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Robust Image Segmentation Using FCM
With Spatial Constraints Based on New

Kernel-Induced Distance Measure
Songcan Chen and Daoqiang Zhang

Abstract—Fuzzy c-means clustering (FCM) with spatial
constraints (FCM_S) is an effective algorithm suitable for image
segmentation. Its effectiveness contributes not only to the in-
troduction of fuzziness for belongingness of each pixel but also
to exploitation of spatial contextual information. Although the
contextual information can raise its insensitivity to noise to some
extent, FCM_S still lacks enough robustness to noise and outliers
and is not suitable for revealing non-Euclidean structure of the
input data due to the use of Euclidean distance (L2 norm). In
this paper, to overcome the above problems, we first propose two
variants, FCM S1 and FCM S2, of FCM_S to aim at simpli-
fying its computation and then extend them, including FCM_S, to
corresponding robust kernelized versions KFCM_S, KFCM S1

and KFCM S2 by the kernel methods. Our main motives of
using the kernel methods consist in: inducing a class of robust
non-Euclidean distance measures for the original data space to
derive new objective functions and thus clustering the non-Eu-
clidean structures in data; enhancing robustness of the original
clustering algorithms to noise and outliers, and still retaining
computational simplicity. The experiments on the artificial and
real-world datasets show that our proposed algorithms, especially
with spatial constraints, are more effective.

Index Terms—Fuzzy C-means clustering (FCM), image segmen-
tation, kernel-induced distance measures, kernel methods, robust-
ness, spatial constraints.

I. INTRODUCTION

IMAGE segmentation plays an important role in a variety
of applications such as robot vision, object recognition, and

medical imaging [1]–[3]. In the last decades, fuzzy segmenta-
tion methods, especially the fuzzy c-means algorithm (FCM)
[4], have been widely used in the image segmentation [26], [27]
and such a success chiefly attributes to the introduction of fuzzi-
ness for the belongingness of each image pixel. This allows for
the ability to make the clustering methods able to retain more
information from the original image than the crisp or hard seg-
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mentation methods [5]. Clustering is used to partition a set of
given observed input data vectors or image pixels into -clusters
so that members of the same cluster are similar to one another
than to members of other clusters where the number, , of clus-
ters is usually predefined or set by some validity criterion or a
priori knowledge.

Generally, clustering methods can be categorized into [25] hi-
erarchical, graph theoretic, decomposing a density function, and
minimizing an objective function. In this paper, we will focus on
clustering methods by minimization of objective function and
apply them to segment images.

Mathematically, the standard FCM objective function of par-
titioning a dataset into clusters is given by

(1a)

where stands for the Euclidean norm. Equivalently, (1a)
can, in an inner or scalar product form, be rewritten as

(1b)

where are the centroids or prototypes of the
clusters, denotes matrix transpose, the parameter is a
weighting exponent on each fuzzy membership and the array

is a fuzzy partition matrix satisfying

(2)
Although the original intensity-based FCM algorithm func-

tions well on segmenting most noise-free images, it fails to seg-
ment images corrupted by noise, outliers, and other imaging
artifacts, such as the intensity inhomogeneity induced by the
radio-frequency coil in magnetic resonance imaging (MRI), and
thus, leads to its nonrobust results mainly due to 1) the use of
nonrobust Euclidean distance and 2) disregard of spatial con-
textual information in image. To deal with the first problem,
some researchers adopted so-called robust distance measures,
such as norms [28]–[30], to replace the
norm in the FCM objective function reducing the effect of out-
liers on clustering results, and while many other algorithms have
also been proposed to deal with the second problem by incorpo-
rating spatial information into original FCM objective function
[5]–[10],[33], e.g., Ahmed et al. modified FCM objective func-
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tion by incorporating spatial constraints (called as FCM_S later)
[9]. However, besides the increase in computational time due to
such introduction of spatial constraints, two problems with the
FCM_S algorithm still suffer. One is insufficient robustness to
outliers as shown in our experiments, and the other is difficult
to cluster non-Euclidean structure in data such as nonspherical
shape clusters.

