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Complexity Reduction for “Large Image” Processing
Nikhil R. Pal, Senior Member, IEEE,and James C. Bezdek, Fellow, IEEE

Abstract—We present a method for sampling feature vectors in
large (e.g., 2000 5000 16 bit) images that finds subsets of pixel
locations which represent “regions” in the image. Samples are
accepted by the chi-square ( 2) or divergence hypothesis test. A
framework that captures the idea of efficient extensionof image
processing algorithms from the samples to the rest of the popu-
lation is given. Computationally expensive (in time and/or space)
image operators (e.g., neural networks (NNs) or clustering models)
are trained on the sample, and then extended noniteratively to the
rest of the population. We illustrate the general method using fuzzy
-means (FCM) clustering to segment Indian satellite images. On

average, the new method can achieve about 99% accuracy (rel-
ative to running the literal algorithm) using roughly 24% of the
image for training. This amounts to an average savings of 76% in
CPU time. We also compare our method to its closest relative in the
group of schemes used to accelerate FCM: our method averages a
speedup of about 4.2, whereas the multistage random sampling ap-
proach achieves an average acceleration of 1.63.

Index Terms—Accelerated fuzzy -means (AFCM), algorithmic
extensibility, complexity reduction in large images, image sam-
pling.

I. INTRODUCTION

L ET be a digital image with intensity value
at pixel , . The time

and space complexity associated with processing(filtering,
segmentation, edge detection, etc.) increases with, or . We
call thecomplexity tripleassociated with .

Ten years ago, an 8-bit image with 65 536 pixels,
(256, 256, 256), was considered “large,” and presented time

and space problems to the computers of the early 1990s. Today
“large” images typically have complexity triples on the order of
(2000, 5000, 65 536), which is the complexity triple for many of
the images in thedigital database for screening mammography
(DDSM) [1]. As a second example, images taken by the Indian
remote-sensing satellite (IRS-1A, IRS-1B) contain 2500 scan
lines with 2520 pixels per scan line. Each image requires 6 MB
of memory (assuming each pixel requires 1 byte). Normally, for
each scene there are four spectral bands resulting in four images,
each of size 6 MB. Therefore, each frame consists of 24 MB of
data. Segmentation of such an image into regions is often very
useful. However, when fuzzy-means (FCM)-type clustering
algorithms are used, for example, if there are five classes then
the memory required for just one partition matrix (assuming a
4-byte representation of reals) will be approximately
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MB. (Not all segmentation algorithms maintain partition
matrices.)

DDSM images seem big today (so big that printing or dis-
playingasingle imageat full resolution isalmost impossible), but
technological advances will soon “shrink” them to reasonable
proportions, just as (256, 256, 256) images are manageable now.
However, new technology also whets the appetite for new sensors
which will produce concomitantly larger and larger complexity
triples. The technology cycle will probably continue to limit
“large image” processing at full resolution in near real-time
speeds for the next few decades. Processing of large data sets
such as these cannot be done in a reasonable time. Hence, there
is continuing need for methods that effectively “reduce” the
complexity tripleof large images.Evenwhen large imagescanbe
brought into memory, the computations to process such images
can be very high. This creates a bottleneck even for “near-real-
time” applications, such as online weld-defect detection and
control of the welding process for fixing the defects [2], [3].

Processing of very large databases, particularly for data-
mining applications, poses many other practical problems. For
example, in applications such as document categorization, it is
desirable to apply clustering tohugedata sets (terabytes of data).
Usually, such data sets cannot be brought into main memory for
processing, and hence, the use of objective function driven clus-
tering algorithms likefuzzy -means(FCM) is either very time-
consuming or impossible to use. For such applications, many
heuristic algorithms have been developed, which usually make
one pass (or very few passes) through the data [5]–[11]. None
of the algorithms in [5]–[11] optimize an objective function.

In [5], Fayyad and Smyth provide a nice discussion of the
problems faced while processing massive data sets. They sug-
gested an iterative scheme where they first generate a random
sample from the entire data set . Next, they construct a
model (apply a probabilistic clustering algorithm) for.
Then, they apply to the entire data and find the residual
points from , which do not fit any of the clusters with a
high probability. If is reasonably large, then clustering can be
performed on it again, or else a sample fromcan be selected
and the entire process can be repeated. The terminal number of
clusters may be greater than the initial number of clusters, and
the scheme involves various choices such as initial sample size,
threshold to decide on high membership, etc.

Ganti et al. [9] considered clustering of large databases in
“distance space” where the distance between two objects can
be obtained by satisfying the triangle inequality. This method is
not suitable when we want to compute cluster centroids (as we
do when object data are represented by-dimensional vectors).
The authors in [9] propose two algorithms, namely, BUBBLE
and BUBBLE-FM. In BUBBLE, the database is scanned only
once and each object is inserted into one of the evolving clusters
maintained as leaf nodes of a height balanced tree. BUBBLE

1083-4419/02$17.00 © 2002 IEEE



PAL AND BEZDEK: COMPLEXITY REDUCTION FOR “LARGE IMAGE” PROCESSING 599

supports cluster splitting when the distance between a new ob-
ject and the closest cluster exceeds a threshold. To direct a new
object, BUBBLE computes the distance between the new ob-
ject and all sample objects at all internal nodes encountered on
its way to a leaf node. To avoid this time-consuming process,
these authors use the fast map (FM) algorithm of Faloutsos and
Lin [10] in BUBBLE-FM algorithm.

Recently, Domingos and Hulten [12] proposed a statistical
method that can be used to simulate clusters in a large data
set using the crisp -means algorithm based on samples. The
method is based on using the Hoeffding bound [13] on the error
in estimating the mean of a random variable based onindepen-
dent observations. Here, the error is defined as the deviation of
the computed mean from the true mean that would be obtained
if an infinite number of observations were used. The method
can find the number of examples that should be used to attain a
desired bound on the error. This interesting method can be used
with any data set once the bound is worked out, but the procedure
given in [12] is applicable only to the crisp-means algorithm.

The problem that we are dealing with is a little different from
the problem in [12], and a bound similar to the one given for crisp

-means is yet to be worked out. We deal with problems associ-
ated with processing large images, and hence, our problem must
recognize and account for thespatialcomponent associated with
feature vectors extracted from an image. We present a general
methodology for reducing both the time and space complexity
of certain (but not all) image processing algorithms. Our method
is also sample-based, but once the sample is selected, it can be
used with any learning scheme (including-means). This aspect
of our method makes it attractive, as different types of calcula-
tions can de done on the selected sample; i.e., the sample ob-
tained is independent of the processing that will be applied to it.

Our method is useful today, and will continue to be useful
as , , and increase. The basic idea begins with statistical
hypothesis testing on random samples drawn from. Simple
statistical tests such as the chi-square () or divergence test are
used to assess the appropriateness of a sample. A sample that
passes the test is processed, and the results are then “extended”
to the rest of the image.

