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As with groups, one can study the left regular representation of a semigroup. If one

considers such representations, then it is natural to ask similar questions to the group

case.

We start by formulating several questions in the semigroup case and then work to-

wards understanding the structure of the representations given. We present results de-

scribing what the elements of the image under the representation map can look like (the

semigroup problem), whether or not two semigroups will give isomorphic representations

(the isomorphism problem), and whether or not the representation of a semigroup is

reflexive (the reflexivity problem).
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Chapter 1

Introduction

The motivation for this thesis is to understand the structure of the object L(S), the left

regular representation of a semigroup S. The case where S is actually a group has been

well studied, regarding L(S) as an algebra of operators, and also as a *-algebra.

The semigroup case, however, has not been studied as deeply, possibly due to char-

acters being a less valuable tool for study, and also since L(S) is not closed under taking

adjoints. Davidson and Pitts in [1] studied the case of L(S) when S is a countably gen-

erated free semigroup (the resulting algebra they regarded as being a non-commutative

analytic Toeplitz algebra), and were able to prove its hyper reflexivity, as well as other

properties. Hadwin and Nordgren in [3], as particular examples of multiplier algebras,

showed that for two large classes of semigroups, the commutant of L(S) is R(S), the

right regular representation.

While studying L(S), it is often useful to explicitly calculate what the algebra is. This

inspires the question of what exactly the generating operators actually look like. In the

group case, we know that they are all unitary operators, moreover, relative to the group

element basis, they are direct sums of a number of copies of a finite cycle, or of bilateral

shifts of some multiplicity. The problem of classifying these multiplication operators in

the semigroup case we call the Semigroup Problem, which we will spend most of Chapter

1



Chapter 1. Introduction 2

3 investigating, followed by some additional applications.

While at first glance there is no ‘nice’ class of operators that these multiplications

fit into (they are generally not unitary), there are other properties that these operators

satisfy. One such property is a (non-unitary) version of the Wold decomposition which,

as we will see in Chapter 4, comes from their relationship to isometries.

Properties of the entire algebra L(S) will also be considered. In Chapter 5 we spend

some time considering when L(S) is reflexive. While L(S) will rarely be reflexive itself, the

algebra generated by all possible semigroup multiplication operators for a fixed Hilbert

space (which we denote UMA) will be. This result is explored more deeply in Chapter

6.

While no definitive results are obtained, Chapter 7 discusses some partial results about

the Isometric Problem (a variant of the isomorphism problem we pose for semigroup

representations) and include some additional remarks.

Finally, we end the discussion with some open problems.



Chapter 2

Preliminaries

We begin with a semigroup S and define our Hilbert space H by taking square summable

sequences indexed by the elements of S, with the usual inner product. When needed, we

shall distinguish an element s ∈ S from its image in l2(S) by denoting it as es. However,

when the context is clear we may refer to es as just s for convenience.

Since S is a semigroup, we can consider the operators induced by multiplication of

each element s ∈ S by another element a ∈ S.

Definition 2.0.1. For an element a ∈ S, we define La as the operator that sends the

basis element s ∈ S to as. Likewise, we define Ra as the operator which sends s to sa.

The algebra L(S) will denote the weakly closed algebra generated by all such operators La,

and similarly R(S) will denote the weakly closed algebra generated by all the operators

Ra.

A natural question to ask is when La (or Ra) is bounded. Hadwin and Nordgren

in [3] use the following criterion on the multiplications to deduce boundedness for a

particular class of semigroups which we will mention later. Here, we give a proof, as well

as estimates of the norm of the multiplication based on the algebraic bound.

Proposition 2.0.1. The operator La is bounded if and only if there exists n ∈ N such that

for all t ∈ S, # {s ∈ S | as = t} ≤ n. Moreover, if La is bounded, then
√
n ≤ ||La|| ≤ n.

3



Chapter 2. Preliminaries 4

Proof. Suppose that La is bounded, but the first conclusion is false. Then either there

is some t ∈ S for which # {s ∈ S | as = t} is infinite, or there is a sequence {tj}j∈N, for

which # {s ∈ S | as = tj} tends to infinity. Since each as = tj exactly means that La

has a one in the s column and tj row, the above either means that the sum of a row is

infinite, or there is a sequence of rows whose sums are increasing infinitely. Since each

row has either ones or zeros, this means the square sum is infinite or tending to infinity,

and therefore, La would have to be unbounded, a contradiction.

For the opposite direction, we assume that there is an n such that for all t ∈ S,

# {s ∈ S | as = t} ≤ n. By the same logic as the above, we have that the square sum of

each row is bounded by n. Likewise, we also have that the columns are bounded in their

square sum, since they all contain exactly one 1. Thus, La must be bounded.

Finally we remark that for a given n, if # {s ∈ S | as = t} = n for only a single t,

while all other values of t give a cardinality of 1, then the norm of La is
√
n since one

can take the unit vector that is 1√
n

in the n coordinates that are sent to t under La,

and the norm of this new vector will be
√
n. Likewise, one could take La such that

# {s ∈ S | as = t} = n for all t. In this case, for a vector m onto which La is applied,

at worst the coordinates of m will be multiplied by n. This gives ||
∑∞

j=1 La(sj)|| ≤√∑∞
j=1(nsj)

2 =
√
n2

∑∞
j=1(sj)

2 = n||sj||, making the norm at most n.

From the above, it is natural to require the semigroup S we study to have only

bounded multiplications. This gives us the definition of a bounded semigroup.

Definition 2.0.2. A semigroup S will be called bounded if for any a ∈ S, there exists

n ∈ N such that for all t ∈ S, # {s ∈ S | as = t} ≤ n, and # {s ∈ S | sa = t} ≤ n. That

is, for any a ∈ S, La and Ra are bounded operators.

We remark that for a semigroup, the left multiplications being bounded do not imply

that the right multiplications are bounded. For example one could take the infinite
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semigroup S with each left multiplication defined as being the identity. For any a, b in

this semigroup, ab = b, so each left multiplication is bounded (with a norm of 1), while

each right multiplication is unbounded since it will send every basis element to itself.

For most cases, we will not be interested in what the actual norm of the operator La is,

but rather we care more about what the constant n given above is for La. To distinguish

between this and the usual norm, we shall refer to this constant as the cardinality norm

of La.

Definition 2.0.3. For a bounded left multiplication Ls in a semigroup S, we will call the

smallest constant n for which # {s ∈ S | as = t} ≤ n for all t ∈ S as the cardinality

norm of La.

We note that the cardinality norm of La is close enough to the actual norm of La,

since the norm of La is between
√
n and n. However, the individual requirements for

the boundedness of the operators La doesn’t say anything about global properties of the

semigroup itself. In some cases, it would be useful to know that the operators we are

dealing with are uniformally bounded in some way.

Definition 2.0.4. For a bounded semigroup S, we call S uniformally bounded if

there is some n ∈ N such that all left multiplication operators and all right multiplication

operators of S are bounded in cardinality norm by n.

Hadwin and Nordgren showed that the regular representations of these types of semi-

group form generalized multiplier algebras, and in particular, have the property that the

commutant of the their left regular representation is the right regular representation [3].