In this paper, we first propose two variants, and
, of FCM_S in [9] with an intent to simplify the

computation of parameters and then extend them, together with
the original FCM_S, to corresponding kernelized versions,
KFCM_S, and , by the kernel function
substitution. Goals of adopting the kernel functions aim

1) to induce a class of new robust distance measures for the
input space and then replace nonrobust measure to
cluster data or segment images more effectively;

2) to more likely reveal inherent non-Euclidean structures in
data;

3) to retain simplicity of computation.
The kernel methods [11]–[16] are one of the most researched

subjects within machine-learning community in recent years
and has been widely applied to pattern recognition and function
approximation. Typical examples are support vector machines
[12]–[14], kernel Fisher linear discriminant analysis (KFLDA)
[15], kernel principal component analysis (KPCA) [16], kernel
perceptron algorithm [24], just name a few. The fundamental
idea of the kernel method is to first transform the original
low-dimensional inner-product input space into a higher
(possibly infinite) dimensional feature space through some
nonlinear mapping where complex nonlinear problems in the
original low-dimensional space can more likely be linearly
treated and solved in the transformed space according to the
well-known Cover’s theorem [17]. However, usually such
mapping into high-dimensional feature space will undoubt-
edly lead to an exponential increase of computational time,
i.e., so-called curse of dimensionality. Fortunately, adopting
kernel functions to substitute an inner product in the original
space, which exactly corresponds to mapping the space into
higher-dimensional feature space, is a favorable option. There-
fore, the inner product form in (1b) leads us to applying the
kernel methods to cluster complex data [21], [22]. However,
compared to the approaches presented in [21], [22], a major
difference of our proposed approach in this paper is that we do
not adopt so-called dual representation for each centroid, i.e.,
a linear combination of all given dataset samples, but directly
transform all the centroids in the original space, together with
given data samples, into high-dimensional feature space with
an (implicitly) mapping. Such a direct transformation brings us
the following benefits:

1) inducing a class of robust non-Euclidean distance mea-
sures if we employ robust kernels;

2) inheriting the computational simplicity of the FCM;
3) interpreting clustering results intuitively;
4) coping with data set with missing values easily [31].

The proposed algorithms, especially with the spatial constraints,
are shown to be more robust to noise and outlier in image seg-
mentation than the algorithms without the kernel substitution.

The rest of this paper is organized as follows. In Section II,
the conventional spatial FCM algorithm (FCM_S) for image
segmentation is introduced and two new low-complexity vari-
ants are derived. In Section III, we obtain a group of kernel
fuzzy clustering algorithms with spatial constraints for image
segmentation by first replacing the Euclidean norm in the objec-
tive functions with kernel-induced non-Euclidean distance mea-
sures and then minimizing these new objective functions. The
experimental comparisons are presented in Section IV. Finally,
Section V gives our conclusions and several issues for future
work.

II. FUZZY CLUSTERING WITH SPATIAL CONSTRAINTS

(FCM_S) AND ITS VARIANTS

In [9], an approach was proposed to increase the robustness
of FCM to noise by directly modifying the objective function
defined in (1) as follows:

(3)
where stands for the set of neighbors falling into a window
around and is its cardinality. The parameter in the
second term controls the effect of the penalty. In essence, the
addition of the second term in (3), equivalently, formulates a
spatial constraint and aims at keeping continuity on neighboring
pixel values around . By an optimization way similar to the
standard FCM algorithm, the objective function can be min-
imized under the constraint of as stated in (2). A necessary
condition on for (3) to be at a local minimum is

(4)

(5)

A shortcoming of (4) and (5) is that computing the neigh-
borhood terms will take much more time than FCM. In this
section, we will present two low-complexity modifications or
variants to (3). First, we notice that by simple manipulation,

can equivalently be written as
, where is a

means of neighboring pixels lying within a window around .
Unlike (3), can be computed in advance, thus, the clustering
time can be saved when in (3)
is replaced with . Hence, the simplified objective
functions can be rewritten as

(6)
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Similarly, we can obtain the following solution by minimizing
(6)

(7)

(8)

Therefore, (4) and (5) obtain simplification to some extent. In
order to enhance robustness of clustering, can be considered
to take as median of the neighbors within a specified window
around . Similarly from (7) and (8), we can see that controls
the tradeoff between the original image and the corresponding
mean- or median-filtered image. When is set to zero, the al-
gorithm is equivalent to the original FCM, while approaches
infinite, the algorithm acquires the same effect as the original
FCM on the mean or median filtered image, respectively.

