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Image Segmentation by Histogram Thresholding
Using Fuzzy Sets

Orlando J. TobigdVlember, IEEEand Rui Searavlember, IEEE

_ Abstract—Methods for histogram thresholding based on the criterion for splitting the image histogram should be used. A
minimization of a threshold-dependent criterion function might  possible one is the use of a measure of similarity or closeness
not work well for images having mulimodal histograms. In penyveen gray levels. At this point, the question that arose is:

this paper we propose an approach to threshold the histogram | ; - . .
according to the similarity between gray levels. Such a similarity How can this measure be quantified in order to classify a

is assessed through a fuzzy measure. In this way, we overcome thedray level as belonging to a certain set (object or background
local minima that affect most of the conventional methods. The pixel set)?” The answer to this question is not easy to find by
experimental results demonstrate the effectiveness of the proposedemp|oying conventional thresholding techniques. Since the
approach for both bimodal and multimodal histograms. fuzzy set theory was introduced, it has become a powerful

Index Terms—Fuzzy measures, fuzzy sets, histogram thresh- tool to deal with linguistic concepts such as similarity. Several

olding, image segmentation. segmentation algorithms based on fuzzy set theory are reported
in the literature [8]-[11]. They are based on the optimization of
I. INTRODUCTION a threshold-dependent criterion function, which is in general a

o o _ measure of fuzziness (index of fuzziness, compactness, among
T YPICAL computer vision applications usually requirégthers). In [8] and [10], approaches based on evaluating a
1 an image segmentation-preprocessimggorithm as a gjopal fuzzy measure for all possible gray levels are presented:;
first procedure. At the output of this stage, each object gnce, the optimum threshold is selected for the gray level
the image, represented by a set of pixels, is isolated from gyt minimizes such a measure. For well-defined images, i.e.,
rest of the scene. The purpose of this step is that objects apgling bimodal (or nearly) histograms, such methods work
ba_lckground are separated i.nto nonoverlapping sets. Usuallyyy well. However, for images with very irregular histograms,
this segmentation process is based on the image gray-leyghroaches based on global measures might not work well. As
histogram. In that case, the aim is to find a critical value f matter of fact, in these cases the criterion function may have
threshold. Through this threshold, applied to the whole imag&’minimum, corresponding to a histogram local minimum, or
pixels whose gray levels exceed this critical value are assign&fbn not have any minimum at all.
to one set and the rest to the other. For a well-defined image, itsrpe proposed method is also based on a fuzzy measure to
histogram has a deep valley between two peaks. Around thgs@shold the image histogram. However, differently of previous
peaks the object and background gray levels are concentraigghroaches, we do not use a criterion function to be minimized.
Thus, to segment the image using some histogram thresholdjpgiead, the image histogram is thresholded based on a crite-
technique, the optimum threshold value must be located in thgn of similarity between gray levels. To this end, a measure
valley region. A myriad of algorithms for histogram threshyt f17ziness is used for assessing such a concept. The technique
olding can be found in the literature [1]-[11]. Some algorithmgroposed in this work consists in defining two linguistic vari-
[5] use an iterative scheme to achieve pixel separation. Entrogyies {object, background} modeled by two fuzzy subsets and to
based algorithms have been proposed in [6], [7]. In general, gltablish duzzy regioron the gray level histogram. In a second
histogram thresholding techniques work very well when trgqep, we assign each of the gray levels of the fuzzy region to
image gray-level histogram is bimodal or nearly bimodal. Opoth defined subsets (object and background) and measure the
the other hand, a great deal of images are usually ill defingghey of fuzziness (IF) of each of these subsets. Finally, the his-
(corrupted by noise and/or irregularly illuminated) leading to fdgram threshold is determined for the gray level in which the
multimodal histogram (Fig. 1) where, in these cases, the orgi~s are equal; hence, the gray levels are grouped according to
nary histogram thresholding techniques perform poorly or evgieir similarity. It is interesting to point out that the threshold
fail. In this class of histograms, unlike the bimodal case, thegiermined in this way may or not correspond to an absolute
is no clear separation between object and background pixghimum of the histogram. As a matter of fact, note that as the

occurrences. Thus, to find a reliable threshold, some adequg{§posed method is not based on the minimization of a criterion

function, the problem of detecting local minima is avoided. This

. . . characteristic represents an attractive property of the proposed
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results to illustrate the effectiveness and usefulness of the pndiered, (A, A) is a measure of distance, ands the number
posed approach. Section V ends the paper with concluding oé-elements inA.. Such a distance is computed according to
marks.