The remainder of this paper is organized as follows. Section II
discusses feature extraction and our image sampling method.
Section III defines the class of extensible algorithms for which
our method is useful. Section IV is a case study of the applica-
tion of image sampling and algorithmic extension for image seg-
mentation by FCM clustering. Section V discusses the tradeoff
between saved time and lost accuracy when using extensible
algorithms. Section VI contains computational examples using
satellite images that illustrate our new approach to complexity
reduction. Finally, conclusions are given in Section VII.

II. FEATURE EXTRACTION AND IMAGE SAMPLING

This section discusses feature extraction from two-dimen-
sional images (or sets of them), and sampling methods for sets
of feature vectors in images.

A. Features and Feature Extraction

The complexity triple is associated with a single
channel image with gray levels. Many sensors pro-

duce suites of images, , that are collo-
cated in time and space, and then is associated with
each of the s. For example, a typicalmagnetic resonance
image (MRI)has gray values associated with spatial
location : spin lattice relaxation time , transverse
relaxation time , and proton density . Let

, , . We call
a pixel-basedintensity vectorassociated with . Many

sensors produce multispectral images. For example, satellite im-
ages can have as many as channels; in general, .

Image processing algorithms often use pixel intensity values
or vectors . However, many techniques depend

on information possessed by features extracted from(or
). Haralick and Shapiro [14] provide an encyclopedic de-

scription of many features used for various image processing
operations. Specifically, we may extract afeature vector

associated with spatial
location in or . might be built from alone; or
from and intensity vectors in a spatial neighborhood of .
For example, if , we can simply take

. If we define and as, respectively, the
average and standard deviation of , or over some
neighborhood of , could be ;
or it could be ,
etc.

When is extracted from using andsome of
its neighbors, is a window-basedfeature vector. If is
regarded as a 1 1 window, then and are special cases
of . In the discussions that follow, we assume that each pixel
in (or ) is equipped with a feature vector (possibly ex-
cluding border rows and columns of the image). We denote the
feature vectors as . Ignoring border effects, we assume

, so and are in one-to-one correspondence. Be-
cause of this, we sometimes refer to as “the image,” even
though it is really a representation ofor .

B. Image Sampling

We want a sample of so that the corresponding set
of pixels adequately represents thespatial distributionof
gray values on . Since there is a one-to-one correspondence
between and , and our sample should capture the spatial
characteristics of , the selection of can be done by finding
a sample using hypothesis tests.

An image can be partitioned into a set of“homogeneous”
segments, , ,

, and [15]. Each segment con-
tains a set of pixels that (hopefully) represents a “meaningful”
part of the image, and the pixel values in each segment usu-
ally fall within a small range of gray values. In other words,
appropriately chosen ranges of gray values correspond to dif-
ferent meaningful spatial segments of the image. We emphasize
that our image sampling scheme isnot intended for, nor is it
restricted to, any particular application such as image segmen-
tation. Therefore, the choice ofis not an issue here, and we
will not discuss it. However, the concept of image segmentation
provides some insight into the image sampling method, so we
will explain how the samples can be selected if theright value
of and the actual segments are known. Then we show how
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to extend the same sampling concept to the case when neither
nor the actual segments are known.

If we know , we can draw a sample from so that the
gray level distribution over statistically matches that of .
This may be done by comparing the histogram of gray values
over with that of . Let and be the probability
distributions of gray values over and , respectively. If
and match statistically, then we can take
as a representative sample of.

In most cases, neithernor the s are known, but this does
not pose a problem. We impose some pseudosegments onby
dividing [0, ] into cells, , . Although
the number of segments in the pattern recognition sense is not
known, it is always possible to get a reasonable upper bound for
; i.e., we can always choose a . For example, in the case

of MR or CT images of a brain, the possible number of tissue
types is seven or eight (if there is a tumor); similarly, for satellite
images, it is not difficult to get a conservative estimate of the
number of land-cover types. Let be the count (frequency) of
gray levels in image corresponding to cell ,

, and let sample probability of a
gray value falling in cell ; . The partitioning
of the gray scale imposes a partition on, ,

, , and . If a sample
of size is drawn, and is a good representative of,

then every segment will be well represented in the sample,
and will be approximately equal to . Next,
we test the “goodness” of fit between

and . Once a
representative sample of pixels is accepted, we identify the
corresponding set of feature vectors associated with pixels
in .

Some questions still remain to be answered.What value of
should be used? Should each cell have equal width?A related
question is:Why not use ? A final question is:How do we
test the match between the two probability distributions,and
? Usually, the number of meaningful segments in an image

is between two and ten. If the meaningful segments are known,
we can consider each segment as a strata, and use a separate
test of hypothesis on each segment to ensure that it is faith-
fully represented in the sample. However, neithernor the
segments are known. Therefore, we need to test the hypothesis
on a sample drawn from the entire image. Consequently, the use
of even cells to partition may be too coarse to capture
the desired level of spatial detail of the image in the sample.
The value of will impact the level of spatial detail that is sup-
ported by the sample. A high value ofusually includes more
points in the sample, which provides better results but increases
the computational cost. This tradeoff decision must be made by
the designer. The best results, in terms of agreement between
the parameters estimated from and those from , can be ex-
pected with . However, when is large, this can be a
disadvantage. For example, a 16-bit image has , but
for practical purposes, taking should be fine, as 256
segments are much more than the number of meaningful seg-
ments expected in an image.

We want to relate the sampling to the spatial distribution of
gray values over different segments of the image, because the

distinguished characteristics (features) of different segments are
functions of the spatial distributions of gray values. For ex-
ample, two binary textures having exactly the same gray level
histograms may look completely different due to different spa-
tial distributions of gray values over the pixels. This is the reason
for selecting random samples from the image instead of from
the histogram. We discuss problems that we can encounter if
we choose the samples from the histogram. Let there be just
four gray levels: 1, 2, 3, and 4, with frequencies ;

; ; and , respectively.
Now selection of one pixel with gray value 1, two pixels with
gray value 2, three pixels with gray value 3, and four pixels with
gray value 4 will be enough to satisfy a goodness-of-fit test such
as the divergence test. The test demands the minimum cell
frequency to be five [16], [17]. Therefore, selection of 5, 10, 15,
and 20 pixels with gray levels 1, 2, 3, and 4, respectively, would
be enough to satisfy the test. However, such a sample cannot
represent the information content of any nontrivial image. The
important point is that an image is not characterized by just its
gray values, but also by the coordinates at which different gray
values occur.