For convenience of notation later, we will name the algorithm
using (4) and (5) FCM_S, the ones using (7) and (8) with mean
and median filtering and , respectively. The
above algorithms can uniformly be summarized in the following
steps.

Algorithm 1

Step 1) Fix the number of these
prototypes or clusters and then
select initial prototypes (cen-
troids), and set to a very
small value.

Step 2) For FCM_S1 and FCM_S2 only,
compute the mean or median fil-
tered image.

Step 3) Update the partition ma-
trix using (4) (FCM_S) or (7)
(FCM_S1 and FCM_S2).

Step 4) Update the centroids using
(5) (FCM_S) or (8) (FCM_S1 and
FCM_S2).

Repeat Steps 3)–4) until the following termination criterion is
satisfied:

where are the vectors of cluster centroids.

III. FUZZY C-MEANS WITH SPATIAL CONSTRAINTS BASED ON

KERNEL-INDUCED DISTANCE

A. Kernel Methods and Kernel Functions

Let
be a nonlinear transformation into a higher (possibly infi-

nite)-dimensional feature space . In order to explain how to
use the kernel methods, let us recall a simple example [13].
If and , where

is the th component of vector . Then the inner product be-
tween and in the feature space are:

. Thus, in order to compute the inner products in , we
can use kernel representation , without explicitly using
transformation or mapping (thus, overcoming curse of dimen-
sionality). It is a direct consequence from [11]: every linear al-
gorithm that only uses inner products can be easily extended
to a nonlinear version only through the kernels satisfying the
Mercer’s conditions [11]. In the following are given typical ra-
dial basis function (RBF) and polynomial kernels:

(9)

where is the dimension of vector . Obvi-
ously, for all and the above RBF kernels, and a
polynomial with degree of

(10)

From (1b), we can now use kernel functions to substitute the
inner products there to realize an implicit mapping into some
feature space so that their corresponding kernelized versions are
constructed. Actually, there are two ways to kernelize FCM and
FCM_S: one is to view every centroid as a mapped point in the
feature space and use their dual forms, i.e., a linear combina-
tion of all data samples, to replace original certroids to get clus-
tering results in the feature space but not in the original space as
in [21], [22]. In this way, the resulting clustering are not easily
interpreted intuitively in the original space. The other [18] is to
still view every centroid as a data point in the original space like
given samples and directly transform them, together with the
data samples, into the feature spaces and then carry out clus-
tering. A advantage of doing so is that clustering is performed
still in the original space and thus the results can easier be inter-
preted intuitively as will be done below. In this paper, we adopt
the latter kernelizing way.

B. FCM Based on Kernel-Induced Distance (KFCM)

With the above formulations, we are now in position to con-
struct the kernelized version of the FCM algorithm and modify
its objective function with the mapping as follows:

(11)

Now through the kernel substitution, we have

(12)

in this way, a new class of non-Euclidean distance measures in
original data space (also a squares norm in the feature space)
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are obtained. Obviously, different kernels will induce different
measures for the original space, which leads to a new family
of clustering algorithms. In particular, if the kernel function

is taken as the RBF in (9), (12) can be simplified to
. Furthermore, for sake of convenience of ma-

nipulation below and robustness, in this paper, we only consider
the Gaussian RBF(GRBF) kernel with and in (9)
(in fact, by means of the Huber’s robust statistics [19], [23], we
can prove that the measures based on (9) are robust but those
based on polynomials are not), then (11) can be rewritten as

(13)

Therefore, the algorithm in [23] immediately becomes a special
case, where the distance measure is not induced from a view-
point of the kernel but becomes a direct definition. In addition,
when the parameter in (9) is a sufficient large positive con-
stant, we can again obtain the FCM and its robust versions such
as the -norm-based clustering algorithms [28]–[30] because
from (9), we have
and thus in
terms of (13). Obviously if and , reduces
to the objective function based on the norm.