From the earlier remarks about the relationship between the cardinality and the operator

norms of La, we note that the above definition of uniformally bounded is equivalent to

requiring that the operator norms of the La’s be uniformally bounded.

Some examples of uniformally bounded semigroups include groups and cancellative

semigroups (both with a uniform cardinality norm of 1), as well as all finite semigroups.
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However, some of these examples also act like another important class of bounded semi-

groups, which also form generalized multiplier algebras [3].

Definition 2.0.5. For a bounded semigroup S, we call S finite bounded if for each

a ∈ S, there are only finitely many b′s and c′s in S such that a = bc.

This condition on the decomposition into factors of semigroup elements in S is sim-

ilar in nature to the condition on Étale groupoids, except we are dealing with discrete

semigroups. Examples of finite bounded semigroups include free semigroups, finite semi-

groups, and the natural numbers with multiplication as ab = max{a, b}. In particular,

the latter example shows that a semigroup S that is finite bounded need not be uni-

formly bounded since Ln will send all natural numbers less than n to n itself, though

the first example shows that it can indeed be uniformly bounded since free semigroups

are cancellative. As well, we note that an infinite group G is never finite bounded since

every element of G appears infinitely many times in the multiplication table of G. Thus,

the finite bounded condition on a semigroup should not be confused with any sort of

condition on the norms of the multiplication operators of a semigroup.

We note one simple property of finite bounded semigroups.

Proposition 2.0.2. If S is a finite bounded semigroup with an infinite number of el-

ements, then the number of possible decompositions of the elements of S must not be

uniformly bounded.

Proof. Suppose otherwise that there is some uniform bound n on the number of decompo-

sitions of each element. Then we can take distinct a0, a1, ..., an2+2 ∈ S, and consider the

product a = a0a1...an2+2. By associativity we have that a can be decomposed into n2 + 1

products. This does not give an immediate contradiction since some of these decomposi-

tions could be the same, for example, if we have a = bcdef , then (bcde)f = bcd(ef) but

ef could equal f and bcde could equal bcd, which would not yield two distinct decompo-

sitions.
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However, we have n2 + 1 such decompositions, and we can only have at most n

distinct ones, so by the pigeon hole principle there must be some multiplication that

has more than n decompositions. The factors for this decomposition must be equal.

Looking at the terms on the right, this gives us at least n+ 1 terms that must be equal,

each of which having a distinct left most element. This however gives us an element

that has at least n + 1 distinct decompositions, and so we have a contradiction. Taking

an example, suppose n is 2 and we take 22 + 2 = 6 distinct elements in S and call

them a, b, c, d, e, f , then the product abcdef = (abcde)(f) = (abcd)(ef) = (abc)(def) =

(ab)(cdef) = (a)(bcdef). At least three of these decompositions must be same, so say,

abcd = abc = ab and ef = def = cdef . Looking at the latter terms, we have that

(e)(f) = (d)(ef) = (c)(def), and by the assumption, e,d and c are all distinct, the

element ef has at least three distinct decompositions, contradicting the fact that there

should be at most n = 2.

2.1 Constructions and Examples

When dealing with bounded semigroups, it will be useful to know some constructions

for putting them together to get bigger semigroups which are still bounded. Perhaps

the simplest construction that will come to mind is the direct sum, which does preserve

boundedness.

Theorem 2.1.1. Let S and T be semigroups. S ⊕ T is defined in the obvious way as

ordered pairs from S and T , with multiplication occurring coordinate wise. Boundedness

carries over as follows:

1. S ⊕ T is bounded if and only if S and T are bounded

2. S ⊕ T is uniformly bounded if and only if S and T are uniformly bounded

3. S ⊕ T is finite bounded if and only if S and T are finite bounded.
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Proof. Restricting to the subsemigroups corresponding to S and T inside S ⊕ T , we

have the forward direction for all three statements, so all we have to proof is the reverse

directions.

1.) ⇐), Let (a, b) be in S ⊕ T , with the cardinality norm of La and Lb as n and m

respectively. We wish to show that for some natural number p, for all (s, t) ∈ S ⊕ T ,

#{(x, y) ∈ S⊕T | (ax, by) = (s, t)} < p. In order for (ax, by) = (s, t), we must have that

ax = s and by = t. Since the cardinality norm of La is n, we know that there are at most

n such x’s that will give ax = s, and by the cardinality norm of Lb, at most m such y’s

that will give by = t, so there are at most nm such (x, y) to give (ax, by) = (s, t). Thus,

since nm is independent of (s, t), we have that the cardinality norm of L(a,b) is at most

the cardinality norm of La times the cardinality norm of Lb (moreover, by picking s and

t appropriately, we can obtain this cardinality norm exactly). Thus L(a,b) is bounded, so

S ⊕ T is bounded.

2.) ⇐), Using the fact that the cardinality norm of L(a,b) is just the multiplication of

the cardinality norms on the coordinates, we have that if S and T are uniformly bounded

by cardinality norms s and t, then S⊕T will be uniformly bounded by cardinality norm

st.

3.) ⇐), We wish to show that for any (a, b) ∈ S ⊕ T , the set {(s, t, x, y) ∈ (S ⊕ T )⊕

(S⊕T ) | (sx, ty) = (a, b)} is finite. Since S and T are finite bounded, we have that there

are finitely many (s, x)’s that will give sx = a and likewise finitely many (t, y)’s that will

give ty = b. The number of ways of getting (sx, ty) = (a, b) is then a finite number times

another finite number, which is finite. Thus S ⊕ T is finite bounded.

The if and only if of the above statements now gives us a way of easily constructing

some interesting examples of bounded semigroups.

Example 2.1.0.1

Let S be any uniformly bounded semigroup that is not finite bounded, and let T be a
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finite bounded semigroup that is not uniformly bounded. By the above theorem, S ⊕ T

will be bounded, but will not be uniformly bounded, nor finitely bounded.

As a concrete example of such a semigroup, one can take S as any infinite group (for

example, the integers), and T as the natural numbers with the multiplication defined as

ab = max{a, b}.



Chapter 3

The Semigroup Problem

Before we start working on showing some stronger properties of the algebra L(S), we

first study the properties of some of the individual matrices inside L(S). In particular,

we try to understand, in some sense, what kind of structure the matrix of La can have

for a ∈ S. We know already that the matrix of any La will have exactly one 1 in each

column and 0’s elsewhere. Such a matrix we will call a basis map matrix (since it can be

thought of as the induced matrix from a map of the basis to itself), while a matrix that

arises as a left multiplication in a semigroup will be called a semigroup matrix. Stated

formally for operators we have,

Definition 3.0.1. For a given Hilbert space with orthogonal basis, a bounded operator A

will be called a basis map operator if the image of every basis element is another basis

element. Moreover, if a semigroup operation can be defined on the basis so that A can be

obtained as La for some basis element a, then A will be called a semigroup operator.

We note that the assignment of the semigroup operation on such a basis is equivalent

to saying that there is a semigroup whose left regular representation contains the operator

A. The semigroup problem now becomes:

Problem 3.0.1. (The Semigroup Problem) Given a basis map operator A, is there a

semigroup operation on the basis for which A is the left multiplication of some basis

10
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element? Can the semigroup be chosen to be commutative? Unital? Bounded?

