almost at the same time as Cheng
h can be used to assign a hard cluster label to each pixel in #ieal, Uma Shankar and Pal [35] proposed another multistage
image. scheme for accelerating LFCM they call&st fuzzye-means

In order to get the segmented image we considmiors (or (FFCM). FFCM first runs LFCM on a small samplg, of the
perhaps: gray levels) equally distributed i0, 1, ..., L — 1} entire data sekX . Let the centroids obtained cfy be V5. Now
associated with the index sgt, 2, ..., ¢}. If the kth pixel has S, is enhanced by a small fraction &f to getS;, and LFCM
a cluster label, we replace its pixel value by thi¢h color. For- is run onS; to get the set of centroidg,. FFCM then use&j
mally, letG = {L;, Lo, ..., L.} C R¢ be the colors, ang: (and alsoV;) to generate the partition matri%;* (andU;¥) on
Npe — G, g(e;) = L;, 1 < ¢ < ¢. Now define the function the entire data seX . Let the partition matrices generated &n
A: RP — R by composition asi = (gohoB). ThenA[X] in two successive stages be denoted by andU;},, respec-
represents aregion segmentation @f that depends on the pro-tively. In FFCM, enhancement of the sample and the running of
totype sefV as in (10) found by FCM. WheW is used,/l[X] LFCM on the enhanced sample are continued until there is no
is the extended segmentation/6f whenV* is used,A*[X]is  significant difference betwedi;* andU7 ;i.e.,||U~ —UZ ||
the “exact” segmentation df. Now we are in a position to ask: is very small. FFCM runs LFCM a number of times, but the cen-
How much time is saved by computifng] instead ofA*[X]? troids are expected to improve due to the use of a bigger sample
andHow well doesd ~ A*? These are the topics of Section Vat each step, so the number of iterations required by LFCM in

increasingly higher stages is expected to decrease.
V. TRADING ACCURACY FORTIME Unlike AFCM and mrFCM, FFCM never runs iteratively on

Two facts about FCM segmentation of digital images are wet\le whole data Elet, so it rlieg(ujcli/?s b%tsh 39 dmputtauonal ?T'et'amlj
established: segmentations are good, but FCM is slow. Th&ra'age space. However, in [35] did not use a statistica

have been many attempts to accelerate the iterative loop defigé'&e rion to assess the quality &, as a good representation of

by (10) and (11) [31], [33]-[36]. One class of methods abandgh’ 25 W€ Proposed in Section II. Moreover, FFCM runs LFCM
the search fotU*, V*), an optimal pair forJ,, on a complete on different samples, while the method proposed in this paper

data set. One subset of this type replaces “literal” (or exaﬁ?ns LFCM only on one sample_. We distinguish FFCMfr(_)mthe
FCM (LFCM) with an approximation to it, and uses all &F ethod developed here by calling our new technigxtensible
udast fuzzye-means (eFFCM).

The other type of approximation scheme in this category > )
LFCM, but alters the data set processed. Our method is of thidamel and Selim [37] proposed two algorithms that update

latter type, using’. to approximaté/* on all of X. A second cluster prototypes or membership values more frequently than
class of methods obtaiti* by eventually running LFCM on LFCM. _In one algorithm, the cluster centers are updated after
the full data set, but attempt to reduge by altering the usual computing the membership values for each input vector. The
random initialization scheme. second algorithm updates membership values after computing
Cannonet al. proposed an approximate version of LFCMeach centroid. Kamel and Selim report that, on average, the first
called accelerated fuzzy-means (AFCM)which is based on algorithm is 1.23 times faster than LFCM, while the second al-
lookup tables to approximate distances, and used it to segm@@fithm is 1.07 times faster than LFCM.
thematic mapper images [30], [31]. Halt al.[27] and De La  Velthuizenet al.[29] proposed an algorithm callegplit fuzzy
Pazet al.[33] used AFCM for segmentation of MRIs. Althoughc-means (SFCM)which is driven by the philosophy underlying
AFCM has been used successfully in several applications (dAgremental partitioning in iterative least square clustering [38].
does reduce the CPU time of LFCM by as much as a factor 8FCM starts withc = 1 cluster whose centroid is taken as
10), it has some limitations. the mean of all data points. The splitting process is initiated by
« AFCM does not satisfy the necessary conditions of chhoosing the next cluster centroid; as the data point having
and hence, AFCM iterates do not minimize any well-dd¢he maximum weighted sum of squared distance from all cen-
fined objective function. troids. Thus
* AFCM uses lookup tables, and it is not feasible to have ; ;
complete logarithmic and exponential (lookup) tables _ Nmg2 VK2
stored in memory. Assumptions are used to limit tabIeVCJr]L TR ; (win) iy, = i <; (wir) d”) - (14)
sizes, which, in turn, reduce the accuracy of intermediate
values used by AFCM. Next, LFCM is run with these + 1 cluster centroids as ini-
Chenget al.[34] present a method calledultistage random tial prototypes. The process is repeated until the desired number
sampling fuzzy-meangmrFCM). This scheme cuts down theof clusters is created. Velthuizem al. observed that steps prior
computation by reducing the number of feature vectors and it¢éo-the final run of LFCM can be viewed as an elaborate initial-
ations used inthe initializing stages of FCM calculations. LFChzation scheme. The last run of LFCM may terminate quickly,
is run on several small subsets of the data in an incremertat the total time required for SFCM may be more than running
fashion to get a set of good initial prototypes, and then LFCM iS=CM once at the desired number of clusters; andrystep of
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! Run LFCM with : U. = (Ux, UUx_x,)
| X and an+2 I
!_ Phase IT |