By an optimization way similar to the FCM, can be min-
imized under the constraint of same as (2). Specifically, if
we take its first derivatives with respect to and , and zero
them, respectively, two necessary but not sufficient conditions
for to be at local minimum will be obtained as

(14)

(15)

It is evident that the obtained centroids or prototypes
still lie in the original space and not in the transformed higher
dimensional feature space, thus, the computational simplicity is

still retained. In addition, it is shown that the KFCMs resulted
from (11), i.e., (13), are robust to outliers and noise according to
Huber’s robust statistics [19], [23]. This characteristic can also
give an intuitive explanation from (15), i.e., the data point is
endowed with an additional weight , which measures
the similarity between and , and when is an outlier,
i.e., is far from the other data points, will be very
small, so the weighted sum of data points shall be suppressed
and hence result in robustness. Our experiments also confirm
that new algorithms are indeed more robust to outliers and noise
than FCM.

C. FCM With Spatial Constraints Based on Kernel-Induced
Distance (KFCM_S)

In this subsection, we will construct the corresponding ker-
nelized version of the FCM_S algorithm. Similar to the deriva-
tion of KFCM, we kernelize criterion (3) and obtain the fol-
lowing new objective function through the newly-induced dis-
tance measure substitution

(16)

where is still taken as GRBF, , , and are
defined as before.

An iterative algorithm of minimizing (16) with respect to
and can similarly be derived, as shown in (17) at bottom of
the page.

In practical realization of the algorithm, we use (18b) to re-
place (18a), as shown at the bottom of the page, so as to further
reduce the computation of (18a). In fact, such a simplification
is not able to cause bad effective to clustering results as shown
in our experiments.

(18b)

(17)

(18a)
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Similarly, a kernelized modification to (6) is

(19)

where is defined as before and directly viewed a data point
in the original space to be mapped by and thus can be com-
puted in advance and stored. And the objective function in (19)
is minimized using the following alternate iterations:

(20)

(21)

In the rest of the paper, we name the algorithm using (17) and
(18) as KFCM_S, the algorithms using (20) and (21) with mean
or median filter as and , respectively. The
above algorithms can be summarized in the following unified
steps.

Algorithm 2

Step 1) Fix the number c of these
centroids or clusters and then
select initial class centroids
and set to a very small
value.

Step 2) For and
only, compute the mean or me-
dian filtered image.

Step 3) Update the partition matrix
using (17) (KFCM_S) or (20)
( and ).

Step 4) Update the centroids
using (18b) (KFCM_S) or (21)
( and ).

Repeat Steps 3)–4) until the following termination criterion is
satisfied:

where are defined as before.
The optimization flowcharts described in Algorithm 1 and

Algorithm 2 are called a fixed-point iteration (FPI) or alternate
optimization (AO) as in FCM and [23], the iteration process
will terminate to the user-specified number of iteration or local
minima of the corresponding objective functions. Consequently,
optimal or locally optimal results can always be ensured.

IV. EXPERIMENTAL RESULTS

In this section, we describe the experimental results on
several synthetic and real images. There are a total of eight

TABLE I
SA % OF EIGHT METHODS ON

SYNTHETIC IMAGE

Fig. 1. Comparison of segmentation results on synthetic test image. (a)
Original image with “salt and pepper” noise. (b) FCM result. (c) KFCM result.
(d) FCM_S result. (e) KFCM_S result. (f) FCM S result. (g) KFCM S

result. (h) FCM S result. (i) KFCM S result.

algorithms used in this section, i.e., standard FCM, KFCM,
FCM_S, KFCM_S, , , , and

. The kernel used in KFCM _S, and
is the Gaussian RBF kernel. Note, that the kernel

width in Gaussian RBF has a very important effect on
performances of the algorithms. However, how to choose an
appropriate value for the kernel width in Gaussian RBF is still
an “open problem.” In this paper, we adopt the “trial-and-error”
technique and set the parameter . We also find that
for a wide range of around 150 (e.g. from 100 to 200), there
seem no apparent changes in results. Thus, we use this constant
value in all experiments throughout the paper. In addition, we
set the parameters , , (a 3 3 window
centered around each pixel, used in FCM_S and KFCM_S
only) in the rest experiments.