Basis map operators are closed under multiplication, but not all operators of this form

can arise from a semigroup (hence the notion of a basis map operator and a semigroup

operator are distinct). The simplest example of this is the permutation matrix,

A =



0 1 0 0 0

1 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 0 1 0


Since A,A2, ..., A6 are all distinct, if this matrix did come from some semigroup as

multiplication by a, then a, a2, ..., a6 would have to be distinct, which contradicts the fact

that the cardinality of S must be the same as the dimension of H.

There isn’t an easy fix for this problem by adding additional semigroup elements so

that the order of A is less than or equal to the the dimension of the Hilbert space. For

example, one might consider taking the above A and embedding it into the 6×6 matrices

by just expanding A by a row and column and making it act like the identity on the new

basis vector, but this will not work.

To see this in the example above, we give a different proof that will illustrate the

problem more clearly. Suppose that the semigroup elements are a0, ..., a4, with the first

column of A corresponding to a0, the second to a1 and so on. Now, the elements a0 and

a1 form the two cycle of A, the elements a2, a3, a4 form the three cycle of A, and since

we’ve assumed that A comes from a semigroup, we also have that A is left multiplication

by am for one of the basis elements am. The problem that occurs is that either A3 = A

(if am is part of the two cycle) or A4 = A (if am is part of the three cycle). If A is left

multiplication by a0, then a30 = a0(a
2
0) = a0(a1) = a0 thus L3

a0
= La0 , but A is of order 6,

so this is impossible. Likewise, A 6= La1 and similarly for a2, a3, and a4.
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This proof depends only on the order of A and the orders of its cycles, and not on

the size of the semigroup, so embedding A into higher dimensions (in an easy way1) will

never make it a matrix arising from a semigroup.

3.1 Cancellative Basis Map Operators

To start on the semigroup problem, we will first restrict our attention to basis map oper-

ators that are injective, or, in terms of their semigroup multiplication, left cancellative.

The fact that a basis map operator is injective as an operator on a Hilbert space is

equivalent to it being injective on just the basis is easy to establish.

Proposition 3.1.1. For a basis map operator A, A is injective if and only if it is injective

when restricted to its basis.

Proof. The forward direction is obvious, so we show the reverse. We will show that

ker(A) = 0. For any vector x, we know that

A(x) =



A1 · x

A2 · x

A3 · x
...


where Ai is the i-th row of A. Since A is a basis map operator, we know that every

column of A has exactly one 1, and since it is injective on the basis, we know that it has

exactly one 1 in each row. Using this, we wish to show that for each i, the i-th coordinate

of x is zero. To do this, we consider AA(ei) · x = 0 (this makes sense since A is a basis

map operator). Since AA(ei) is the A(ei)-th row of A, it has zeros everywhere except at

i-th position, which is 1, and so AA(ei)x = 0 implies that 1 · xi + 0 · x1 + 0 · x2 + ... = 0,

1For the given example there will be a way of embedding it into a higher dimensional space so that
it’s restriction to a subspace is A and A is a left multiplication matrix. This fact will explored in at the
end of this chapter.
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and so xi = 0. Since i was an arbitrary coordinate, we have that x must be 0, and so A

is injective as an operator.

In the future, we will ignore the distinction between injectivity on the basis and

injectivity of the operator and just say that the basis map operator is injective.

Injective basis map operators will be used as building blocks for more general basis

map operators later, and the constructions used in this case will be extended later to

include the general cases. We first note though that solving the Semigroup Problem for

cancellative basis map operators is different from classifying multiplications on cancella-

tive semigroups, since we only require that a single left multiplication be cancellative,

and not the whole semigroup. Indeed, in the finite semigroup case, any cancellative semi-

group will actually be a group, while there are many examples of semigroups that have

only a few multiplications being cancellative that are not groups.

Here we have two main cases to deal with: when A is a finite dimensional operator

(giving us a permutation) and when A is infinite dimensional.

3.1.1 Cycle Decomposition

The most important structure of cancellative basis map operators that we will use is its

decomposition into what we call cycles. For a finite dimensional permutation matrix,

this gives us a direct sum of cycles of finite length. In the infinite case, we get additional

cases.

Definition 3.1.1. For a cancellative basis map operator A, we will call a subset M of

the basis a cycle (for A) if M has an element y such that M is the union of all the

images and preimages of y under powers of A.

If M is a finite set with n elements, we call M an n-cycle. If A|M is the unilateral

shift, we call M an N cycle, and if A|M is the bilateral shift we call it a Z cycle.

Lastly, for a cycle M of A, we call A|M a cycle part of A.
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The definition of a cycle for non-cancellative basis map operators will be slightly

different than in the above, but this will be mentioned later in section 3.2.1.

Here we note that a Z cycle will contain many cyclic subsets on which A looks like

the unilateral shift instead of the bilateral one. For these cases it will be better for us to

just consider only maximal subsets instead, and hence the requirement that M be closed

under taking preimages under A as well.

Our next goal will be to decompose cancellative basis map operators according to

their cycles. First however, we will need some results regarding the structure of these

operators.

Lemma 3.1.1. Let A be a cancellative basis map operator. If a cycle of A is finite, then

the cycle part of A on this cycle is equivalent (under a permutation of the basis) to the

matrix with ones just below the main diagonal, a one in the top right corner, and zeros

elsewhere. If a cycle of A is infinite, then the cycle part of A for this cycle is either a

unilateral shift, or a bilateral shift. Thus, the types of cycles listed in the above definition

are the only possibilities.

Proof. If a cycle is finite for A, then as we take images of an element in the cycle, we must

eventually come back to the element we started with (since A is injective). Reordering

the basis with the first element, then its image under A, A2, and so on, gives us a matrix

with the desired description.

If a cycle of A is infinite, then we have two possible cases. Either for the given element

y in M we can keep taking preimages under A, or after a while we can’t take any more.

If we can always keep taking preimages under A, then we can identify the element y as

0, A(y) as 1, and so on, while the preimage of y as −1, its preimage as −2 and so on.

On these elements, multiplication by A acts as addition by 1 on these elements, and so

A|M is the bilateral shift.

If after a while we can can’t take any more preimages, then we identify the element

that is furthest back as 0, it’s image as 1, and so on. On these elements A acts as like
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addition by 1, and so A|M is the unilateral shift.

Lemma 3.1.2. Let A be a cancellative basis map operator. Then the span of any cycle

of A is a reducing subspace of A.

Proof. Since any cycle is closed under taking images of A, its span is an invariant subspace

of A. As well, since no basis element in the complement of the cycle goes into the cycle

(since A is cancellative and a cycle includes all possible preimages), all the basis elements

in the complement of the cycle are sent into the complement, and so the orthogonal

complement of the subspace is also invariant, and hence any cycle of A is a reducing

subspace of A.

Lemma 3.1.3. Every basis element of a cancellative basis map operator A is in some

cycle of A. Moreover, if two cycles M and N of A have a non-empty intersection, then

M = N .