n 1/k
2 k
[I. BASIC DEFINITIONS di(A, A) = ) (Z (/J,A(LL',L') —/LA(Z?,L‘)) ) . (6)
A. Fuzzy Set Theory " im1

A fuzzy set is a class of points possessing a continuum of
membership grades, where there is no sharp boundary amonby this paper, we have used (6) with= 1, such an index is
elements that belong to this class and those that do not [12]. Wé&noted as a linear index of fuzziness [13]. For other measures
can express this membership grade by a mathematical functidrfuzziness, which could also be used, the reader is referred
calledmembership functioor characteristic functionua (z;). to Reference [15]. In [14] it is stated that the IF of a fuzzy set
This function assigns to each element in the set a membersAiphavingn supporting points, reflects the degree of ambiguity
grade in the interval [0, 1]. LeX be the universe of discourse,present in it. Note that in our application we use the concept of
with a generic element denoted by X = {z1, =2, ..., =, }. similarity. That is, a fuzzy set having a low index of fuzziness
A fuzzy setA in X is formally defined as indicates that its elements are very similar, i.e., exists alow
biguity between them.

A = {(z;, pa(x))}, z; € X 1)

where A is characterized by the functioma(.), which lll. PROPOSEDMETHOD

associates with each point;€X a membership grade 5 Algorithm

pa(z:)€[0, 1]. In this work, theS-function is used for mod-

eling the characteristic function. Such a function is defined as In order to implement the thresholding algorithm on a basis
of the concept of similarity between gray levels, we make the
following assumptions:

pas(z) =5(z;a, b, c) . . - :
i) there exists a significant contrast between the objects and

0, r<a .
background;
2{(z —a)/(c - a)}?, <z<b @ ii) the gray level is the universe of discourse, a one-dimen-
1-2{(x—c)/(c—a)}?, b<z<c sional set, denoted hX.
1 > Our purpose is to threshold the gray-level histogram by split-

= ting the image histogram into two crisp subsets, object subset
_ and background subsEt using the measure of fuzziness previ-
The S-function can be controlled by the parameterandc. b oysly defined. Now, based on the assumption i), let us define two
denotes the crossover point, which is givenbby: (a + ¢)/2,  jinguistic variables {object, background} modeled by two fuzzy
with 4 (b) = 0.5; the bandwidth of the function is defined as;ypsets ofX, denoted byB and W, respectively. The fuzzy
Ab=b—a = c—b. Herein, we also use the-function, which 5 hsetsB and W are associated with the histogram intervals

is derived from theS-function as follows: [Tmin, ;] @nd [z, Tmax], respectively, where:; andz, are
the final and initial gray-level limits for these subsets, ang,
pa,(z) = Z(z;a, b, ¢) =1— S(z;a, b, c). (3) andzu. are the lowest and highest gray levels of the image,

respectively. We know that the gray levels in each of these sub-
sets have the intuitive property of belonging with certainty to
_ the final subsets obje¢O) or backgroundF'). So,B ¢ O and
B. Measures of Fuzziness W C F or vice-versa Those subsets are located at the begin-
By using the IF introduced by Kaufmann [13], we can deRing and the end regions of the histogram. With these subsets,
termine how compact the sat is as compared with its neareswe have a seed for starting the similarity measure process. Also,
ordinary sefA.. This latter set is such that its characteristic funave define guzzy regiorplaced betweeB andW, as depicted
tion is given by in Fig. 1. Then, to obtain the segmented version of the gray-level
image, we have to classify each gray level of the fuzzy region
as being object or background. The classification procedure is
(4) asfollows. We add to each of the seed subBetsdW a gray
: level z; picked from thefuzzy regionThen, by measuring the
IF’s of the subsetB U {z;} andW U {z;}, we assigmn; to the
In Kaufmann’s definition, this index is obtained by measuringubset with lower IF (maximum similarity). Finally, applying
the distance betweefA andA. Such an index is defined as  this procedure for all gray levels of tfiezzy regionwe can clas-
sify them intoobjector backgroundsubsets. In other words, we
observe how the introduction of a gray level of fa@zy region
Ye(A) = ni/k dp(A, A) (5) affects the similarity measure among gray levels in each of the

t

0, if pa(z;)