Our first experiment applies these algorithms to a synthetic
test image. The image with 64 64 pixels includes two classes
with two intensity values taken as 0 and 90. We test the algo-
rithms’ performance when corrupted by “Gaussian” and “salt
and pepper” noises, respectively, and the results are shown in
Table I and Fig. 1. Table I gives the segmentation accuracy (SA)
of the eight algorithms on two different noisy images, where
SA is defined as the sum of the total number of pixels divided
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Fig. 2. Comparison of classification errors on synthetic image with
“Gaussian” noise under different values of alpha.

Fig. 3. Comparison of classification errors on synthetic image with “salt and
pepper” noise under different values of alpha.

by the sum of number of correctly classified pixels [9]. Fig. 1
shows the result on “salt and pepper” noise corrupted image.
Here the parameters , . From Table I and Fig. 1,
KFCM achieves nearly the same result as FCM, and neither
can algorithm remove the disturbances of noises due to no spa-
tial information used in both algorithms. On the other hand,
the kernel versions with spatial constraints are superior to the
corresponding classical algorithms, especially on the “salt and
pepper” corrupted image.

We take a set of values for to test its effect on perfor-
mance. Figs. 2 and 3 show the comparisons of classification er-
rors of FCM_S, KFCM_S, , , , and

under different values of on the synthetic image
corrupted by “Gaussian” and “salt and pepper” noises respec-
tively. From Fig. 2, as increases, the numbers of misclassi-
fied pixels of all six algorithms reduce under “Gaussian” noises,
and there are no apparent changes after . It can also
be seen from Fig. 2 that the kernel version algorithms are su-
perior to the corresponding classical algorithms. According to
Fig. 3, we know that under “salt and pepper” noises, the kernel
version algorithms, i.e. KFCM_S, , and ,
still achieve much better performance than FCM_S, ,

Fig. 4. Comparison of segmentation results on a real image corrupted by
hybrid “Gaussian” and “salt and pepper” noise. (a) The original noisy image.
(b) FCM result. (c) KFCM result. (d) FCM_S result. (e) KFCM_S result.
(f) FCM S result. (g) KFCM S result. (h) FCM S result. (i) KFCM S

result.

and . From Fig. 3, for KFCM_S and KFCM_ S2, there
are no apparent changes after , implying performance to
be stable, and most of these algorithms reach minima between

and .
Fig. 4 presents a comparison of segmentation results on

a real image [20]. Fig. 4(a) is the original image corrupted
by “Gaussian” and “salt and pepper” noise simultaneously.
Fig. 4(b)–(i) show the results applying the eight algorithms
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Fig. 5. Comparison of segmentation results on a simulated brain MR image.
(a) Original T1-weighted image. (b) Using FCM. (c) Using KFCM. (d) Using
FCM_S. (e) Using KFCM_S. (f) Using FCM S . (g) Using KFCM S .
(h) Using FCM S . (i) Using KFCM S .

on Fig. 4(a), respectively. We use and in the
experiment. In this case, the margins of the segmented image
of and are a little blurred because of
the use of mean filter. It can be easily seen that KFCM_S,

and achieve much better segmentation
in the presence of hybrid noise, compared to the corresponding
FCM_S, and algorithms.

Figs. 5 and 6 present a comparison of segmentation results
of the eight algorithms applied on T1-weighted MR phantom
[32]. We use a high-resolution T1-weighted phantom with slice
thickness of 1 mm, 3% noise and no intensity inhomogeneities.
Two slices in the axial plane with the sequence of 121 and 91
are shown in Fig. 5(a) and Fig. 6(a), respectively. The segmen-
tation results on two slices using the eight methods with eight
classes are shown in Figs. 5(b)–(i) and 6(b)–(i), respectively.
And Table II gives the quantitative comparison scores corre-
sponding to Figs. 5(a) and 6(a) using eight methods for gray
matter, white matter and cerebrospinal fluid, where the compar-
ison scores are calculated as

where represents the set of pixels belonging to the th class
found by the th algorithm and represents the set of pixels
belonging to the th class in the reference segmented image. In
the experiment, we use the parameter for all algorithms
with spatial constraints. From Figs. 5 and 6 and Table II, the
kernel version algorithms outperform the corresponding clas-
sical algorithms.