Proof. Let y be any basis element. Let the set M consist of all images of y under powers

of A and all preimages of y under A. This M forms a cycle with y ∈M , so the first part

is shown.

Next, suppose that there are two cycles M and N , with elements x and y that generate

the M and N cycles respectively. If z ∈M ∩N , then from x, we can either take images

or preimages and eventually get to z, and likewise for y. This means that from z we can

take either take images or preimages to get to both x and y. Thus any image or preimage

of x is either an image or preimage of z and likewise for y, and thus both M and N must

contain the same elements, and so M and N must actually be the same cycle.

With the above, we can now decompose infinite cancellative basis map operators into

a direct sum of their cycle parts.

Theorem 3.1.1. (Cancellative Basis Map Operator Cycle Decomposition) For any can-

cellative basis map operator A on a Hilbert space H, A can be written as a direct sum of

finite, N, and Z cycle parts.
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Proof. Let F be the family of all collections of disjoint cycles of A, with a partial ordering

defined by inclusion. If {Dα} is a totally ordered subfamily of F , and D = ∪α{Dα}, then

D ∈ F since D is a collection of cycles, and if ε1 and ε2 are cycles in D, then there is a

Dα0 which contains both ε1 and ε2, since Dα is totally ordered. Since the cycles in Dα0

are disjoint, the cycles ε1 and ε2 are disjoint, and so D is an upper bound of the chain.

This means that every totally ordered subfamily of F has an upper bound, so by

Zorn’s lemma, there is a maximal elementM in F . We now claim that the union of the

cycles ofM is the entire basis of the Hilbert space. Indeed, if e was a basis element that

was not in ∪M, then by Lemma 3.1.3, e is in some cycle, and by the same lemma, this

cycle is disjoint from all the cycles inM. Thus,M∪{the cycle of e} would be a bigger

cycle than M, contradicting the maximality of M.

Since ∪M is the entire basis, and since by Lemma 3.1.2 the subspace span of each

cycle is a reducing subspace of A, we have that A decomposes into a direct sum of cycle

parts of A. Moreover, by Lemma 3.1.1, these cycle parts are either finite cycles, unilateral

shifts, or bilateral shifts.

3.1.2 Permutations

From the previous discussion at the beginning of this chapter, we know that if A is a

finite permutation matrix that is a semigroup matrix, then it must have (at the very

least) that the orders of the disjoint cycles of A divide the order of some cycle of the

permutation, or equivalently, A has a cycle whose order is the order of A. Examples of

this would include the permutation consisting of a 3 and a 6 cycle, or a 2, 3, and a 6

cycle.

We first prove a lemma regarding associativity of binary operations.

Lemma 3.1.4. A binary operation ∗ on a set S, defined by a collection of functions

Lx : S → S, Lx(y) = x∗y, is a semigroup if and only if, for every x, y ∈ S, Lx◦Ly = Lx∗y.
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Proof. All that need be shown is that the binary operation is associative. For any x, y, z ∈

S, we note that (x∗y)∗z = Lx∗y(z) while x∗(y∗z) = Lx◦(Ly(z)). So, x∗(y∗z) = (x∗y)∗z

for all x, y, z ∈ S, if and only if Lx ◦ (Ly(z)) = Lx∗y(z) for all x, y, z ∈ S, thus, S is a

semigroup if and only if Lx ◦ Ly = Lx∗y for all x, y.

For an easy construction giving a non-commutative semigroup now, we have the

following:

Proposition 3.1.2. Suppose A is an n × n permutation matrix. There is a cycle of A

whose order is a multiple of all the other orders of cycles of A if and only if there is a

semigroup S such that A is La for some a in S.

Proof. It should be apparent that if A has a bunch of cycles, then the least common

multiple of the orders of the cycles will be the order of A, and so it is obvious that if A

arises as La of some semigroup, then a must be on a cycle of A whose order is a multiple

of all the orders of the cycles of A.

For the converse direction, we will construct a semigroup such that A = La for some

a ∈ S. To do this, let the Hilbert space basis for A be denoted by S. We now want

to define a multiplication on S. Pick any basis element a in a biggest cycle of the

permutation, and fill in that row of the multiplication table with the permutation (so La

will give us A on that cycle). We now have to fill in the rest of the table so that we get

a semigroup.

First, we know that a2 = La(a) = A(a), and since associativity demands that La2 =

LaLa, we must have La2 = A2. Thus, multiplications by the powers of a are all determined

by A, via Lak = Ak, with ak = Ak−1(a). The possible multiplications so far are well-

defined and associative since for the order l of the cycle a is in, Al = I (since the orders

of all the other cycles divide the order of the largest cycle, the order of the permutation

is just the order of the largest cycle). Since Al = I, we have that al is an identity (on

what is defined so far), and for i, j ≤ l, with i + j ≤ l, LaiLaj = AiAj = Ai+j = Lai+j ,
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while if i+ j > l, Ai+j = Ai+j−l = Lai+j−l = Lai+j .

For the rest of the multiplications of the semigroup, define xy = x, where x, y ∈ S

with x not a power of a. An example of this construction with A having a 4 cycle and a

2 cycle is given below.

To show that the rest of this multiplication is associative, we just have to show that

LxLy = Lxy. If both x and y are powers of a, then we have associativity from the

above argument. If x is not a power of a, then Lx will send every basis element to x, so

LxLy(z) = Lx(yz) = x ⇒ LxLy = Lx. Also, Lxy = Lx follows from the definition of left

multiplication by x. Finally, if x is a power of a but y is not, then LxLy(z) = Lx(y) = xy,

so LxLy sends every element to xy. Since xy is not a power of a (y is in a different cycle of

the permutation than a, so Aky will never be in the cycle of a), then Lxy is also the basis

map operator that send every element to xy, and so LxLy = Lxy. Thus, the constructed

binary operation is associative and S is a semigroup with La = A. Moreover, since Al = I

(for some l ∈ N), Lal = I, and so al is a left identity. Since akal = ak, and xal = x for x

not in the cycle of a, a is also a right identity, and so S is in fact, a unital semigroup.

. | a b c d e f

− − − − − − − − −

a | a b c d e f

b | b c d a f e

c | c d a b e f

d | d a b c f e

|

e | e e e e e e

f | f f f f f f

Example of Proposition 3.1.2’s construction with a 4 cycle and a 2 cycle as Lb.
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It is understandable if one finds this construction rather uninspiring since the rest

of the semigroup is just filled with idempotents that send everything to themselves. To

get something more interesting, one may want a construction that gives a commutative

semigroup instead. However, this case requires a slightly stronger assumption about the

structure of A.

Proposition 3.1.3. Suppose A is an n× n permutation matrix. There is a cycle whose

order divides the orders of all the other cycles of A and there is a cycle whose order is

a multiple of all the other orders of cycles of A if and only if there is a commutative

semigroup S such that A is La for some a ∈ S.

Proof. Suppose A = La. Then from Proposition 3.1.2 we know that A is in a largest

cycle. Let g be an element in some cycle of order p and i some element of order m. By

commutativity, ap(ig) must equal i(apg) = ig, but am(ig) = (ami)g = ig as well, so ig is

in a cycle of A whose order divides both m and p. Since this is true for any two elements

g and i, and since there are only finitely many elements in the semigroup S, we must

have that the order of a smallest cycle divides the orders of all the other cycles.