Output Output

(Ux, Vx) (Ue; Vx,)
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Fig. 1. Architectures of mrFCM and eFFCM. (a) The mrFCM scheme. (b) The eFFCM scheme.

SFCM processes all of . Among the various methods thathave 3. Using X}, and initial gues¥/ x, , iterate LFCM through

been studied to accelerate FCM, the one most similar to ours ia{ll? and (10) forb = 1, 2, 3, ..., T until eitherb = T or

mrFCM [34]. Consequently, we use mrFCM as a comparator in||U)f3 - U)(fkfl)|| < € whereU)(fz is the partition matrix

the numerical experiments of Section VI. at iterationd, and ¢, is the stopping condition for stade
ex = co— (k*(eg —€)/0).

VI. ALGORITHMS, PROTOCOLS DATA SETS, AND EXPERIMENTS 4.Vx,,, — V. Ux,, < U%.

Since we will compare eFFCM to its closest relativ%nNde;L’:S'el

(mrFCM), we now give a brief description of mrFCM. Chen

et al. [34] proposed awo-phasealgorithm. The first phase g%ep 4.Initialize LFCM with the final cluster centerMx )

has severabtages each stage USEs an increasing nymber from phase I, and iterate LFCM through (11) and (10) to ter-
feature vectors and a more stringent stopping condition. The

) S .. mination on the whole data sat.
first stage uses randomly initialized cluster prototypes WhIEnd Phase I

theith (: > 1) stage uses the final cluster prototypes from

the (¢ — 1)th stage. The seconghaseuses the final cluster

rototypes produced by phase | and runs LFCM on the entire
p ypes p yP useful variation of LFCM, but as the authors of mrFCM point

egin Phase I

Fig. 1(a) shows the overall flow of mrFCM. mrFCM is a

data set. " ;
out, three critical, user-selected parameters§, andA) influ-
ence the performance of mrFCM significantly; Chengl.give
Algorithm mrFCM no guidelines for their selection. Moreover, mrFCM runs LFCM
Begin Phase | o + 1 times on subsets of, and then runs LFCM on the entire

Step 1.Choosex, i, A, ||.||e- for LFCM; control parameters data set. Therefore, the role played by Steps 3.1-3.4 of mrFCM
o and A; termination parametersandcy; and iterate limit is really to ensure a good initialization of LFCM. Thus, while

T. SetXy = ¢. mrFCM may exhibit time reduction, it is by no mearngiar-
Step 2.Choose cluster centeMx, randomly. anteed Finally, phase Il of mrFCM requires exactly the same
Step 3. storage and (possibly) time as LFCM.

Fork =1too + 1: In eFFCM, we run LFCM on a small but representative subset

1.SelectA% of the! J feature vectors without replacementX, of the entire data seX'. Initially a random samplé; from
from X. A point is selected if no point in its 8-neighborhoodt” having/% of I.J points inF" is selected, with replacement.
is already selected, and the number of trials is less2lidnlf  If Z; does not pass the hypothesis test, it is enhanced by adding
the number of trials is greater th&i./, samples are selectedanotherAl% of F' to F;. This process of enhancing the sample
disregarding the 8-neighborhood condition. Call thissgt  (with replacement) is continued until the hypothesis test accepts
2. Xy = X1 U XYL F,. The sampleX, corresponding td is then used to compute
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cluster prototype§f with LFCM. This results in the (optimal Even for such images, if we assume thatis 30% of X, then

for X,) LFCM pair (U, V). The cluster prototype¥ are then N = 0.31J = 300 000 pixels. Althoughp andc “fall out” in the

used with (12) to generate the remainiig — X;| columns in comparison, each FCM construct adds, subtracts, multiplies, di-