Fig. 6. Another simulated brain MR image example. (a) Original T1-weighted
image, (b) using FCM, (c) using KFCM, (d) using FCM_S, (e) using KFCM_S,
(f) using FCM S , (g) using KFCM S , (h) using FCM S , (i) using
KFCM S .

TABLE II
COMPARISON SCORES OF EIGHT METHODS FOR FIGS. (5a) AND (6a)

To test the performances of the eight algorithms under other
levels of noises on the simulated brain database [32], we do the
following comparison experiments. Figs. 7 and 8 show the rela-
tionship between the comparison scores of the eight algorithms
and noise levels on two image slices in the axial plane with the
sequence of 121 and 91, respectively. Obviously, as the level
of noises increases, performances of most algorithms gradually
degrade, but the kernel version algorithms still surpass the cor-
responding classical ones.

Figs. 9 and 10 show the comparison of segmentation re-
sults on real T1-weighted MR images with artificially added
“Gaussian” and “salt and pepper” noises, respectively. Note
that MR images typically do not suffer from “salt and pepper”
noise, and we add such type of noise just for the comparison
of robustness to noises of different algorithms. We do not
consider KFCM algorithm in this experiment, because without
spatial constraints, KFCM has the similar performance as that
of FCM, as shown in Figs. 1 and 2. Figs. 9(b–i) and 10(b–i)
show segmentation results from applying the seven algorithms
on Fig. 9(a) and Fig. 10(a), respectively. Here the parameters
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Fig. 7. Comparison scores of eight methods on simulated brain MR image
under different level of noises.

Fig. 8. Comparison scores of eight methods on another simulated brain MR
image under different level of noises.

, are used in the experiment. From Figs. 9 and 10,
FCM_S and KFCM_S have bad performance in the presence of
“Gaussian” noise, while , , , and

achieve satisfactory results and the latter two are a
little superior to the former two algorithms. On the other hand,
when “salt and pepper” noise is added, only KFCM_S and

work well, while the other algorithms fail to remove
the effect of added noises. On the whole, algorithm
achieves better segmentation results under both noises.

Finally, Table III gives the comparison of the running time
on two MR images [see Figs. 5(a) and 6(a)] using FCM_S,
KFCM_S, , , and . We
artificially add “Gaussian” and “salt and pepper” noises on both
MR images and perform experiments on an IBM computer
with 1.7 GHz Pentium processor using MATLAB (Mathworks,
Inc., Natick, MA). From Table III, our proposed and

are much faster than the original FCM_S (typically
3–10 times faster), while their corresponding kernelized ver-
sions ( and ) need no less run-time than
KFCM_S in most cases, but still less than original FCM_S
algorithm.

Fig. 9. Brain MR image segmentation example. (a) Original image with
“Gaussian” noise. (b) FCM result. (c) FCM_S result. (d) KFCM_S result. (e)
FCM S result. (f) KFCM S result. (g) FCM S result. (h) KFCM S

result.

V. CONCLUSION

The well-known “kernel methods” has been recently applied
to unsupervised clustering [18], [21], [22]. However, an unfa-
vorable point of these existed kernel clustering algorithms is that
the clustering prototypes lie in high dimensional feature space
and hence clustering results are not easily interpreted as intu-
itively as in the original space. In this paper, based on one of our
early works [22], we use a group of novel fuzzy clustering al-
gorithms based on a family of kernel-induced distance measures
for image segmentation. We discussed three types of spatial con-
straint on the objective function of original FCM to effectively
segment images corrupted by noise and outliers. Synthetic and
real images were used to compare the performances of these
algorithms including segmentation evaluation and run-time re-
quirements. On the whole, KFCM algorithms with spatial con-
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Fig. 10. Another brain MR image segmentation example. (a) Original image
with “salt and pepper” noise. (b) FCM result. (c) FCM_S result. (d) KFCM_S
result. (e) FCM S result. (f) KFCM S result, (g) FCM S result. (h)
KFCM S result.

TABLE III
COMPARISONS OF RUNNING TIME OF SIX ALGORITHMS ON TWO

MR IMAGES (�10 s)

straints (SC) have more robustness to noise and outliers than
their counterparts without SC. In our opinions, we suggest using

algorithm in practice considering the tradeoff be-
tween robustness to different noises and execution speed.