Now we proceed with the forward direction and construct a semigroup that A is

obtained from. We identify the semigroup elements with the basis for A, leaving the

construction down to defining the multiplication on these elements. For convenience, we

will call the set of basis elements S.

From the arguments preceding this proposition, it is clear that A must be left multi-

plication by some element a in a largest cycle of the permutation, so we pick any element

in one of these cycles (calling this element a) and define the left multiplication of a on

S by their images under A, and extend this multiplication to all other powers ai via

Ai = Lai = (La)
i and so on, as was done in Proposition 3.1.2. As before, we now have a

(where composable) associative multiplication defined on the entire rows of the powers

of a, and in the case of a single cycle permutation we obtain a cyclic group.

If A has more than more cycle then we now wish to extend multiplication further



Chapter 3. The Semigroup Problem 20

to the other cycles. Since the left multiplications of the powers of a are defined on all

the semigroup elements, we can extend multiplication on S so that right multiplication

by the powers of A are also defined, and are equal to the left multiplications. The

composable products here also associate since all the left multiplications commute with

the right multiplications. To extend the multiplication to the rest of the table, we pick

a single element from each of the other cycles, which will become the generators of

the semigroup along with a. Let m be one of these elements from a smallest cycle.

For all pairs i, j of generators (neither of which are a), we define ij as ij = am, with

(aki)(alj) = ak+l(ij) = ak+l+1m for the other elements. By symmetry, this gives a

commutative multiplication table, and since every element can be written as a power of

a times a generator, this multiplication is also closed.

To see that it is associative, we first note that for a product x(yz), if two of the

elements are powers of a, then it associates since it’s in the commutative extension of the

a-groupoid, which was already shown to be associative. If only one of the elements is a

power of a, then by commutativity we may assume that it’s the x. Next, we rewrite the

product in terms of the generators x(yz) = ak((ali)(apj)) = ak(al+pij) = ak(al+p+1m) =

ak+l+p+1m, while (xy)z = (akali)(apj) = (ak+li)(apj). Here however, we have to use the

fact that the order of the cycle that m is on divides the order of all the other cycles. This

is because k+l may be bigger than the order of the cycle that i is on so ak+li = ak+l mod λi ,

where λi is the order of the cycle that i is on. Thus, (ak+li)(apj) = a(k+l mod λi)+p+1m,

and in order for this to equal the above, it must be equal modulo the order of the m

cycle (which we denote λm), so in other words,

(k + l + cλi) + p+ 1 ≡ k + l + p+ 1 mod λm ⇒ cλi ≡ 0 mod λm.

Since λm divides λi, this is true, and so both products are indeed equal2. Likewise, if none

2As implied earlier though, we must have that λi is actually a multiple of λm. For example, if we
took the product (apaki)(ali) instead, then c would be either 0 or −1 (since k and l are less than λi).
Choosing k and l such that k + l > λi will make this c equal −1, showing that λi must be a multiple of
λm.
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of the elements are a power of a, then we get a similar result of both sides as ak+l+p+2m.

As an example to illustrate the process, the multiplication table for the 8-4-2 cycle

permutation is given after this proof.

As noted before, while we may be dealing with permutation (hence invertible) matrices

here, the semigroups involved will never be groups themselves. It is easy to show that a

basis map operator coming from a left multiplication in a group must be a permutation

with all the cycles the same length. As well, given such a basis map operator, one can

obtain a group with it as a left multiplication by just taking the direct sum of two cyclic

groups (for example, the permutation consisting of two 3 cycles can arise from the group

Z3 ⊕ Z2 as multiplication by the generator of the 3 cycle).
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. | a b c d e f g h i j k l m n

− − − − − − − − − − − − − − − − − −

a | b c d e f g h a j k l i n m

b | c d e f g h a b k l i j m n

c | d e f g h a b c l i j k n m

d | e f g h a b c d i j k l m n

e | f g h a b c d e j k l i n m

f | g h a b c d e f k l i j m n

g | h a b c d e f g l i j k n m

h | a b c d e f g h i j k l m n

i | j k l i j k l i n m n m n m

j | k l i j k l i j m n m n m n

k | l i j k l i j k n m n m n m

l | i j k l i j k l m n m n m n

m | n m n m n m n m n m n m n m

n | m n m n m n m n m n m n m n

Example of Proposition 3.1.3’s constuction with a 8-4-2 cycle.

3.1.3 Infinite Cancellative Basis Map Operators

The above ideas of how to construct a semigroup from a permutation also generalize to

the infinite dimensional case. As noted before, the cycle of a basis element will be the

set of all images and preimages of that point under powers of A, where we assume A is

injective. Thus, a cycle can be a subset of the basis on which A acts like a finite cycle,

a bilateral shift (a Z cycle), or a unilateral shift (an N cycle). Also, we will make the
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convention that any finite cycle “divides” a Z cycle and also an N cycle, while Z cycles

“divide” N cycles3.

Proposition 3.1.4. Let A be a cancellative basis map operator. Then A is a direct

sum of cycles, with the orders of the cycles having a common multiple (and a common

divisor) if and only if A arises as left multiplication in a unital, (commutative) semigroup.

Moreover if A has an N cycle, then in the semigroup that A comes from, the a such that

A = La must be the second element in an N cycle. In the case that A arises as a left

multiplication in a non-unital semigroup and A has an N cycle, the a for which A = La

can be either the first or second element in some N cycle.

Proof. The fact that A is a direct sum of cycles comes from Theorem 3.1.1. The first

case to consider is when all cycles are finite. As before, associativity demands the com-

mon multiple structure on the lengths of the cycles, and commutativity will require the

common divisor structure on the lengths of the cycles. The construction given in the

finite case, when allowed to extend to an infinite number of finite cycles, will give a

semigroup from which A will arise, and likewise the commutative construction will give

a commutative one. This construction holds since for any three product of x, y, and z,

the products x(yz) and (xy)z exist inside a finite submagma4, whose multiplication is

exactly the multiplication obtained from the constructions of Propositions 3.1.2 and 3.1.3

(without a dividing cycle and with one respectively), and so, is associative.

For the case where there are some infinite cycles, we first note that if A has both a Z

and an N cycle, then the multiplication must come from the latter cycle. To see this, call

the element that gives A under its left multiplication, a. If a was in the Z cycle, consider

the preimage of a under A, and call it b. Then ab = a so a(bx) = ax for all x in the basis,

so, by left cancellation, b is a left identity. Now consider the preimage of b and call it c.

Then acx = (ac)x = bx = x, so c is a right inverse of a, but a can’t have a right inverse

3We note that this convention is purely for descriptive purposes.
4We recall that a magma is just a set with a binary operation that is closed and totally defined.
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if there is an N cycle since multiplication by a will not be onto since the first element

of the N cycle will not be in the range of left multiplication by a. This shows us that

not only must the multiplication arise from the N cycle, but also that it must arise from

either the lowest element in that cycle (the element without a preimage under A) or the

next one (in which case the lowest element will be like a left identity). To construct the

semigroup, we take the construction given in the finite case and apply it to the cycles

given here, with N cycles being treated as the biggest. Thus, if there is an N cycle, a is

taken as the second basis element (with the starting subsemigroup as the non-negative

integers instead of a finite cyclic group), while in the case that the only infinite cycles

are Z cycles, a is some element on some Z cycle (with the starting subsemigroup as the

integers), and in both cases, A becomes La. Finally, if the commutative construction is

applied then the result is a commutative semigroup.