U for vectors inX — X, resulting inU., the fuzzyc-partition  vides, and exponentiates. Thus, we can expect CPU tindé,on

of X shown in (13). The matrik/, is notpart of an optimal pair to be significantly less than CPU time df. Furthermore, even

for J,. If desired, a necessary pdit’.*, V) for .J, canbe though theasymptoticomplexities are equal for finite data, the

generated front/. by definingly = U., and then calculating largerF', the larger we expect{ /tx.) to become.

V.* noniteratively withl7,* and (10). This way, LFCM is never For example, if you need 500 iterations to terminate both

applied to all ofX. schemes, eFFCM saves 500 (700 0803.5 = 10® constructs,
When FCM terminates, také = U~1). Since eFFCM runs each involving (roughly};p operations. For moderate problems

only once on a small fraction of, the runtime storage spacethen,cp = 5(10) = 50; so eFFCM saves something liRe5

required for successive estimatesidfis much less than that 50 « 108 = O(10'°) operations. Even today, with 1 BIP ma-

needed for estimation di* on X. Specifically, this reduces chines, this represents a savings of several thousand seconds

the storage requirement by abauk (I.J — N) addresses for (perhaps 30 min per image). Moreover, even if we start with

U, For a 2000x 5000 DDSM image, this reduction typicallyidentical initializations onX andX,, we expect LFCM to take

amounts to about 700 000 addresses, each needing up to 32 bigmificantly fewer iterations than it would take on. There-

The last step of eFFCM computés once, and this space isfore, extensible algorithms should (and do) save time, but do

required whether we use eFFCM or LFCM. Fig. 1(b) shows thbey also produce reasonable approximations to the undiluted

block architecture of eFFCM. outputs obtained by runnind* on X?
We compare the performance of eFFCM in four different
Algorithm eFFCM ways. U, in (13) will never equall’*, where(U*, V*) is an

Step 1.Chooser, ji, A, ||-|ler andT for LFCM; andr, I, Al optimal pair for.J, on X. One way to cor_nparéfe to l_f* is
and o for eFFCM. Herey is the number of categories asto hardeAn the columnsA?f bqth matrices withresulting in the
defined in (1) and (2). The initial subsét, of /" contains SeStR(Ue,:)} and{h(af)}, < = 1,2, ..., 1J. Then, we can
(1x1.J)/100 pixels fromF, Al is the additional percentage ofcompare these two sets of labels, and count the number of mis-
samples added at each step, arid the level of significance matches. Let
for the statistical test. J

Step 2.F; = (I x IJ)/100 draws fromF (with replacement). E,. (ffe, U*) = %Z |h(h., ;) — h(w;")|3 (15)

Step 3.Computey? using (1) orJ(p, q) using (2) onF. i=1

Step 4.Comparex? or .J(p, ¢) with the tabulated value af at .

(r — 1) DOF. If the test is significant at level, then enhance Eacc N (15) is the number of times, andU™ disagree Before:
F, by adding an extrdAl x 1.J)/100 draws (with replace- Using (15), the rows of/* may have to be reorganized (equiv-
ment) fromZ to F, and go to Step 3. Otherwise go to Ste@lently, relabeling of the centroids M*) so that comparison is
5. [Forx2, the DOF (df) may be less thdn — 1) if there are  Made between corresponding clusters. Whife(or {h(u*)})

categories with expected frequencies less than 5.] may itself be unsatisfactory [e.dh(u")} might be a segmen-
Step 5.Apply LECM to X, corresponding td,, obtaining the tation of " that is deemed unacceptable], (15) is a valid mea-
pair (U, V). sure of the error incurred by usiy to producel., and taking

Step 6.Use the cluster prototypéi]’) ggnera}ed at ~Step 5 with UE ~ U*. Ea,cc is a valid measure of error when one looks at