The results reported in this paper show that the kernel
method is an effective approach to constructing a robust image
clustering algorithm. This method can also be used to improve
the performance of other FCM-like algorithms based on adding
some type of penalty terms to the original FCM objective func-
tion. Our further and ongoing works include clustering validity
in our algorithms, adaptive determination for the clustering
number and other applications, e.g., gain field estimation.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for
their constructive comments.

REFERENCES

[1] J. C. Bezdek, L. O. Hall, and L. P. Clarke, “Review of MR image seg-
mentation techniques using pattern recognition,” Med. Phys., vol. 20,
pp. 1033–1048, 1993.

[2] D. L. Pham, C. Y. Xu, and J. L. Prince, “A survey of current methods
in medical image segmentation,” Annu. Rev. Biomed. Eng., vol. 2, pp.
315–337, 2000.

[3] W. M. Wells, W. E. LGrimson, R. Kikinis, and S. R. Arrdrige, “Ada-
tive segmentation of MRI data,” IEEE Trans. Med. Imag., vol. 15, pp.
429–442, Aug. 1996.

[4] J. C. Bezdek, Pattern Recognition With Fuzzy Objective Function Algo-
rithms. New York: Plenum, 1981.

[5] D. L. Pham and J. L. Prince, “An adaptive fuzzy C-means algorithm
for image segmentation in the presence of intensity inhomogeneities,”
Pattern Recognit. Lett., vol. 20, pp. 57–68, 1999.

[6] Y. A. Tolias and S. M. Panas, “On applying spatial constraints in fuzzy
image clustering using a fuzzy rule-based system,” IEEE Signal Pro-
cessing Lett., vol. 5, pp. 245–247, Oct. 1998.

[7] , “Image segmentation by a fuzzy clustering algorithm using adap-
tive spatially constrained membership functions,” IEEE Trans. Syst.,
Man, Cybern. A, vol. 28, pp. 359–369, May 1998.

[8] A. W. C. Liew, S. H. Leung, and W. H. Lau, “Fuzzy image clustering
incorporating spatial continuity,” Inst. Elec. Eng. Vis. Image Signal
Process, vol. 147, pp. 185–192, 2000.

[9] M. N. Ahmed, S. M. Yamany, N. Mohamed, A. A. Farag, and T. Mo-
riarty, “A modified fuzzy C-means algorithm for bias field estimation
and segmentation of MRI data,” IEEE Trans. Med. Imaging, vol. 21, pp.
193–199, Mar. 2002.

[10] D. L. Pham, “Fuzzy clustering with spatial constraints,” in IEEE Proc.
Int. Conf. Image Processing, New York, Aug. 2002, pp. II-65–II-68.

[11] K. R. Muller and S. Mika et al., “An introduction to kernel-based
learning algorithms,” IEEE Trans. Neural Networks, vol. 12, pp.
181–202, Mar. 2001.

[12] N. Cristianini and J. S. Taylor, An Introduction to SVM’s and Other
Kernel-Based Learning Methods. Cambridge, U.K.: Cambridge Univ.
Press, 2000.

[13] V. N. Vapnik, Statistical Learning Theory. New York: Wiley, 1998.
[14] B. Scholkopf, Support Vector Learning: R. Oldenbourg Verlay, 1997.
[15] V. Roth and V. Steinhage, “Nonlinear discriminant analysis using kernel

functions,” in Advances in Neural Information Processing Systems 12,
S. A Solla, T. K. Leen, and K.-R. Muller, Eds. Cambridge, MA: MIT
Press, 2000, pp. 568–574.

[16] B. Scholkopf, A. J. Smola, and K. R. Muller, “Nonlinear component
analysis as a kernel eigenvalue problem,” Neural Comput., vol. 10, pp.
1299–1319, 1998.

[17] T. M. Cover, “Geomeasureal and statistical properties of systems of
linear inequalities in pattern recognition,” Electron. Comput., vol.
EC-14, pp. 326–334, Mar. 1965.

[18] D. Q. Zhang and S. C. Chen, “Kernel based fuzzy and possibilistic
c-means clustering,” in Proc. Int. Conf. Artificial Neural Network,
Istanbul, Turkey, June 2003, pp. 122–125.