Finally, we wish to show the reverse implication in the case that A has at least one

infinite cycle and is an La for some a ∈ S (the case of all cycles being finite was covered

at the beginning). For the noncommutative case, we only require that A has a cycle

whose order is a least common multiple of the others, which is covered by A having an

infinite cycle (either A has an N cycle which we consider as a multiple of a Z cycle, or it

only has Z cycles which we consider as a multiple of all finite cycles). For the case where

S is commutative we need to show that the cycles have a common divisor. If A has only

infinite cycles, then the order of the cycles have a common divisor (either they’re all N

or there’s a Z cycle which is considered a “divisor” of an N cycle). If A has a finite cycle,

then for any elements c, d on finite cycles of length m,n, then am(cd) = (amc)d = cd and

an(cd) = c(and) = cd. Thus, orders of the finite cycles must have a common divisor, and

since finite cycles “divide” infinite cycles, then all cycles have a common divisor.

This construction however (like in the finite case) is rather uninspiring for the infinite

case since one will notice that most of the time there will be some left multiplications

that will be unbounded. So we will now focus on when the semigroup we get has only
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bounded operators.

Proposition 3.1.5. Let A be a cancellative basis map operator over an infinite dimen-

sional Hilbert space. If A arises as an La from a semigroup whose multiplications are all

bounded (both left and right), and A contains a cycle of infinite length, then A does not

contain any finite cycles.

Proof. Let A be given by left multiplication by a and suppose A has a cycle of finite

length (call this length m), with c in this cycle. Since a must be in an infinite cycle, an is

distinct for all n ∈ N. However, amc = c, and so (am)nc = c for all n ∈ N, and so right

multiplication by c sends infinitely many elements to c and so Rc is unbounded.

This proposition now splits up the remaining results into two cases: the purely finite

basis map operator and the purely infinite basis map operator.

Proposition 3.1.6. Let A be a cancellative basis map operator over an infinite dimen-

sional separable Hilbert space that does not have any finite cycles. A comes from a

commutative semigroup whose multiplications are all bounded if and only if it is not the

case that A has both a finite number of Z cycles and an infinite number of N cycles.

Proof. For the forward direction, assume otherwise that A has finitely many Z cycles

and infinitely many N cycles. From Proposition 3.1.4, if A = La then a is in an N cycle.

Let c be any element in an N cycle, and f an element in the Z cycle. The product fc

must be in an Z cycle. To see this, suppose that fc was an element in some N cycle

and call it d. Let n be a natural number such that d has no n-th preimage under La

(that is, there is no y such that any = d). Then let x be in f ’s cycle such that anx = f

(this is possible since f is in a Z cycle). We now have anxc = fc = d, so xc is an n-th

preimage of d under La, a contradiction, to the assumption that fc was in an N cycle.

Thus, anything in a Z cycle times anything in an N cycle must be in an Z cycle.

Continuing, we let f be any element in one of the Z cycles (of which there are only

finitely many). Let {ci}i∈N be a subset of elements from the N cycles such that there
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is exactly one ci for each N. Since there are infinitely many N cycles and finitely many

Z cycles, there must be a subset cj of the ci’s such that {fcj} are all in a particular Z

cycle, and {fcj} is an infinite set.

This however means that Lf is unbounded. For any k ∈ N, we can take the first

k elements in {fcj}, name the lowest one on the Z cycle d, and the rest al0d, al1d, ...,

alk−1d. Letting the biggest power be lp, we have that {aijfcj} = apd for some powers ij.

Commuting aij through, we get that Lf sends k elements to apd, and moreover, these

k elements are distinct since the cj’s were chosen to be in separate components (thus

amc0 can never equal anc1). So for any k ∈ N, we can find an element that appears k

times in the f row of the multiplication table. Thus, Lf is unbounded, contradicting our

assumption that A had finitely many Z cycles and infinitely many N cycles.

For the reverse direction, we start by assuming that there are finitely many N cycles,

and call this number k. Let ai be the lowest elements in the N cycles, and let {cj} be

a collection of exactly one element from each Z cycle (this collection may be empty, a

finite set, or infinite). We define multiplication by a0 as the identity, and ajai = ai+j

if i + j < k, ajai = ci+j−k if i + j ≥ k, ajci = ci+j, and cicj = ci+j. If there are only

finitely many Z cycles (say l), then we make the multiplication loop back to c0 (that is,

we have the relation that cl = c0). We let a denote the image of a0 under A, and we call

the element preceding c0, a
−1 (that is, aa−1 = c0). All the elements of the basis of H can

now be written as the pairs {(ai, x) | i ∈ Z, x = a0, a1, ..., ak, c0, c1, ..., and i ≥ 0 if x =

a0, a1, ..., ak}, and multiplication on the semigroup will be multiplication of the pairs,

with the understanding that ai acts like the integers and the elements a0, ..., ak, c0, ... act

either like N (if there are infinitely many Z cycles), or if there are l Z cycles, then the

singly generated semigroup with the relation ck+l = ck.

We note that the above multiplication is well-defined, commutative, and associative

since it is a subsemigroup of either Z⊕N (if there are infinitely many Z cycles) or Z⊕C

(if there are finitely many), where Z is the integers, N the non-negative integers, and C is
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the singly generated semigroup with the relation ck+l = ck. However, it must be verified

that this subsemigroup is actually closed. The only issue of closure is if we have (a−i, a1
l),

where l < k, since these elements are not in the described subsemigroup. However, in the

subsemigroup we have described, we can only get a negative power of a if the power of

a1 is greater than or equal to k, and by the construction, once we have this, multiplying

a1
k by any power of a1 will always give a power of a1 bigger than k. Thus, multiplication

here is indeed closed.

All the left multiplications in this semigroup have a cardinality norm at most k due

to the fact that they are all injective everywhere except for the elements that fail to be

injective in the second coordinate (the powers of a1), of which there are k. Finally, by

construction, A is given by L(a,e) = L(a,a0).

The other two cases we have to consider now is when A has no N cycles, and when

it has both infinitely many N cycles and infinitely many Z cycles. For the first case,

we can just write A as either L(1,0) in Z ⊕ Z if there are infinitely many Z cycles,

or as L(1,0) in Z ⊕ Z/kZ if there are k Z cycles. For the second case we can do a

similar construction to the one above by first taking the semigroup Z ⊕ Z ⊕N2, where

N2 is the semigroup with 0 and 1 with multiplication as the maximum (by Theorem

2.1.1, this is a uniformly bounded semigroup). The constructed semigroup then becomes

{(x, y, z) ∈ Z ⊕ Z ⊕N2 | y ≥ 0 if z = 0}. This is closed as before since if the product

of two elements in this set were outside the set, then the product would have to have

y < 0 and z = 0. This means that both factors in the product would have to have their z

values equaling 0, but then both of their y values would have to be non-negative, giving

a product whose y value is non-negative, and hence, an element in the set. Likewise,

multiplication is commutative, associative, and bounded since these are preserved under

taking direct sums and subsemigroups, and our matrix A comes as L(0,1,0).