(12) to calculatd’. onall of X, i.e.,U. = Ux. UUx_x.. theclustering results; i.e., the partitioning.st
’ ’ Second, we could also compuie= ||V — V*||. Here, we

calculatebothV andV*, soE could be directly computed. This
error is not to be confused with the same expression which ap-
It is not hard to show that LFCM and all of its variants dispears in [12], wher&/ is computed, buV* is the “true but un-
cussed in Section V have the same asymptotic run-time cokmown” set of prototypes that crispmeanswould produce on
plexity; e.g.,O(cl.Jp) for I.J feature vectors ifR? divided an infinite number of sample&: is bounded above in [12] by an
into ¢ fuzzy subsets. Asymptotically then, there is no advam@symptotic estimate, and it is used to control the number of sam-
tage to our sampling and extension scheme over simply rusles that are actually processed. However, siride uniquely
ning FCM on X. However, the key word is “asymptotically.” determined by the set of centroi¥s F,... is directly related to
SincelJ is alwaysless than infinity, a better indication of ef- £, and there is no need to calculate both in our applications.
fective speedup is to compare the number of operations used he second index of comparisortis., which compares how
for finite N, I, and.J during the iterative phase of these altime efficientthe extensible algorithm is. Third, we also com-
gorithms. ComparingNp to ¢(I.J)p, we see that the numberpare FCM objective function values computed directly running
of operationsper iteration done by eFFCM as compared toLFCM on X with the objective function values computed on
LFCM stands in the ratidv/I.J. Our experiments indicate that X using the terminaﬂ(fﬁ, V) obtained by eFFCM. Finally, we
(100N)/IJ = 30% usually produces good results for (256also render visual judgments about the qualityofas an ap-
256, 256) images. For higher resolution images, like DDSlroximation tol/*.
with (1, J, L) = (2000, 5000, 65536), IJ = 107 = 10 mil- Before we turn to the numerical experiments, we point out
lion pixels in X, X is likely to be much less than 30% &f. that it is even possible to get qualitativedbgtter results with

A. Performance Comparison
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Fig. 2. Gray values over a8 3 window.

U, than withU*. How? Most iterative parameter estimation aI
gorithms optimize an objective function, and the algorithm cé
get stuck at a local extremum. FCM on the entire Xewill
almost surely have a more complex search space.fhatoes
on the smaller sampl&,. Therefore, the chance of landing at
“better” minimum is higher withX; (although this is not guar-
anteed). Moreover, with a smal,, more runs of the param-
eter estimation algorithm with different initial conditions carg-
be made leading to parameters that yield the best value of
objective function (for FCM, it would be the best value.by).
Therefore, “high” approximation error in terms of (15) does n("
necessarily mean that we have poor results, becauseis a
measure of relative agreement betwéénand U*. Next, we
describe some numerical experiments that illustrate the |dea%Bf (@) Input satellite image SI-1. (b) Segmentation of (a) produced by

sampling and extensibility. eFFCM when centroids are generated by 9% of the data and only the divergence
test is satisfied. (c) Segmentation of (a) produced by eFFCM when centroids are
generated by 29% of the data and both the divergence aneksts are satisfied.

(d) and (e) Segmentation of (a) produced by LFCM and mrFCM (which are the

Some of our experiments use two derived features: windS@me)
averageand windowbusynes$21]. Consider a 3x 3 window
centered afi, j) with gray Ievels as |nd|cated in Fig. 2.

(d) and (e)

B. Numerical Experiments

(4, 7)th position of the image is

= Zfz

* The busynes® over the window in Fig. 2 is

=i = fol +1fa = fal +1fa = S5 + 1S5 — fol
+ | f7— fsl+\|fs = fol +|f1 = fal + | fa— f7]
+\fo—= fsl+ | fs = fal +1fa = fo| +|fe — fol). (17)

We used eFFCM to segment two 4-band satellite images: S
and SI-2 from IRS-1A [39]. Figs. 3(a) and 4(a) show the inpas
images Sl-1 and SI-2, respectively. For visual clarity Figs. 3(
and 4(a) present enhanced (histogram equalized) versions o
inputimages, but for computations we used the original imag ; A g
Each image has the complexity triple (256, 256, 256)—reli © o * (d) and (o)

tively small images in the year 2001. Our computational exer-
cise consists of two cases. Fig. 4. (a) Input satellite image SI. (b) Segmentation of (a) produced by

c 1S | lecti d | Isof b d e[FFCM when centroids are generated by 18% of the data and only the
ase ampie seiection is done usmg gray levels of ban Vergence test is satisfied. (c) Segmentation of (a) produced by eFFCM when