< 0.
1, if [I/A(ilfi) Z 0.

pna(w;) = {

t
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1.0 Instead of using the and Z-functions with a fixed band-
width (Ab) as in [8], let us take the parameters of thieand

Z-functions as follows:

b="f—— (7
; h(x:)

c=b+max {[b — (i) max|, [0 — (Zi)min|} 5
p<i<yq (8)

0.5 |

and
a=2b—c 9)

fuzzy subset B fuzzy subset W
whereh(z;) denotes the image histogram arjdandz, are the
limits of the subset being considered. The quantities .
il . and (z;)min N (8) represent the maximum and minimum
20(') ' gray levels in the current set for whidh((z;)max) # 0 and
h((zi)min) # 0. Note, that the crossover poiht(7) is the
mean gray level value of the interval,, z,]. Next, by using
" (8) and (9)c anda are obtained. With the function parameters
) ) ) ) o ) computed in this way, we introduce some type of adaptability in
gé%dléUbhggzgmodal image histogram and the characteristic functions for ﬂ}ﬁe computation of the membership functions. In this way, we
permit that theS andZ functions adjust its shape as a function
of the set elements. This desired characteristic is not present
if we select a fixed bandwidthAb). A method for automatic
bandwidth selection is given in [9].
o, (B ) Sincg the key of the proposed classification _method is the
075 T comparison of IF measures, we have to normalize those mea-
(nomalized curve) sures. This is done by first computing the IF’s of the seed subsets

fuzzy region
| \ oo 0L
0 A I

100 150
Gray Level

K>3

% W andB, and by computing a normalization facteaccording
2 05 7 to the following relation
<
5} wk (W)
3 = 10
E v (Wl l) “ T e(B) (10)
" v, (Bu{x)) where;, (W) and,(B) are the IF’s of the subse® and
reshold B, respectively. Fig. 2 illustrates how the normalization works.
Note from this figure, the different threshold that would have
0 ) ”'JD ‘ p) " been determined without this previous step. The proposed algo-
oy Gray Level 5710 ** " rithm, for the cas@V C F andB C O, can be summarized in
the following steps:
Fig. 2. Normalization step of the indices of fuzziness and determination of the
threshold value. step 1: compute the normalization factor
Q,
modified fuzzy subset@B U {z;} andW U {z,}). For the de- step 2:
fined subsets, the following statements are valid: for i=j+11t0 r-1;
compute (B U {z;});
0)OUF = X; compute 4. (W U {z});
. if W U {x;}) is lower than . B U
B c OandW c F for light background, (o:)); Vil {z:}) o Ui
b) { or A . .
then : z; is included in set F,
B CFandW C O for dark background. otherwise : z; is included in set 0O,
end for .

Let us now consider the fuzzy subse® and B with

membership functiongw . () and us, (=) modeled by the ) }
S-function (2) andZ-function (3), respectively (see Fig. 2). Fig.2shows the plots of the functiotig (W U{x:}), ¢ (BU

Note thatuw . () andug,, (=) present higher values of mem-{#i}) anda -4 (BU{z;}), fori = j+1tor—1. The threshold

bership when: is nearzax or xfnin' respectively. _Conversely, IHere, we suppose that the IF of the fuzzy sulBeteeds to be normalized,
for values ofr near thduzzy regiorthe membership decreasesas is the case of Fig. 2.
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Fig. 3. Performance evaluation of the proposed method. (a) Reference image; (b) reference image histogram; (c) test image £8 ¢(fBYRd) test image
#5 histogram; (e) test image #7 (SNR 19 dB); and (f) test image #7 histogram.