A similar situation also happens in the finite cycle case if we wish to maintain bound-
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edness of the semigroup.

Proposition 3.1.7. Let A be a cancellative basis map operator over an infinite dimen-

sional separable Hilbert space, with A having only finite cycles. Then A is a La for some

a in a commutative, bounded semigroup if and only if A has a cycle of maximum length

which is a multiple of the lengths of all the cycles and A has a smallest cycle which divides

the order of all others, and there are infinitely many cycles of this order.

Proof. By the same argument as before, if A is La for some a in a semigroup S, we must

have that a is on the largest cycle, and that the order of the a cycle is a multiple of all the

others. Thus, we need only worry about the second statement concerning the smallest

cycle and it appearing infinitely many times.

We prove the forward direction first. Proceeding by contradiction, we assume that

the smallest cycle only occurs finitely many times. Let c be any element of a smallest

cycle. Then any element outside of these smallest cycles when multiplied by c will have

to be in one of the smallest cycles. Since there are infinitely many cycles outside of the

smallest cycle, we have that Lc sends an infinite set to a finite set, thus it must send an

infinite subset of this infinite set to a single element. Hence, Lc is unbounded.

Finally, all we need to show is that if there are infinitely many cycles of the smallest

order, then we can put A inside a commutative, bounded semigroup. For this, we consider

some special cases first and then generalize to include all possibilities. First, if every cycle

of A occurs infinitely many times, we can do a very simple construction: Let T be the

semigroup obtained by the construction given in the finite case, but applied to only a

single copy of each cycle (since there has to a cycle of maximum length, this semigroup

will indeed be finite), and then take S = T ⊕N ∪ {0}. In this semigroup, A is just L(a,0),

where a is the multiplication of one of the elements of the largest cycle in T .

Now we consider the case where only the smallest cycle occurs infinitely many times.

Here, we take the same semigroup S as constructed above, but we add on an additional

summand of Nm, where Nm is the first m nonnegative integers with the maximum as
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the multiplication. For this particular construction, we will take m as the maximum

number of cycles of any particular cycle (so for example, if we had two 4-cycles and

three 2-cycles, we would take m = 3). Our multiplications now contain too many cycles,

but the Nm semigroup allows us to take some interesting subsemigroups. We take the

subsemigroup corresponding to the elements of the form (b, i, k), where i > 0 only if b is

in the smallest cycle in T (this is ok since any smallest cycle times another smallest cycle

will again be in a smallest cycle). Right now we have that L(a,0,0) is a basis map operator

with infinitely many smallest cycles, and m of every other type of cycle. Next, we take

another subsemigroup by removing any extra biggest cycles with the larger values of Nm.

So if m was 4, but we only wanted two largest cycles, we would remove the elements of

the form (a, 0, 4) and (a, 0, 3), where a is in the largest cycle. Likewise, to remove other

finite cycles, we do the same thing, but remove their lowest values of m (so in the above

example with a as a cycle that is neither largest or smallest, we would remove (a, 0, 0)

and (a, 0, 1). Since a cycle times another cycle will be a cycle whose order divides the

two, and due to the selection of the Nm parts of the above5, this multiplication is closed,

and so forms a subsemigroup, moreover, with L(a,0,0) as A again.

Now we have to consider the cases where some of the cycles that are not the smallest

cycle are infinite, while others are finite. If there are not an infinite number of the largest

cycle, then we can just take the above semigroup, and include the elements (b, j, i), b in

the corresponding cycle in T , i ∈ Nm, j ∈ N. Since in the semigroup T , b times any

element that is not in the largest cycle is in the smallest cycle, and that b times any

element in the largest cycles is just in the b cycle, we have that this bigger set is also a

subsemigroup, and that L(a,0,0) is the A in this case. Finally, we have to consider what

happens when there are infinitely many cycles of the largest type, and some other cycles

5It is important here that the largest cycle have the higher Nm values removed while the smaller
cycles have the lower Nm removed. Otherwise, under the multiplication, we could have something in
a largest cycle with a high Nm coordinate times a something in a smaller cycle with a low Nm. This
would yield something in the smaller cycle, but with a high Nm coordinate.
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that only have finitely many. Here, we have to change the beginning semigroup T to be

the one constructed in the finite case, but with two copies of the largest cycle given. In

this new semigroup T ′ we note that the other largest cycle will send everything into the

smallest cycle. Thus, to obtain A, we take apply the same idea as in the above case, but

treat the other largest cycle as a different cycle from the largest cycle (so we can add the

elements (a′, i, j), where a′ is the other largest cycle, i ∈ N, and j ∈ Nm). So, in this case

we get infinitely many largest cycles, finitely or infinitely cycles of the other intermediate

sizes, and infinitely many of the smallest size, making L(a,0,0) again the multiplication

that gives A, which finishes the proof.

The constructions given in the above may seem little bit strange since the desired

semigroup is a particular subsemigroup of some direct sum of semigroups. While this

may seem an odd way of constructing the semigroup, it should be noted that the common

method of decomposing commutative semigroups is to consider them as subsemigroups

of direct products of irreducible semigroups. While the above constructed factors are

rarely irreducible, the same idea still holds.

We end this section by summarizing the results so far.

Theorem 3.1.2. (Unbounded Semigroup Problem for Cancellative Basis Map Operators)

Let A be a cancellative basis map operator, then

1. A can be realized as left multiplication in a semigroup if and only if there is a fixed

cycle in which all the orders of the cycles of A divide the order of the fixed cycle.

2. A can be realized as left multiplication in a commutative semigroup if and only if

there there is a fixed cycle in which all the orders of the cycles of A divide the order

of this fixed cycle, and there is a fixed cycle whose order divides all the orders of

the cycles of A.
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Theorem 3.1.3. (Bounded Commutative Semigroup Problem for Cancellative Basis Map

Operators) Let A be a cancellative basis map operator for an infinite, separable Hilbert

space, then

1. if A only has cycles whose orders are finite, then A can be realized as left multipli-

cation in a bounded commutative semigroup if and only if the orders of the cycles of

A have a common multiple and a common divisor, with the common divisor cycle

appearing infinitely many times.

2. if A has only infinite cycles, then A can be realized as left multiplication in a bounded

commutative semigroup if and only if it is not the case that A has an infinite number

of N cycles and a finite non-zero number of Z cycles.

3. if A has both finite and infinite cycles, then A can not be put into a bounded semi-

group.

Theorem 3.1.4. (Partial Results for Bounded Semigroup Problem for Cancellative Basis

Map Operators) Let A be a cancellative basis map operator for an infinite, separable

Hilbert space, if A can be realized as left multiplication in a bounded semigroup, then

1. A has either all finite cycles or all infinite cycles.

2. if A has all finite cycles, then there must be a cycle whose order is a common

multiple of all the others.