(0.77-0.86.:m) from SI-1; and clustering is per- centroids are generated by 21% of the data and both the divergencg®and
formed using the extracted featu(gs B) in (16) tests are satisfied. (d) and (e) Segmentation of (a) produced by LFCM and
. 2 = mrFCM (which are the same).

and (17). That isX C R?, xx = (fx, Br), k =
(i, 5)-

Case 2: The sample is selected using the same band-4 graylo benchmark the performance of eFFCM, we ran LFCM and
levels from SI-2; and raw band-3 (0.62-0.681) mrFCM on X with the same initial cluster prototypes as used
and band-4 gray level pixel intensity 2-vectors aréor eFFCM. The computational protocols used were 0.95,
used for clustering. [ = 1% initial sample sizeAl = 1% incremental sample size,
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TABLE |
COMPARISON OFeFFCMAND mrFCM FOR CASE 1

eFFCM mrFCM
Set | %of X | (U, Vx,) Chi-Square Divergence (%) tace (%) tace
No. | used Comp. | Table | df Comp. | Table | df E, . Eoce

(r-1) (r-1)
0a | 1% 400230.0 49.05* | 36.41 | 24 57.23 67.50 | 50 11.51 | 17.22 | 0.05 1.03
0b | 2% 393830.7 41.67 46.18 | 32 52.63 72.14 | 54 7.82 14.58

la | 30% 390542.0 48.38 | 47.46 | 65 52.43 | 53.47 | 72 1.20 | 293 |0.00 | 142
1b | 33% 390520.1 48.21 | 48.32 | 66 50.56 | 53.47 | 72 1.00 | 2.66
2.a | 19% 390517.4 49.15* | 44.90 | 62 51.32 | 51.74 | 70 0.79 | 493 | 0.00 | 1.20
2b | 38% 390487.7 49.91 50.03 | 68 49.40 | 53.47 | 72 0.36 | 2.75
3a | 19% 390637.0 46.33* | 44.90 | 62 49.64 | 53.47 | 72 1.50 | 385 |0.00 ) 138
3b | 23% 390539.4 41.69 | 44.61 | 64 45.95 | 53.47 | 72 040 | 3.44
4a | 17% 390560.1 45.26* | 44.90 | 62 48.62 | 51.74 | 70 1.31 | 505 | 0.00 | 1.46
4b | 33% 390527.6 46.59 | 48.32 | 66 45.27 | 53.47 | 72 0.68 | 2.62
5.a | 28% 390524.5 48.81* | 47.46 | 65 50.23 | 54.33 | 73 0.80 |3.19 |0.027 | 1.19
3b | 35% 390487.2 41.67 | 50.03 | 68 4283 | 54.33 | 73 0.16 | 2.68
6a | 9% 390706.1 45.71* | 41.50 | 38 48.24 | 52.60 | 71 0.83 | 732 |0.00 | 135
6.b | 29% 390595.4 47.13 | 47.46 | 65 49.27 |} 52.60 | 71 1.08 | 3.19
Ta | 29% 390502.6 50.76* | 47.46 | 65 51.35 | 5433 | 73 0.43 226 | 0.00 ;093
b | 35% 390507.5 46.95 | 50.03 | 68 4780 | 5433 | 73 0.59 | 1.75
8a | 5% 390806.0 21.57 | 28.98 | 43 34.20 | 47.46 | 65 1.85 | 863 | 0.00 | 1.20
9a | 30% 390482.8 4492 | 47.46 | 65 52.10 | 53.47 | 72 0.28 | 3.86 | 0.005 191
10.a | 31% 390602.0 44.30 | 47.46 | 65 50.57 | 53.47 | 72 0.88 | 311 |0.00 | 2.08

* The values which are significant at 95% (i.e., the values not meeting the acceptance criterion), except for set 0 where
it is 5%.

¢ = 4clustersM = I, (identity matrix), ang. = 2. eFFCM until bothx? and.J(p, ¢) become insignificant. Instance (b) cor-
and LFCM are terminated using the condition responds to this case. For each case, we have tabulated results
for several sets of runs with one or two instances for each set.
In each table, column 3 is the value of the objective function
J>(U., Vx.) computed on the entire data set with the terminal
cluster prototypes generated by eFFCM on the indicated sample
whereV(® s the set of cluster centers generated at iteration(Size given in column 2).