We represent the characteristics of a pixel by a feature
vector, where the feature values are computed based on the
neighboring pixels (for a single- or multi-channel image), or the
feature values consist of corresponding pixel values of images
of different channels (for a multi-channel image). Therefore,
the spatial locationsof the selected pixels along with their
gray values are very important. Moreover, we need a faithful
representation of each meaningful (unknown) segment of the
image in the sample. Therefore, the sampling scheme should
have pixels from each meaningful segment. Consequently,
the sampling should be tied to the spatial distribution of gray
values. This is similar in spirit to a stratified sampling scheme,
but in stratified sampling, the different stratas are known. What
we do know is that each stratausuallycorresponds to a range
of gray levels which is associated with a spatial region on the
image plane. Therefore, if we draw samples spatially and the
gray level distribution in the sample closely matches the gray
level distribution over the entire image, then we expect the
sample to adequately represent each meaningful segment in
the image. Therefore, we define an initial threshold,e.g., 1%,
for the number of samples. Thus, in the 4-level image example
discussed above, we will first select 1000 pixels. If the selected
pixels are not uniformly distributed over thespatial lattice, the
goodness-of-fit test may not be satisfied, so we will increase the
number of samples. Regarding cell width, an unbiased choice
would be to use equal widths (except for boundary cells, which
could be different). However, the observed data may dictate
pooling, which creates unequal widths, even though we intend
to have (and start with) equal width cells.

For the goodness-of-fit test, we make the following assump-
tions.

• is a random sample of independent and identically
distributed observations (spatial locations). Each observa-
tion is characterized by its gray value.

• The gray values associated with these locations can be
classified into nonoverlapping categories that exhaust
all classification possibilities. That is, the categories are
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mutually exclusive and exhaustive. The number of gray
values falling into a given category is called theobserved
frequencyof the category.

We want the random sample drawn from to reflect its
characteristics [18]. Thus, we test the goodness-of-fit between
the observed (based on) and expected (based on) frequen-
cies for the categories. This can be done by testing the fol-
lowing hypothesis:

: the sample has been drawn from a population that fol-
lows the distribution of gray values in.

against:
: the sample has not been drawn from a population that

follows the distribution of gray values in.

Agreement between the observed and expected frequencies
can be measured using the test for goodness-of-fit or the
divergencebetween two probability distributions [17], [19]. We
briefly describe these two test statistics.

Chi-Square ( ): The chi-square test statistic () measures
the agreement (or disagreement) between sets of observed
and expected frequencies. This statistic is computed as

(1)

Divergence: The divergence between two probability distri-
butions (obtained from the sample of independent ob-
servations) and (representing the population) measures the
difficulty of discriminating between the two distributions. Let

. Here, population probability of the th
cell and sample probability of the

th cell . The divergence is computed as

(2)

Note that , with equality if and only if ,
.

For large samples, or is distributed approximately
as with degrees of freedom (DOF). Thus, if the com-
puted value of or is equal to or greater than the tab-
ulated value of for DOF at the significance level, we
reject the null hypothesis at that significance level.

The application of to a sample of size can be called
“adequate” in most practical applications provided none of the
expected frequencies is too small. When the expected frequency
of a particular category is less than five, then that category is
pooled with an adjacent category [16], [17]. Pooling is carried
out until the minimum frequency requirement is met. When cat-
egories are pooled, we must recompute the DOF based on the
new number of categories. Thus, the number of DOF for the
and divergence tests may differ for the same.

The tests the significance of the discrepancy between the
observed and expected frequencies. Thus, the basic objective
is to check whether the fit is open to suspicion. Letbe the
probability that shall exceed any specified value. Then, for
the computed value of , if is between 0.1 and 0.9, there is

no reason to suspect the hypothesis [20]. For such tests, very
low values of do not necessarily give more
confidence about the hypothesis because generally this situation
arises due to the use of asymptotic formulae when the number
of DOF is large [20].

However, the present situation is a little different from the
usual test for goodness-of-fit. We want to get a samplewhich
is as representative as possible of the population. In this case,
the higher the value of (even , i.e., the lower the
value of , the better the sample is for our purposes. Since it is
common to accept the hypothesis ifis greater than 0.05, we
may also accept the sample if the computedis such that is
greater than 0.05 (acceptance at the 5% level of significance).
For the problem at hand, a more conservative approach would
be to set the level of significance at a higher value. The higher
the value of , the closer the distributional characteristics of
to . For example, if is selected at , then the differ-
ence between the two probability distributions is negligible and
hence, the difference between the sets of parameters estimated
by (corresponding to ) and that by (associated to )
is expected to be negligible as well. Our computational experi-
ments confirm this.

III. EXTENSIBLE ALGORITHMS

In this section, we divide image processing operations into
two families: algorithms which areefficiently extensiblefrom

to ; and those which are not. Let :
be an image processing algorithm. Since, , and
are subsets of , we can represent most (but not all) image
processing operations with functions of this form. When

is the feature vector associated with spatial location in
an input image , is the result associated with the
same location in an output image , produced by applying

to every .
Some functions used in image processing are “one-pass”

operators; that is, does not depend on parameters that must be
estimated with training data before is created. One-pass
functions arenot efficiently extensible. An example of this
type is the Sobel edge operator [21]. Let be the vector

of intensities in
a 3 3 window whose center pixel is location ,
where the window pixels are indexed left to right, then top to
bottom, (see Fig. 2, Section VI). Next, define an estimate of the
gradient vector of the underlying picture function at to
be as follows:

(3a)

(3b)

is an estimate of the gradient at in the vertical
direction, while is the same in the horizontal direc-
tion. Equations (3a) and (3b) are compactly represented by
writing , where : and

. There areinfinitely manySobel edge
detectors based on [22]. The most common Sobel operator
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uses the Euclidean norm of to estimate the magnitude of
the gradient at pixel

(4)

The (Euclidean) Sobel operator can be defined as the com-
position of followed by

(5)

Applying to the 9-vectors extracted from results
in the Sobel edge image . Thresholding
produces a standard black and white Sobel edge image.

The application of to the images , , and pro-
duces the images , , and , respectively.
If is , because (3) cannot extract
9-vectors for the border rows and columns of. Nonetheless,
if is extracted from before the application of , we have

. The time it takes to produce
by first splitting into is actuallylonger

than the time needed to compute directly from ( be-
cause it takes time to create and test). Consequently, working
with subimages, as developed in Section II for “one-pass” func-
tions such as the Sobel operator, cannot reduce (and actually
increases) their time and space complexity. This is an example
from the class of image processing operators which arenot ef-
ficiently extensible from to .