level for image segmentation is determined by the intersectimitreasing quantities of noise with uniform distribution, sev-
of the normalized curves of the indices of fuzziness. The finafal testimages were generated having different SNR [obtained
crisp subseF is composed of all gray levels above the intersety (12)]. For instance, Fig. 3(c) and (e) depict the test images
tion point and the crisp subs€X by those below it, for a light with SNR of 23 dB and 19 dB, respectively. The histograms of

background case. the reference and the above test images are shown in Fig. 3(b),
(d) and (f), respectively. To compare the segmentation results a
B. Performance Evaluation probability of error measure is used. Such a figure of merit is

In order to evaluate the performance of the proposed alg%(?ﬂne‘j as [16]

rithm, a synthetic reference image was used. It is composed NN
of three objects, having a known number of pixels, on a tex- P(error) = Z Z P(Ri|R;)P(R;) 1)
tured background (cloud-type texture) [Fig. 3(a)]. By adding =1 2;}
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Fig. 3. (Continued) Performance evaluation of the proposed method. (g) Reference image manually segmented; (h) and (i) segmentation results by the proposed
method for test images #5 and #7, respectively; and (j) probability of error reShlsoposed methodx: [10]; *: [8].

where R; and R; are the number of pixels in thgh andjth fied as being object or background). Fig. 3(j) shows that the pro-
regions in the image, ani¥ represents the number of regiongposed approach has found the optimum threshBlg(ror) =

in the segmented imagéV( = 2, for our case). Equation (11) 0) when the SNR is greater or equal than 25 dB. When the
returns a measure that is a function of the misclassified pix@§R is about of 20 dB th&(error) is relatively low, as com-
between the manually segmented reference image [Fig. 3(gslred with the results obtained by [8] and [10]. Note that these
and the test images segmented using the proposed algorithmthods ([8] and [10]) maintain&(error) > 0 even for higher
Segmentation results for test images, SNR 23 dB and 19 dBJues of SNR. This behavior is mainly due to the existing local
are illustrated in Fig. 3(h) and (i), respectively. The probabilitgninima in the image histogram. In fact, its presence severely
of error (P(error)) versusSNR, for the test images using theaffects the determination of the thresholds obtained by such
proposed approach is shown in Fig. 3(j). Due to the nature miethods. Thus, Fig. 3(j) clearly illustrates the advantage of a
the methods presented in [8] and [10], we have used themnt@thod that does not depend on minimizing a certain criterion
compare with our approach for performance evaluation. Bfemction. The signal-to-noise ratio (SNR) used herein is defined
fore continuing, let us briefly describe such approaches. Badk

methods are based on a single fuzzy measure by using the stan-

dard S-function to represent the membership function. Such a Nr Ne

function is computed for all possible gray levels by using a given > I*(r, c)

bandwidthAb. In [8] the membership function is used to deter- ~ SNR= 10log | — N::1 =l (12)
mine the entropy measure, whereas in [10] through that function S5 (I(ry ¢) — Ly(r, c))2

the index of fuzziness is determined. In addition, due to the fact r=1 c=1

of using a fixed bandwidth, both methods are performance sen-
sitive regarding the value for this parameter. wherel(r, ¢) andI,(r, c) represent the intensity of tlie, ¢)th

In Fig. 3(j), the results obtained by [8] and [10] are alspixel of the reference and test (noise added) images, respec-
plotted. For that figureP(error) = 1 corresponds to the situa-tively. Nr and N ¢ represent the number of rows and columns
tioninwhich the all pixels are misclassified (all pixels are classof the image, respectively.
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Fig. 4. Histogram thresholding results for an image having bimodal histogram. (a) Blood image; (b) segmented image using the threshold vat)eayl 22; (
line: image histogram; solid lines: evolution of the IF’s (proposed method); dotted line: criterion function [8]; dash-dotted line: critetion fLi@F Threshold
locations are indicated with arrows.