For mrFCM, we used the following parametess= 7 stages, =~ We ran LFCM to termination on boti’; and X' using the

A = 4.5% increment in sample size in every stagg, = Same initial centroids and uséd” and U, with (15) to assess
0.1, ande = 0.0001. Chenget al.[34] terminated mrFCM on the accuracy of eFFCM relative to LFCM df. Values ofE,...

|U* —U*=1||;. For the sake of a fair comparison, we terminatefr eéFFCM (given as percentages) are reported in column 10 of

mrFCM here with the same conditions as LFCM and eFFCMable 1.
In other words, we terminated mrFCM with Table | depicts the results obtained for eleven sets of runs for

case 1. A typical value of; at termination of LFCM onX is

1
\/T IV® — VE-D||2 < ¢ = 0.0001
P C

1 VO _ VD2 J2(U, V) = 390469.8, which is quite close to the values re-
pxc | - 17 <e¢ ported in column 3 of Table I. Set O reports the results whign
is selected at the 5% level of significance. For all other sets,
wheree is varied as shown in Step 3.3, phase I, mrFCM. was 0.95 (i.e., 95% level of significance). The values in column

Note thatr, the number of categories used to compute tH of Table | show that, except for set 0, there is better than 98%
frequency distribution over, is different frome, the number agreement between the crisp partitions obtained by hardening
of meaningful segments (clusters) assumed to be in the datthe eFFCM and LFCM patrtitions by maximum memberships,
can be equal to the number of distinct gray values present in thasn when only 5% of the data are used (set 8 in Table I). For set
image, or the entire gray scale can be split infe less than the 0 (Table I), although we achieve a high acceleration factor, the
number of distinct gray values) nonoverlapping cells. Moreovatifference between labels assigned by FFCM and LFCM after
7 can vary from sample to sample. hardening the partitions goes up to 11.51%.

In Table |, instance (a) corresponds to the smallest sampléAe also achieved, without noticeable loss of performance, a
for which eitherthe x? or divergence passés,. If in instance time saving of approximately 70% and a space saving of nearly
(a) boththe x% and divergence are insignificant, we do not ger60%. Column 11 shows values of the acceleration fatfor
erate instance (b). However.,if, in (a) is passed bgnly oneof Comparingtheseto (6e), we seethateFFCMis (apparently) an ef-
x% or J(p, q), then we augment, in (a) by additional samples ficient extension of LFCM. Ininstance 1.a, for example, eFFCM



PAL AND BEZDEK: COMPLEXITY REDUCTION FOR “LARGE IMAGE” PROCESSING 609

TABLE I
COMPARISON OFeFFCMAND mrFCM FOR CASE 2
eFFCM mrFCM
Set | % of X | Jo(U, Vx,) Chi-Square Divergence (%) | tace (%) | tace
No. | used Comp. | Table | df Comp. | Table | df E.. Eoec
(r-1) (r-1)
la | 33% 710707.7 33.31 37.29 | 53 38.58 | 44.04 | 61 1.92 {233 1010 | 1.69
2a | % 710983.1 30.70% | 29.79 | 44 34.10 | 37.29 | 53 1.20 { 890 | 0.00 | 3.16

2b | 10% 710850.0 28.34 | 3061 | 45 34.86 | 37.29 | 53 1.12 | 8.35
3.a | 29% 710557.1 43.03* | 35.61 | 51 44.82 | 44.90 | 62 0.85 | 2.70 | 0.00 | 1.57
3.b | 31% 710521.5 33.54 | 3645 | 52 33.39 | 44.90 | 62 115 | 2.56
4a | 13% 710786.4 35.43" | 31.44 | 46 38.42 | 38.98 | 55 0.77 1 5.65 | 0.00 | 1.88
4b | 14% 710703.2 30.41 3144 | 46 32.95 | 38.98 | 55 0.19 | 5.61

S.a | 18% 710983.9 38.68" | 32.27 | 47 39.59 | 40.66 | 57 0.98 | 4.56 | 0.00 | 1.99
5.b | 21% 710968.6 33.931 | 33.934 | 49 35.37 | 41.50 | 58 0.37 | 4.37

* The values which are significant at 95% (i.e. the values not meeting the acceptance criterion).

terminates 2.93 times faster than LFCM, both beginning with tiséstency, we used the same initial prototypes for all four runs.
same initialization. Thus, eFFCM completes the entire image@omparison of Fig. 3(b)—(e) shows that the segmented images
about(100/2.93) ~ 34% of the time that LFCM requires. are practically identical (visually).