On the other hand, many imaging operators depend on a set
of unknown parameters, e.g.,, in some parameter space. In
this case, multiple passes (usually iterations) throughor some
other set oftraining data are needed to estimate (or learn) a
“best” before the output image can be constructed. We in-
dicate the dependence ofon and by writing .
Suppose we find an optimal (in some well-defined sense) set
of parameters , and once found, the vector ,

, can be calculated noniteratively. We cannot expect
that , where is the optimal set of pa-
rameters found when is trained with , but it
may be the case that . For convenience, we
let , in what follows. If there
are several , the time saved by calculating the s
noniteratively may be worth the sacrifice in accuracy due to the
approximation of by . We call : an
extensible functionwhen

depends on (6a)

requires iterative estimation using (6b)

can be calculated noniteratively

for (6c)

If is optimal for

then (6d)

In the present context, let , the data set obtained
by sampling , as described in Section II. Let denote the
overall time it takes to: 1) construct ; 2) estimate for ;
and 3) compute : . Let be the overall
time it takes to: 1) estimate for ; and 2) compute
(this time can be zero, depending on). Since there is no guar-

antee that for , we have at best
]. Our hope is that the loss of

accuracy due to extending to with is balanced by
a decrease in overall CPU time.

We have pointed out that would take less time on
than on ; therefore, this is an example where

. Whenever the ratio is less than one or even close
to one, there is little merit in estimatingand using it to ex-
tend to . On the other hand, can be significantly
less than for computationally intensive s (neural networks
(NNs), clustering methods, vector quantization, etc.). For algo-
rithms of this kind, as , so
the loss of accuracy incurred by using for may be
more than offset by the overall reduction in CPU time.

Since at this point is quite general, we cannot give
estimates of or , so it seems reasonable to use the ratio

as a measure of theobserved efficiencyof
extensible image processing algorithms. Nonextensible algo-
rithms yield (as is the case for , the Euclidean
Sobel edge operator). Conversely, the efficiency of extending

to with increases as . We call
theacceleration factorachieved by the use of sampling and ex-
tension, and say that is efficiently extensibleif and only if its
acceleration factor is greater than one

is efficiently extensible (6e)

The questions that need to be answered regarding efficiently
extensible imaging operations are:How much time do they save?
andHow bad is the approximation ? Generally,
the answers will depend on the image to be processed and the

to be used, as well as . s that seem amenable to
our efficient extension method usually spend a lot of time com-
puting distances in , so often de-
pends implicitly on , the number of features extracted from.
Furthermore, can also depend on the number of classes
as well as the ratio . Therefore, in general,

is a quite complex function, , of
at least six integers. Exact complexity analysis may be possible
for some s, but will be impossible for most. The best one may
be able to do is measure the acceleration factorfor actual
trials, and assess the loss due to using output image in-
stead of in terms of disagreement between the two (i.e.,
average error), as well as visually. This will be demonstrated in
Section VI.

Before we present our computational study, we offer some
qualitative remarks about efficient extensibility for large-scale
images. Our method is most appropriate for operations on
images where iterative estimation (learning) is necessary, and
where can be extended to , as in (6c). Almost all clas-
sification functions represented by NNs and fuzzy systems fall
into this category. For example, segmentation, edge detection,
and classification by any supervised learning scheme [23]–[25]
should benefit by extension as long as the approximation in (6d)
is acceptable. The same remark applies to most unsupervised
learning models used for image processing (e.g., segmentation
and edge detection with clustering algorithms, when these are
extensible).
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Generally, it will be clear from the nature of whether sam-
pling and extending to is a better strategy (when
there is a choice) than finding with and computing
directly. Furthermore, if is so large that (and possibly

) cannot be loaded into memory,sometype of sampling
scheme may be theonly choice. Now we turn to an example of
extensibility based on segmentation with clustering.

IV. FCM AS AN EXTENSIBLE ALGORITHM

FOR IMAGE SEGMENTATION

In this section, we illustrate the scheme outlined in Sections II
and III by casting the FCM clustering algorithm in this frame-
work. We use only one subscript to specify a pixel and its asso-
ciated feature vector. Given a set of feature vectorsextracted
from an image, many clustering algorithms can be used to seg-
ment by clustering in [24], [26]. FCM is frequently used
for image segmentation; typical applications include medical
[27]–[29] and satellite image analysis [30], [31].

Let , be a finite
data set; be the number of clusters;

be the set of cluster pro-
totypes; and be a fuzzy -partition of . The
element represents the membership of in the th cluster.
Fuzzy partition matrices satisfy three constraints

and

(7)

We denote the set of all matrices that satisfy (7) by
. When in (7), reduces to
, thecrisp -partitions of . Each column of
is a crisp label vector in the set
, , where the “1” occurs

at the th address. Each column of is a fuzzy label
vector; i.e., a vector whose entries sat-
isfy the first two constraints in (7). The parameters that FCM
estimates are and . These are found by minimizing

(8)

where and the inner product induced norm, that is, the
distance between and , is

(9)

in (9) is any positive definite matrix. First-order neces-
sary conditions for a local extremum of are well known [4].
The prototype must satisfy

(10)

To state the necessary conditions for , let
, and . Thus, is the set

of indexes of centroids which are identical to some data point
. If , set and arbitrarily assign the

remaining

such that (11a)

If

(11b)

The FCM algorithm consists of guessing(or ), and then
alternating between (11) and (10) until either
or is less than a user-specifiedtermination
threshold . FCM is an example ofalternating optimization
(AO). Many other image processing operators are AO algo-
rithms. For example, the E–M algorithm, when used to estimate
the parameters of normal mixtures, is a statistically motivated
AO method that is used heavily in image processing [32]. All
AO algorithms are good candidates for efficient extension
when dealing with large images, because they usually require
intensive and iterative calculation during the training phase. We
mention that Bezdek and Hathaway [40] have recently shown
that, under fairly mild conditions on the objective function,all
AO algorithms converge globally (from any initialization in the
constraint space). Reference [40] also contains a statement of
the local result, which guarantees-linear convergence for AO
when initialized sufficiently close to a solution. The proofs of
these results can be found in [41].

Each calculation of at (11) is a function of and , and
this is the function we will extend from to . Let
be a function that assigns a fuzzy label vector to, given a set
of centroids ; i.e., let : be

(12)

The value of in (12) is calculated with (11) for .
When FCM terminates at an optimal pair

is used to generate fuzzy label vectors for each spatial
location (pixel) in .

Arranging these vectors as a matrix, e.g.,, results in a
fuzzy partition of which, after rearrangement of the

columns of and vectors in , yields the block matrix

(13)

The first block of is the partition found by applying
FCM to . The second block of is , the matrix
of memberships extended to using .

The matrix is then used to approximate , which is a part
of an optimal pair for at (8) found by applying
FCM to all of , instead of just .

The last step needed to produce the desired segmentation of
is to “harden” each column of or . The usual (but by

no meansonly) way to do this is to use the “max-membership”
hardening rule; i.e., define: as follows. Let
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be the fuzzy label vector for .
Then . Thus, is assigned
the cluster in which it has the maximum membership value. For
example, if and the membership vector for is

, then
, so the pixel corresponding to is assigned to cluster 3. This
can be used to assign a hard cluster label to each pixel in the

image.
In order to get the segmented image we considercolors (or

perhaps gray levels) equally distributed in
associated with the index set . If the th pixel has
a cluster label, we replace its pixel value by theth color. For-
mally, let be the colors, and:

. Now define the function
: by composition as . Then

represents a-region segmentation of that depends on the pro-
totype set as in (10) found by FCM. When is used,
is the extended segmentation of; when is used, is
the “exact” segmentation of . Now we are in a position to ask:
How much time is saved by computing instead of ?
andHow well does ? These are the topics of Section V.