IV. EXPERIMENTAL RESULTS can note that the criterion functions obtained by [8] and [10]
not present any global minimum. Thus, for the Bacteria
age, no threshold can be determined from [8] and [10]. Fig. 6
gows an image (Porous Media) in which a slight overlap exists
g_tween object and background sets. As can be observed from
g. 6(a), this is due to the irregular illumination of the image.
or this kind of images, better segmentation results can be

of the IF's obtained by the proposed method are shown ﬂji)tamed by the use of a spatial technique [6.]' In Fig. 6(b)
Fig. 4(c). It reveals that the methods [8], [10] and the proposgﬁ'd (c) the [8], [10] and proposed methods yield someyvhat
one perform similarly, which is due to the fact that the imag Qmparable re§ults. In particular, note that the segmented image
histogram has a global minimum. The obtained thresholds & 6(c) resultllng from the use .Of the propoged method has the
120,122, and 125, respectively. Since the thresholds determi g&kground slightly more perceivable than Fig. 6(b), segmented
are very close, the segmented image by using any of th@% [8] and [10]. . .
will have minor differences. In Fig. 4(b) the segmented ima eAS can be seen from Figs. 4(c) anq 5(¢), the sr?ape of the his-
is depicted by using the threshold equal to 122. In contrzﬁs(fgram may slightly a}ffect the evolution of the IF's O.f the seed
the Bacteria image [Fig. 5(a)] exhibits a histogram havin bsets. However, this fact doe; not representamajordrawpack
several local minima [Fig. 5(c)]. Thus, we can expect that t the proposed method. The histogram shape also determines
methods based on the minimization of a global measure m selection of the boundary valugsandz,. for the seed sub-

fail in determining a satisfactory threshold. In Fig. 5(c), w8€ts- We may use different sizes for these SUDEEJS min)

We have tested the proposed method by applying itto avari&
of images having different types of histograms. Figs. 4-6 sho
comparative results of histogram thresholding of real imag
performed by [8] and [10] approaches and by the proposed o
For the Blood image [Fig. 4(a)], the curves corresponding
the criterion functions of [8] and [10] as well as the evolutio



TOBIAS AND SEARA: IMAGE SEGMENTATION BY HISTOGRAM THRESHOLDING USING FUZZY SETS 1463

% =)
—T T

g e
o ~

w

041

=
W

Image Histogram - Index of Fuzziness

o
o

o

e M
50 100 150 200 250
Gray Level

(c)

)
= —

Fig. 5. Histogram thresholding results for an image having a multimodal histogram. (a) Bacteria image; (b) segmented image using the thraskdby obtai
the proposed method; and (c) gray line: image histogram; solid lines: evolution of the IF's (proposed method); dotted line: criterion funasind8jted line:
criterion function [10]. The arrow indicates the determined threshold.

and(zmax— ), @s a function of the number of gray level occurrion function. Instead, the histogram threshold is determined
rences in such regions. The condition to be satisfied is to haaecording to the similarity between gray levels. The fuzzy
sufficient information within the seed subsets. Providing thifsamework is used to obtain a mathematical model of such a
the values for:; andz, will not be critical to the performance concept. Through the comparison of results of the proposed
of the proposed method. The values used {far; — zwin), approach with the ones obtained by minimizing threshold-de-
(zmax — =)} are: Fig. 3(d) {40, 40}; Fig. 3(f) {50, 40}; Fig. 4 pendent criterion functions, we verify that the improvement
{30, 30}; Fig. 5 {50, 50} and Fig. 6 {40, 50}. achieved by our method, for multimodal histograms, is due to
Also, note that the threshold determined by the proposetk following reason. The presented approach does not attempt
method does not correspond to an absolute minimum of thedetect a global minimum; hence, the risk of getting blocked
histogram. As mentioned earlier, this behavior is mainly due @ a local minimum is avoided. The threshold determined in
the concept of similarity, which does not depend on detectirigis way may or may not correspond to an absolute minimum
such aglobal minimum. Inthe experimental results obtained wigh the histogram. Because of the used assumption, in which
the [8] and [10] methods the optimal valuedh has been used in objects and background must occupy nonoverlapping regions
order to obtain the best-segmented image for those techniques. the histogram, the applicability of the proposed method
is limited to images that satisfy such a requirement. On the
V. CONCLUSIONS other hand, this does not represent a serious restriction since

olding which is not based on the minimization of a critelS very large.
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Fig. 6. Histogram thresholding results for an image having a multimodal histogram. (a) Porous Media image; (b) segmented image by [8] and fd&ftéc) seg

image using the threshold obtained by the proposed method; and (d) gray line: image histogram; solid lines: evolution of the IF's (proposedttedtiod); d
criterion function [8]; dash-dotted line: criterion function [10]. Threshold locations are indicated with arrows.
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