Column 4 is the computed value gf for the given set. The  Table Il depicts the results for case 2, i.e., when SI-2 is used
tabulatedy? value is shown in column 5 at the DOF given imas the input [see Fig. 4(a)] and gray levels of band-4 are used
column 6. Similarly, computed and tabulated values of divefer sample selection. For case 2, bands (3, 4) intensity values
gence, and DOF are reported in columns 7, 8, and 9, respare used as the features. In this cagg, varies from 2.33 to
tively. 8.90 for eFFCM, while acceleration for mrFCM varies between

Columns 12 and 13 present the results obtained with mrFCB157 and 3.56. Inspection of column 10 in Table Il reveals that
We used the same initial centroids and terminating condition feFFCM can achieve an acceleration factor of 8.90 with less than
mrFCM, eFFCM, and LFCM. Since the final phase of mrFCN2% degradation in performance as measuredzhy.. For this
runs LFCM on the entire data set, unless a very bad initializdata set, a typical value of,, when LFCM is run onX, is
tion (Vx,), isused in Step 2 of phase | of mrFCM, the partitiong10 377.1, which is practically the same as those reported in
generated by LFCM and mrFCM with the same initial centroidolumn 3, Table II. As an illustration of segmentations produced
V x, should not be much different. Consequently, the crisp pdor case 2, we show the images for set 5, Table II. Fig. 4(b) and
titions obtained by hardening the LFCM and mrFCM partition&) displays results of eFFCM for instances 5.a and 5.b; while
using maximum memberships will be almost the same. Thiskig. 4(d) and (e) represents the segmented images for LFCM
indeed reflected by the low,.. values reported in column 12 and mrFCM. Again, there is “good”visual agreement between
of Table I. The acceleration factor for mrFCM varies from 0.98he literal and approximate segmentations.
to 2.08. Therefore, mrFCM fails to extend LFCM efficiently in  Discounting the case 0 trials in Table | (the only trials that
the sense of (6e) only once—set no. 7 of case 1. In all othesedo = 0.05 as the statistical significance threshold), Tables |
trials, mrFCM is also an efficient extension of LFCM. and Il have 26 eFFCM (and 16 mrFCM) tests. The average size

Comparing the acceleration factors of eFFCM and mrFCBF X, over the 26 trials wav = 0.2388[.J—that is, on av-
in Table I, we see that even the lowest acceleration factor ferage, we need about 24% of the image in ordeXfpto be ac-
eFFCM (1.75) is nearly equal to the highest acceleration facteptable atv = 0.95. The average acceleration of eFFCM was
(2.08) of mrFCM. For eFFCM, the highest acceleration factor %20, compared to an average of 1.63 for mrFCM. Therefore,
8.63 (for 0.a, itis 17.22 wher¥, is selected atv = 0.05), and for an image that takes, for example, 30 min to segment with
out of the 19 instances reported in Table I, the acceleration factdfCM, we can expect completion with mrFCM in 18.4 min,
is more than 2.08 for all instances except 7.b. The acceleratishile eFFCM cuts the run-time to 7.14 min. On the other hand,
factors achieved with mrFCM for case 1 (see Table I) are lowtHre average accuracy of eFFCM at approximating LFCM in 26
than that reported in [34]. This may be because of the differenicials is £,.. = 0.87%, whereas mrFCM (almost) always pro-
in the data sets used or in the termination conditions. duces complete agreement between pixel labels reproduced by

For visual assessment of the performance of eFFCM, we diself and LFCM. Therefore, in a 20005000 image, we expect
play in Fig. 3 a typical segmented image produced by eFFCabout 87 000 pixel labels (in 10 million) produced by eFFCM
corresponding to set 6 of case 1. Fig. 3(b) is the segmentmttl LFCM to disagree. Combining these facts, it seems safe to
image produced by eFFCM when the centrdWiare produced assert that eFFCM will probably be several times faster than
with 9% of the data points and only the divergence test is satrFCM, but at a cost in accuracy of perhaps 1% of the LFCM
isfied, set 6.a. Fig. 3(c) is the result obtained when boththe labels found by mrFCM. From this it is clear that eFFCM and
and divergence tests are satisfied, set 6.b. Fig. 3(d) is the reeulFCM can be combined to effect a further tradeoff between
produced by LFCM onX'; and Fig. 3(e) [which coincides with saved time and accuracy lost when LFCM is a desirable seg-
Fig. 3(d)] is the segmentation produced by mrFCM. For comentation method but is too costly to run.
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VII. CONCLUSIONS ANDISSUES FORFURTHER RESEARCH tion with the (literal) FCM clustering algorithm, resulting in the
new approximation techniqgue eFFCM. Based on our limited ex-
periments, we find that the new method is about 2.5 times faster
There are two main contributions of this paper: 1) the uggan mrFCM, and 4.2 times faster than LFCM, at an average cost
of simple hypothesis tests, such xS or divergence, to select jn changed pixel labels of less than 1%. Our method uses, on av-
subsets of pixels whose intensities are representative of imgggge, about one-fourth of the image data during training, and
regions, and whose feature vectors comprise training data f&tended segmentations are (visually) indistinguishable from
computationally intensive learning models used in image prgeir literal relatives.
cessing; and 2) the introduction of an (empirical) notion of effi- To conclude, we make a few more remarks about eFFCM.
cient extensibility of imaging operators from the training pixels 1) Unlike other multistage schemes (e.g., mrFCM), eFFCM