V. TRADING ACCURACY FORTIME

Two facts about FCM segmentation of digital images are well
established: segmentations are good, but FCM is slow. There
have been many attempts to accelerate the iterative loop defined
by (10) and (11) [31], [33]–[36]. One class of methods abandon
the search for an optimal pair for on a complete
data set. One subset of this type replaces “literal” (or exact)
FCM (LFCM) with an approximation to it, and uses all of.
The other type of approximation scheme in this category uses
LFCM, but alters the data set processed. Our method is of this
latter type, using to approximate on all of . A second
class of methods obtain by eventually running LFCM on
the full data set, but attempt to reduce by altering the usual
random initialization scheme.

Cannonet al. proposed an approximate version of LFCM
calledaccelerated fuzzy-means (AFCM), which is based on
lookup tables to approximate distances, and used it to segment
thematic mapper images [30], [31]. Hallet al. [27] and De La
Pazet al.[33] used AFCM for segmentation of MRIs. Although
AFCM has been used successfully in several applications (and
does reduce the CPU time of LFCM by as much as a factor of
10), it has some limitations.

• AFCM does not satisfy the necessary conditions of FCM,
and hence, AFCM iterates do not minimize any well-de-
fined objective function.

• AFCM uses lookup tables, and it is not feasible to have
complete logarithmic and exponential (lookup) tables
stored in memory. Assumptions are used to limit table
sizes, which, in turn, reduce the accuracy of intermediate
values used by AFCM.

Chenget al. [34] present a method calledmultistage random
sampling fuzzy-means(mrFCM). This scheme cuts down the
computation by reducing the number of feature vectors and iter-
ations used in the initializing stages of FCM calculations. LFCM
is run on several small subsets of the data in an incremental
fashion to get a set of good initial prototypes, and then LFCM is

applied to the whole data set. Based on empirical studies, Cheng
et al.report that mrFCM reduces CPU time on average by about
50%, but no space reduction is possible. Chenget al. did not
provide a guideline about how to terminate their incremental
process.

Quite independently, but almost at the same time as Cheng
et al., Uma Shankar and Pal [35] proposed another multistage
scheme for accelerating LFCM they calledfast fuzzy -means
(FFCM). FFCM first runs LFCM on a small sample of the
entire data set . Let the centroids obtained on be . Now

is enhanced by a small fraction of to get , and LFCM
is run on to get the set of centroids . FFCM then uses
(and also ) to generate the partition matrix (and ) on
the entire data set . Let the partition matrices generated on
in two successive stages be denoted by and , respec-
tively. In FFCM, enhancement of the sample and the running of
LFCM on the enhanced sample are continued until there is no
significant difference between and ; i.e.,
is very small. FFCM runs LFCM a number of times, but the cen-
troids are expected to improve due to the use of a bigger sample
at each step, so the number of iterations required by LFCM in
increasingly higher stages is expected to decrease.

Unlike AFCM and mrFCM, FFCM never runs iteratively on
the whole data set, so it reduces both computational time and
storage space. However, FFCM in [35] did not use a statistical
criterion to assess the quality of as a good representation of

, as we proposed in Section II. Moreover, FFCM runs LFCM
on different samples, while the method proposed in this paper
runs LFCM only on one sample. We distinguish FFCM from the
method developed here by calling our new techniqueextensible
fast fuzzy -means (eFFCM).

Kamel and Selim [37] proposed two algorithms that update
cluster prototypes or membership values more frequently than
LFCM. In one algorithm, the cluster centers are updated after
computing the membership values for each input vector. The
second algorithm updates membership values after computing
each centroid. Kamel and Selim report that, on average, the first
algorithm is 1.23 times faster than LFCM, while the second al-
gorithm is 1.07 times faster than LFCM.

Velthuizenet al.[29] proposed an algorithm calledsplit fuzzy
-means (SFCM),which is driven by the philosophy underlying

incremental partitioning in iterative least square clustering [38].
SFCM starts with cluster whose centroid is taken as
the mean of all data points. The splitting process is initiated by
choosing the next cluster centroid as the data point having
the maximum weighted sum of squared distance from all cen-
troids. Thus

(14)

Next, LFCM is run with these cluster centroids as ini-
tial prototypes. The process is repeated until the desired number
of clusters is created. Velthuizenet al.observed that steps prior
to the final run of LFCM can be viewed as an elaborate initial-
ization scheme. The last run of LFCM may terminate quickly,
but the total time required for SFCM may be more than running
LFCM once at the desired number of clusters; andeverystep of
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Fig. 1. Architectures of mrFCM and eFFCM. (a) The mrFCM scheme. (b) The eFFCM scheme.

SFCM processes all of . Among the various methods that have
been studied to accelerate FCM, the one most similar to ours is
mrFCM [34]. Consequently, we use mrFCM as a comparator in
the numerical experiments of Section VI.

VI. A LGORITHMS, PROTOCOLS, DATA SETS, AND EXPERIMENTS

Since we will compare eFFCM to its closest relative
(mrFCM), we now give a brief description of mrFCM. Cheng
et al. [34] proposed atwo-phasealgorithm. The first phase
has severalstages; each stage uses an increasing number of
feature vectors and a more stringent stopping condition. The
first stage uses randomly initialized cluster prototypes while
the th stage uses the final cluster prototypes from
the th stage. The secondphaseuses the final cluster
prototypes produced by phase I and runs LFCM on the entire
data set.

Algorithm mrFCM
Begin Phase I
Step 1.Choose: for LFCM; control parameters

and ; termination parametersand ; and iterate limit
. Set .

Step 2.Choose cluster centers randomly.
Step 3.

For to :
1.Select % of the feature vectors without replacement

from . A point is selected if no point in its 8-neighborhood
is already selected, and the number of trials is less than. If
the number of trials is greater than , samples are selected
disregarding the 8-neighborhood condition. Call this set.

2. .

3. Using and initial guess , iterate LFCM through
(11) and (10) for until either or

, where is the partition matrix
at iteration , and is the stopping condition for stage,

.
4. , .

Next, .
End Phase I
Begin Phase II
Step 4.Initialize LFCM with the final cluster centers ( )

from phase I, and iterate LFCM through (11) and (10) to ter-
mination on the whole data set.