[19] P. J. Huber, Robust Statistics. New York: Wiley, 1981.



1916 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 34, NO. 4, AUGUST 2004

[20] Mathworks, Natick, MA. Image Processing Toolbox. [Online] Avail-
able: htttp://www.mathworks.com

[21] M. Girolami, “Mercer kernel-based clustering in feature space,” IEEE
Trans. Neual Networks, vol. 13, pp. 780–784, May 2002.

[22] D. Q. Zhang and S. C. Chen, “Fuzzy clustering using kernel methods,”
in Proc. Int. Conf. Control Automation, Xiamen, P.R.C., June 2002, pp.
123–127.

[23] K. L. Wu and M. S. Yang, “Alternative c-means clustering algorithms,”
Pattern Recognit., vol. 35, pp. 2267–2278, 2002.

[24] J. H. Chen and C. S. Chen, “Fuzzy kernel perceptron,” IEEE Trans.
Neural Networks, vol. 13, pp. 1364–1373, Nov. 2002.

[25] J. Leski, “Toward a robust fuzzy clustering,” Fuzzy Sets Syst., vol. 137,
no. 2, pp. 215–233, July 2003.

[26] J. K. Udupa and S. Samarasekera, “Fuzzy connectedness and object
definition: theory, algorithm and applications in image segmentation,”
Graph. Models Image Process., vol. 58, no. 3, pp. 246–261, 1996.

[27] S. M. Yamany, A. A. Farag, and S. Hsu, “A fuzzy hyperspectral classifier
for automatic target recognition (ATR) systems,” Pattern Recognit. Lett.,
vol. 20, pp. 1431–1438, 1999.

[28] R. J. Hathaway and J. C. Bezdek, “Generalized fuzzy c-means clustering
strategies using L norm distance,” IEEE Trans. Fuzzy Syst., vol. 8, pp.
576–572, Oct. 2000.

[29] K. Jajuga, “L norm based fuzzy clustering,” Fuzzy Sets Syst., vol. 39,
no. 1, pp. 43–50, 1991.

[30] J. Leski, “An "-insensitive approach to fuzzy clustering,” Int. J. Applicat.
Math. Comp. Sci., vol. 11, no. 4, pp. 993–1007, 2001.

[31] D. Q. Zhang and S. C. Chen, “Clustering incomplete data using kernel-
based fuzzy c-means algorithm,” Neural Processing Lett., vol. 18, no. 3,
pp. 155–162, 2003.

[32] R. K. S. Kwan, A. C. Evans, and G. B. Pike, “An extensible MRI sim-
ulator for post-processing evaluation,” in Visualization in Biomedical
Computing (VBC’96). Lecture Notes in Computer Science. New York:
Springer-Verlag, 1996, vol. 1131, pp. 135–140.

[33] A. W. C. Liew and H. Yan, “An adaptive spatial fuzzy clustering algo-
rithm for 3-D MR image segmentation,” IEEE Trans. Med. Imag., vol.
22, pp. 1063–1075, Sept. 2003.

Songcan Chen received the M.S. degree in com-
puter science from Shanghai Jiaotong University,
Shanghai, R.O.C., and the Ph.D. degree in elec-
tronics engineering from Nanjing University of
Aeronautics and Astronautics (NUAA), Nanjing,
R.O.C., in 1985 and 1997, respectively.

Currently, he is Professor of pattern recognition
and artificial intelligence in the Department of Com-
puter Science and Engineering, NUAA. His research
interests include pattern recognition, bioinformatics,
medical image processing, and neural networks. He

has published more than 50 journal papers on pattern recognition, pattern recog-
nition letters, artificial intelligence in medicine, neural processing letters, and
applied mathematics and computation.

Daoqiang Zhang received the B.S. and Ph.D. de-
grees in computer science from Nanjing University
of Aeronautics and Astronautics, Nanjing, P.R.C, in
1999 and 2004, respectively. He is currently a post-
doctoral fellow in the Department of Computer Sci-
ence and Technology, Nanjing University, Nanjing.

His research interests include neural computing,
pattern recognition, and image processing. He has
published more than 20 journal and conference
papers.