to the rest of the image. These two ideas are applicable to “large runs iterative LFCM only once, and on a relatively small
image” processing, and are designed to save time and space by subset ofY

running the “literal” learning algorithms on the training data, 2) Unlike AFCM, eFFCM does exact optimization.é for
and thenapproximatingthe results which a literal algorithm a small subsét ok

might obtain on the r_e_ma_ining pixels in the image. This is done, 3) Thex? and divergence tests do not necessarily agree. If
of course, at a sacrifice in accuracy (where "accuracy” means either statistic satisfies the hypothesis test, it can be as-

closeness to the output of thteral version. . sumed that the sample tested is a good representative of
In our proposed scheme, suppose we accepta sample obtained ¢ ither test can be used

afterk-steps_enhancement. Therefo_re, the hypothesis has beeﬁ) The size ofX, cannot be fixed prior to run-time. The ac-
tested_k + ltimes before the sample_|s accepf[ed. Ofthiegel tual time and space reductions achieved by eFFCM de-
test_s ’ |r_1_thef|rsk cases, the hyp(_)the_5|swas reject_e_d abitayel pend on the distribution of gray values #hand the par-

of 5|gn|f|ca_nce_. A n_atura_l question |ls_the probab|l|ty thatof‘e ticular sample off’ chosen. Experimentally, the size of
of these rejections is by just chance (i.e., itwas wrongly rejected - <olacted sample is almost always less than one-third

wg_le_tn It \]:vas aCt.l:?"y t“fl_e oralcceptableljg/e aSSlljl.me the protl%- of the size of the image, and on average reduces compu-
ability of committing a Type-I error as a Bernoulli process, then tation time by about 76%.

the probability of committing at least one Type-I errokitrials 5) WhenX is too large to load in host memory, AFCM and

H _ k H _ 4 _
'316 (%7: (,i —a) h) For exampleh, W'th_y 600;0[; indk _bz’ mrFCM cannot be used; but eFFCM will provide approx-
v = 0.0975. Notice thatyis greater than = 0.05. [fthe number imate FCM clustering itX as long asX, can be mounted

of tests to be performead known beforehanithen the Bonferroni :

: . in the host.
correction can be used to adjustiownwards So that the overall We feel that these are significant improvements to the utilit
chance of Type-I error remains However, in the present con-mc ECM for LARGEIMages ?As{] 7 L) gecreas St becomes y
text, this correction cannot be done (because the number of ten%sre and more attrac?ive. o sijnlw 7I un LFCI\j on the whole
to be performed is not knowar-priori), nor it is necessary. It is . Py

. P ge. mrFCM can be usefully modified with our idea so that
not necessary because if the hypothesis is rejected by charlH_ M is used only twice: once aif, and then onX , with the

we will enhance the sample, and enlarging the sample will {erminal cluster prototypes generated by LFCM¥nas input

turn make a better representation of the image. . X .
Another point worth investigating is the power of the testts(? Step 5 of mrECM. To build confidence in our method, more

used here. LeB be the probability of wrongly accepting a hy_smulatiqns need to be done with images of different sizes and
pothesis when it is false. Thug,is a function of the alterna- complexity.
tive hypothesidd; . The complementary probability— 3 is the

power of the test of hypothesi&l, against the alternative hy-
pothesisH; [16]. To get an idea about the power of the tests, a The authors gratefully acknowledge L. O. Hall for providing
lot of simulations must be done taking different distributions aie code for mrFCM, which they tailored to suit their require-
alternative hypotheses. We leave this for a future work. ments. They also thank B. Uma Shankar for helping them with

Since our problem is to select a sample irrespective of thige numerical computation, and the referees for their construc-
learning task, estimation of an asymptotic error rate bound @g suggestions.
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