End Phase II

Fig. 1(a) shows the overall flow of mrFCM. mrFCM is a
useful variation of LFCM, but as the authors of mrFCM point
out, three critical, user-selected parameters ( and ) influ-
ence the performance of mrFCM significantly; Chenget al.give
no guidelines for their selection. Moreover, mrFCM runs LFCM

times on subsets of , and then runs LFCM on the entire
data set. Therefore, the role played by Steps 3.1–3.4 of mrFCM
is really to ensure a good initialization of LFCM. Thus, while
mrFCM may exhibit time reduction, it is by no meansguar-
anteed. Finally, phase II of mrFCM requires exactly the same
storage and (possibly) time as LFCM.

In eFFCM, we run LFCM on a small but representative subset
of the entire data set . Initially a random sample from

having % of points in is selected, with replacement.
If does not pass the hypothesis test, it is enhanced by adding
another % of to . This process of enhancing the sample
(with replacement) is continued until the hypothesis test accepts

. The sample corresponding to is then used to compute
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cluster prototypes with LFCM. This results in the (optimal
for ) LFCM pair . The cluster prototypes are then
used with (12) to generate the remaining columns in

for vectors in , resulting in , the fuzzy -partition
of shown in (13). The matrix is notpart of an optimal pair
for . If desired, a necessary pair for can be
generated from by defining , and then calculating

noniteratively with and (10). This way, LFCM is never
applied to all of .

When FCM terminates, take . Since eFFCM runs
only once on a small fraction of , the runtime storage space
required for successive estimates ofis much less than that
needed for estimation of on . Specifically, this reduces
the storage requirement by about addresses for

. For a 2000 5000 DDSM image, this reduction typically
amounts to about 700 000 addresses, each needing up to 32 bits.
The last step of eFFCM computes once, and this space is
required whether we use eFFCM or LFCM. Fig. 1(b) shows the
block architecture of eFFCM.

Algorithm eFFCM
Step 1.Choose and for LFCM; and

and for eFFCM. Here, is the number of categories as
defined in (1) and (2). The initial subset of contains

pixels from , is the additional percentage of
samples added at each step, andis the level of significance
for the statistical test.

Step 2. draws from (with replacement).
Step 3.Compute using (1) or using (2) on .
Step 4.Compare or with the tabulated value of at

DOF. If the test is significant at level, then enhance
by adding an extra draws (with replace-

ment) from to and go to Step 3. Otherwise go to Step
5. [For , the DOF (df) may be less than if there are
categories with expected frequencies less than 5.]

Step 5.Apply LFCM to corresponding to , obtaining the
pair .

Step 6.Use the cluster prototypes generated at Step 5 with
(12) to calculate on all of , i.e., .

A. Performance Comparison

It is not hard to show that LFCM and all of its variants dis-
cussed in Section V have the same asymptotic run-time com-
plexity; e.g., for feature vectors in divided
into fuzzy subsets. Asymptotically then, there is no advan-
tage to our sampling and extension scheme over simply run-
ning FCM on . However, the key word is “asymptotically.”
Since is alwaysless than infinity, a better indication of ef-
fective speedup is to compare the number of operations used
for finite , , and during the iterative phase of these al-
gorithms. Comparing to , we see that the number
of operationsper iteration done by eFFCM as compared to
LFCM stands in the ratio . Our experiments indicate that

% usually produces good results for (256,
256, 256) images. For higher resolution images, like DDSM
with , mil-
lion pixels in , is likely to be much less than 30% of.

Even for such images, if we assume that is 30% of , then
pixels. Although and “fall out” in the

comparison, each FCM construct adds, subtracts, multiplies, di-
vides, and exponentiates. Thus, we can expect CPU time on
to be significantly less than CPU time on. Furthermore, even
though theasymptoticcomplexities are equal for finite data, the
larger , the larger we expect ( ) to become.

For example, if you need 500 iterations to terminate both
schemes, eFFCM saves 500 (700 000) constructs,
each involving (roughly) operations. For moderate problems
then, ; so eFFCM saves something like

operations. Even today, with 1 BIP ma-
chines, this represents a savings of several thousand seconds
(perhaps 30 min per image). Moreover, even if we start with
identical initializations on and , we expect LFCM to take
significantly fewer iterations than it would take on. There-
fore, extensible algorithms should (and do) save time, but do
they also produce reasonable approximations to the undiluted
outputs obtained by running on ?

We compare the performance of eFFCM in four different
ways. in (13) will never equal , where is an
optimal pair for on . One way to compare to is
to harden the columns of both matrices with, resulting in the
sets and , . Then, we can
compare these two sets of labels, and count the number of mis-
matches. Let

(15)

in (15) is the number of times and disagree. Before
using (15), the rows of may have to be reorganized (equiv-
alently, relabeling of the centroids in ) so that comparison is
made between corresponding clusters. While(or )
may itself be unsatisfactory [e.g., might be a segmen-
tation of that is deemed unacceptable], (15) is a valid mea-
sure of the error incurred by using to produce , and taking

. is a valid measure of error when one looks at
the clustering results; i.e., the partitioning of.

Second, we could also compute . Here, we
calculateboth and , so could be directly computed. This
error is not to be confused with the same expression which ap-
pears in [12], where is computed, but is the “true but un-
known” set of prototypes that crisp-meanswouldproduce on
an infinite number of samples. is bounded above in [12] by an
asymptotic estimate, and it is used to control the number of sam-
ples that are actually processed. However, sinceis uniquely
determined by the set of centroids, is directly related to

, and there is no need to calculate both in our applications.
The second index of comparison is , which compares how

time efficientthe extensible algorithm is. Third, we also com-
pare FCM objective function values computed directly running
LFCM on with the objective function values computed on

using the terminal obtained by eFFCM. Finally, we
also render visual judgments about the quality ofas an ap-
proximation to .

Before we turn to the numerical experiments, we point out
that it is even possible to get qualitativelybetter results with
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Fig. 2. Gray values over a 3� 3 window.

than with . How? Most iterative parameter estimation al-
gorithms optimize an objective function, and the algorithm can
get stuck at a local extremum. FCM on the entire setwill
almost surely have a more complex search space thandoes
on the smaller sample . Therefore, the chance of landing at a
“better” minimum is higher with (although this is not guar-
anteed). Moreover, with a small , more runs of the param-
eter estimation algorithm with different initial conditions can
be made leading to parameters that yield the best value of the
objective function (for FCM, it would be the best value of).
Therefore, “high” approximation error in terms of (15) does not
necessarily mean that we have poor results, becauseis a
measure of relative agreement betweenand . Next, we
describe some numerical experiments that illustrate the ideas of
sampling and extensibility.

B. Numerical Experiments

Some of our experiments use two derived features: window
averageand windowbusyness[21]. Consider a 3 3 window
centered at with gray levels as indicated in Fig. 2.

• The average gray level over the window centered at the
th position of the image is

(16)

• The busyness over the window in Fig. 2 is

(17)

We used eFFCM to segment two 4-band satellite images: SI-1
and SI-2 from IRS-1A [39]. Figs. 3(a) and 4(a) show the input
images SI-1 and SI-2, respectively. For visual clarity Figs. 3(a)
and 4(a) present enhanced (histogram equalized) versions of the
input images, but for computations we used the original images.
Each image has the complexity triple (256, 256, 256)—rela-
tively small images in the year 2001. Our computational exer-
cise consists of two cases.

Case 1: Sample selection is done using gray levels of band-4
(0.77–0.86 m) from SI-1; and clustering is per-
formed using the extracted features in (16)
and (17). That is,

.
Case 2: The sample is selected using the same band-4 gray

levels from SI-2; and raw band-3 (0.62–0.68m)
and band-4 gray level pixel intensity 2-vectors are
used for clustering.

Fig. 3. (a) Input satellite image SI-1. (b) Segmentation of (a) produced by
eFFCM when centroids are generated by 9% of the data and only the divergence
test is satisfied. (c) Segmentation of (a) produced by eFFCM when centroids are
generated by 29% of the data and both the divergence and� tests are satisfied.
(d) and (e) Segmentation of (a) produced by LFCM and mrFCM (which are the
same).

Fig. 4. (a) Input satellite image SI. (b) Segmentation of (a) produced by
eFFCM when centroids are generated by 18% of the data and only the
divergence test is satisfied. (c) Segmentation of (a) produced by eFFCM when
centroids are generated by 21% of the data and both the divergence and�

tests are satisfied. (d) and (e) Segmentation of (a) produced by LFCM and
mrFCM (which are the same).

To benchmark the performance of eFFCM, we ran LFCM and
mrFCM on with the same initial cluster prototypes as used
for eFFCM. The computational protocols used were ,

% initial sample size, % incremental sample size,
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TABLE I
COMPARISON OFeFFCMAND mrFCM FOR CASE 1

clusters, (identity matrix), and . eFFCM
and LFCM are terminated using the condition

where is the set of cluster centers generated at iteration.
For mrFCM, we used the following parameters: stages,

% increment in sample size in every stage,
, and . Chenget al. [34] terminated mrFCM on

. For the sake of a fair comparison, we terminated
mrFCM here with the same conditions as LFCM and eFFCM.
In other words, we terminated mrFCM with

where is varied as shown in Step 3.3, phase I, mrFCM.
Note that , the number of categories used to compute the

frequency distribution over , is different from , the number
of meaningful segments (clusters) assumed to be in the data.
can be equal to the number of distinct gray values present in the
image, or the entire gray scale can be split into( less than the
number of distinct gray values) nonoverlapping cells. Moreover,

can vary from sample to sample.
In Table I, instance (a) corresponds to the smallest sample

for which either the or divergence passes . If in instance
(a)boththe and divergence are insignificant, we do not gen-
erate instance (b). However, if in (a) is passed byonly oneof

or , then we augment in (a) by additional samples

until both and become insignificant. Instance (b) cor-
responds to this case. For each case, we have tabulated results
for several sets of runs with one or two instances for each set.
In each table, column 3 is the value of the objective function

computed on the entire data set with the terminal
cluster prototypes generated by eFFCM on the indicated sample
(size given in column 2).

We ran LFCM to termination on both and using the
same initial centroids and used and with (15) to assess
the accuracy of eFFCM relative to LFCM on. Values of
for eFFCM (given as percentages) are reported in column 10 of
Table I.

Table I depicts the results obtained for eleven sets of runs for
case 1. A typical value of at termination of LFCM on is

, which is quite close to the values re-
ported in column 3 of Table I. Set 0 reports the results when
is selected at the 5% level of significance. For all other sets,
was 0.95 (i.e., 95% level of significance). The values in column
10 of Table I show that, except for set 0, there is better than 98%
agreement between the crisp partitions obtained by hardening
the eFFCM and LFCM partitions by maximum memberships,
even when only 5% of the data are used (set 8 in Table I). For set
0 (Table I), although we achieve a high acceleration factor, the
difference between labels assigned by FFCM and LFCM after
hardening the partitions goes up to 11.51%.

We also achieved, without noticeable loss of performance, a
time saving of approximately 70% and a space saving of nearly
60%. Column 11 shows values of the acceleration factor.
Comparing theseto(6e),weseethateFFCMis(apparently)anef-
ficient extension of LFCM. In instance 1.a, for example, eFFCM
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TABLE II
COMPARISON OFeFFCMAND mrFCM FOR CASE 2

terminates 2.93 times faster than LFCM, both beginning with the
same initialization. Thus, eFFCM completes the entire image in
about % of the time that LFCM requires.

Column 4 is the computed value of for the given set. The
tabulated value is shown in column 5 at the DOF given in
column 6. Similarly, computed and tabulated values of diver-
gence, and DOF are reported in columns 7, 8, and 9, respec-
tively.

Columns 12 and 13 present the results obtained with mrFCM.
We used the same initial centroids and terminating condition for
mrFCM, eFFCM, and LFCM. Since the final phase of mrFCM
runs LFCM on the entire data set, unless a very bad initializa-
tion ( ), is used in Step 2 of phase I of mrFCM, the partitions
generated by LFCM and mrFCM with the same initial centroid

should not be much different. Consequently, the crisp par-
titions obtained by hardening the LFCM and mrFCM partitions
using maximum memberships will be almost the same. This is
indeed reflected by the low values reported in column 12
of Table I. The acceleration factor for mrFCM varies from 0.93
to 2.08. Therefore, mrFCM fails to extend LFCM efficiently in
the sense of (6e) only once—set no. 7 of case 1. In all other
trials, mrFCM is also an efficient extension of LFCM.

Comparing the acceleration factors of eFFCM and mrFCM
in Table I, we see that even the lowest acceleration factor for
eFFCM (1.75) is nearly equal to the highest acceleration factor
(2.08) of mrFCM. For eFFCM, the highest acceleration factor is
8.63 (for 0.a, it is 17.22 where is selected at ), and
out of the 19 instances reported in Table I, the acceleration factor
is more than 2.08 for all instances except 7.b. The acceleration
factors achieved with mrFCM for case 1 (see Table I) are lower
than that reported in [34]. This may be because of the difference
in the data sets used or in the termination conditions.

For visual assessment of the performance of eFFCM, we dis-
play in Fig. 3 a typical segmented image produced by eFFCM
corresponding to set 6 of case 1. Fig. 3(b) is the segmented
image produced by eFFCM when the centroidsare produced
with 9% of the data points and only the divergence test is sat-
isfied, set 6.a. Fig. 3(c) is the result obtained when both the
and divergence tests are satisfied, set 6.b. Fig. 3(d) is the result
produced by LFCM on ; and Fig. 3(e) [which coincides with
Fig. 3(d)] is the segmentation produced by mrFCM. For con-

sistency, we used the same initial prototypes for all four runs.
Comparison of Fig. 3(b)–(e) shows that the segmented images
are practically identical (visually).

Table II depicts the results for case 2, i.e., when SI-2 is used
as the input [see Fig. 4(a)] and gray levels of band-4 are used
for sample selection. For case 2, bands (3, 4) intensity values
are used as the features. In this case, varies from 2.33 to
8.90 for eFFCM, while acceleration for mrFCM varies between
1.57 and 3.56. Inspection of column 10 in Table II reveals that
eFFCM can achieve an acceleration factor of 8.90 with less than
2% degradation in performance as measured by. For this
data set, a typical value of , when LFCM is run on , is
710 377.1, which is practically the same as those reported in
column 3, Table II. As an illustration of segmentations produced
for case 2, we show the images for set 5, Table II. Fig. 4(b) and
(c) displays results of eFFCM for instances 5.a and 5.b; while
Fig. 4(d) and (e) represents the segmented images for LFCM
and mrFCM. Again, there is “good”visual agreement between
the literal and approximate segmentations.

Discounting the case 0 trials in Table I (the only trials that
used as the statistical significance threshold), Tables I
and II have 26 eFFCM (and 16 mrFCM) tests. The average size
of over the 26 trials was —that is, on av-
erage, we need about 24% of the image in order forto be ac-
ceptable at . The average acceleration of eFFCM was
4.20, compared to an average of 1.63 for mrFCM. Therefore,
for an image that takes, for example, 30 min to segment with
LFCM, we can expect completion with mrFCM in 18.4 min,
while eFFCM cuts the run-time to 7.14 min. On the other hand,
the average accuracy of eFFCM at approximating LFCM in 26
trials is %, whereas mrFCM (almost) always pro-
duces complete agreement between pixel labels reproduced by
itself and LFCM. Therefore, in a 20005000 image, we expect
about 87 000 pixel labels (in 10 million) produced by eFFCM
and LFCM to disagree. Combining these facts, it seems safe to
assert that eFFCM will probably be several times faster than
mrFCM, but at a cost in accuracy of perhaps 1% of the LFCM
labels found by mrFCM. From this it is clear that eFFCM and
mrFCM can be combined to effect a further tradeoff between
saved time and accuracy lost when LFCM is a desirable seg-
mentation method but is too costly to run.
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VII. CONCLUSIONS ANDISSUES FORFURTHERRESEARCH

A. General Conclusions

There are two main contributions of this paper: 1) the use
of simple hypothesis tests, such asor divergence, to select
subsets of pixels whose intensities are representative of image
regions, and whose feature vectors comprise training data for
computationally intensive learning models used in image pro-
cessing; and 2) the introduction of an (empirical) notion of effi-
cient extensibility of imaging operators from the training pixels
to the rest of the image. These two ideas are applicable to “large
image” processing, and are designed to save time and space by
running the “literal” learning algorithms on the training data,
and thenapproximatingthe results which a literal algorithm
might obtain on the remaining pixels in the image. This is done,
of course, at a sacrifice in accuracy (where “accuracy” means
closeness to the output of theliteral version).

In our proposed scheme, suppose we accept a sample obtained
after -steps enhancement. Therefore, the hypothesis has been
tested times before the sample is accepted. Of these
tests, in the first cases, the hypothesis was rejected at thelevel
of significance. A natural question is:Is the probability that one
of these rejections is by just chance (i.e., it was wrongly rejected
when it was actually true or acceptable)?If we assume the prob-
ability of committing a Type-I error as a Bernoulli process, then
the probability of committing at least one Type-I error intrials
is . For example, with and ,

.Notice that isgreater than . If the number
of tests to be performedis known beforehandthen the Bonferroni
correction can be used to adjustdownwards so that the overall
chance of Type-I error remains. However, in the present con-
text, this correction cannot be done (because the number of tests
to be performed is not knowna-priori), nor it is necessary. It is
not necessary because if the hypothesis is rejected by chance,
we will enhance the sample, and enlarging the sample will in
turn make a better representation of the image.

Another point worth investigating is the power of the tests
used here. Let be the probability of wrongly accepting a hy-
pothesis when it is false. Thus, is a function of the alterna-
tive hypothesis . The complementary probability is the
powerof the test of hypothesis against the alternative hy-
pothesis [16]. To get an idea about the power of the tests, a
lot of simulations must be done taking different distributions as
alternative hypotheses. We leave this for a future work.

Since our problem is to select a sample irrespective of the
learning task, estimation of an asymptotic error rate bound as
done in [12] is quite difficult, because the definition of error will
depend on the learning task. Moreover, Domingos and Hulten
[12] computed the loss with respect to centroids obtained using
finite samples and infinite samples (10 million data points). In
our case, the population is always finite, so we can at best com-
pare the centroids produced by eFFCM on and FCM on
the entire . Nonetheless, securing an asymptotic bound on
the error rate for FCM following the method in [12] for crisp
-means is an interesting and useful idea for future research.

B. Conclusions for Acceleration of FCM

We exemplified our sampling and extension methods by ap-
plying them to a typical image processing problem—segmenta-

tion with the (literal) FCM clustering algorithm, resulting in the
new approximation technique eFFCM. Based on our limited ex-
periments, we find that the new method is about 2.5 times faster
than mrFCM, and 4.2 times faster than LFCM, at an average cost
in changed pixel labels of less than 1%. Our method uses, on av-
erage, about one-fourth of the image data during training, and
extended segmentations are (visually) indistinguishable from
their literal relatives.

To conclude, we make a few more remarks about eFFCM.
1) Unlike other multistage schemes (e.g., mrFCM), eFFCM

runs iterative LFCM only once, and on a relatively small
subset of .

2) Unlike AFCM, eFFCM does exact optimization of for
a small subset of .

3) The and divergence tests do not necessarily agree. If
either statistic satisfies the hypothesis test, it can be as-
sumed that the sample tested is a good representative of

, so either test can be used.
4) The size of cannot be fixed prior to run-time. The ac-

tual time and space reductions achieved by eFFCM de-
pend on the distribution of gray values inand the par-
ticular sample of chosen. Experimentally, the size of
the selected sample is almost always less than one-third
of the size of the image, and on average reduces compu-
tation time by about 76%.

5) When is too large to load in host memory, AFCM and
mrFCM cannot be used; but eFFCM will provide approx-
imate FCM clustering in as long as can be mounted
in the host.

We feel that these are significant improvements to the utility
of FCM for LARGEimages. As decreases, it becomes
more and more attractive to simply run LFCM on the whole
image. mrFCM can be usefully modified with our idea so that
LFCM is used only twice: once on and then on , with the
terminal cluster prototypes generated by LFCM onas input
to Step 5 of mrFCM. To build confidence in our method, more
simulations need to be done with images of different sizes and
complexity.
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