We remark that the bounded semigroups constructed in this section were all semi-

groups with a countable number of elements. To get a similar version of Theorem 3.1.3

with a non-separable Hilbert space, one would have to require that the smallest cycle

would have to occur at least as many times as any other cycle. For example, if the

number of N cycles has a cardinality of κ, then the number of times that the smallest

cycle occurs has to have a cardinality of at least κ. Moreover, since there are only a

countable number of different types of cycles, this means that the number of times the
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smallest cycle occurs must have the same cardinality as the number of basis elements of

the underlying Hilbert space.

3.2 Connected Semigroups

Now we wish to go on to the more general case when A is a basis map operator, but not

injective. To understand what these semigroup operators can look like, we will first try to

understand how two left multiplications can relate to each other inside a semigroup. That

is, if we know what Lb looks like for some b ∈ S, what can we deduce about La for some

other a ∈ S? To help with this, we will consider graphs associated to multiplications as

well as some functors of what we will call pointed semigroups.

3.2.1 Multiplication Graphs and Connectedness

Our first step to understand the structure of La, a ∈ S, will be to consider it visually as

a directed graph. Since semigroup matrices have a very special form, such a visualization

comes quite easily.

Definition 3.2.1. For a semigroup operator A (or more generally, a basis map operator),

its multiplication graph (or sometimes just referred to as its graph), will be the

directed graph that results from the matrix of the operator when one considers it as an

adjacency matrix.

Specifically, the graph is what one gets when one labels the orthogonal basis of A as

vertices, and draws an edge going from ei to ej if A(ei) = ej.

It should be noted that this description of a basis map operator does not give any

additional information. However, this visualization will prove to be useful in describing

the properties of semigroup matrices.

As an example of such a multiplication graph, consider the three element semigroup

with elements A,B and C, with multiplication defined as the min operation with A <
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B < C. The adjacency graph of LA would be as in figure 3.1 below.

C

A

B

Figure 3.1: The directed graph of LA

The first definition that we’ll need for this section will be when two elements of the

graph of A are connected as an undirected graph, that is, connected when one is also

allowed to go in the opposite direction of the arcs as well. A more useful definition for

this concept is the algebraic description instead.

Definition 3.2.2. For La, a ∈ S, and x, y ∈ S, we will say that x is connected to y

(via a) if there are n,m ∈ N such that anx = amy.

We first note that two elements x and y in S which are connected to each other in

the above sense, if and only if the corresponding vertices of x and y in the undirected

graph of La are connected to each other. Indeed, if x is connected to y in the undirected

graph, then a path starting from x and ending at y is a finite sequence of edges to choose

to follow. These choices are either in the direction of the edge (of which, by definition of

the graph of La, this is a unique choice for each vertex), or in the opposite direction of

the edge. Since going in the opposite direction of an edge and then going in the direction

of the next edge acts as the identity (again, since the choice of the latter is unique),

the existence of a path from x to y is equivalent to the existence of a path that goes in

the direction of the edges for some amount of steps and then in the opposite direction

for some other number of steps. The vertex of the graph where the path switches from

going in the direction of the edges to the opposite is given algebraically by anx and as

amy, where n is the number of times the path goes in the direction of the edges, and
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m the number of times it does in the opposite direction. Likewise, if one is given that

anx = amy, then anx and amy define paths going from x to the vertex d and y to d, so

the composition of the first, with the reverse of the second gives a path on the undirected

graph of La going from x to y.

We also note that this definition of connectedness gives us an equivalence relation on

the elements of S, whose equivalence classes are (due to the equivalence of the definitions

given above) the connected components of the graph of La.

We remark that in the case of a group, then the connected components of La cor-

respond to orbits of elements under multiplication by a, or equivalently, cosets of the

group by the cyclic subgroup generated by a. In particular, the connected component

that a belongs to corresponds to the subgroup generated by a. In the semigroup case,

this connected component may only contain the subsemigroup generated by a, but it is

still a subsemigroup (though not necessarily a commutative one).

Proposition 3.2.1. (Connected Subsemigroup Generated by a) For a ∈ S, the connected

component of La containing a is itself a subsemigroup of S.

Proof. We need only show that for any two elements x, y connected to a, their product is

also connected to a. Since x is connected to a, by the algebraic definition of connectedness,

there are m,n ∈ N such that anx = ama, and likewise there are j, k ∈ N such that

ajy = aka. Thus, an+jxy = aj(anx)y = am(ajy) = am+ka, so xy is also connected to

a.

Next, we note that in the general case of A being a finite matrix, but not being

a permutation, then there will be a subset of the basis on which A does act like a

permutation, and the subgraph corresponding to this subset will consist of disjoint cycles,

which will give us something to build on, using the constructions for the cancellative case.

In the infinite case however, the situation becomes a bit more complicated since one may

have a unilateral shift or an infinite branch of elements going into a either a finite cycle
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or something that looks like that bilaterial shift.

One way to address this is to just define the permutation part of an infinite dimen-

sional basis map operator A in the same way that one defines the unitary part of an

isometry as just the intersection of its ranges (and specifically in our case, the intersec-

tion of the ranges of the subset corresponding to the orthogonal basis). This however will

not be that beneficial since the goal of considering such a permutation part is to have

something to build on for each connected component of the multiplication graph, and for

a connected component that looks like the unilateral shift this definition will just give us

the empty set.

Instead, the approach we will use is to consider a not necessarily unique permutation

part of a basis map operator. Since “permutation part” could mislead one into thinking

that the basis map operator acts surjectively as well, we will use the terminology of a

“cycle part decomposition” instead. This will turn out to be more appropriate for future

notation as well.

Definition 3.2.3. For a basis map operator A whose graph is connected, we call a subset

M of the basis maximally injective if A acts injectively on M , and for any subset N of

the basis outside of M , the powers of A are either not injective or not closed on M ∪N .

A maximally injective M will be said to be a cycle if for any element c outside of M ,

then there is an element d ∈M such that for some n ∈ N, An(d) = An(c). As well, A|M

will be called a cycle part of A.

A cycle decomposition (respectively a cycle part decomposition) with respect

to a basis map operator graph will consist of a union of cycles, one for each connected

component of the basis which has a cycle (respectively the direct sum of cycle parts for

its connected components with cycle parts). Finally, if a basis map operator has a cycle

for each connected component of its graph, then it will be said to have a full cycle

decomposition.

For a connected A it not obvious that a cycle part should exist (nor for any connected
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component of a basis map operator), but if such a cycle part does exist, then by injectivity

and connectedness it is either a finite cycle of order n, a bilaterial shift, or a unilateral

shift. Moreover, if there is another cycle part, then it must be of the same type as listed

above. If a cycle type is that of a finite cycle of order n, then the cycle itself is actually

unique since any element in the connected component of the cycle must go into this

cycle under enough powers of A, and by injectivity, this forces any other cycle of the

component to just be this cycle itself.

If a cycle part of a component is the unilateral shift, then any other cycle part of the

same component can not be the bilateral shift. If it was, then the first basis element

of the unilateral shift (call it c) would be connected to some element (call it d) of the

bilateral shift. This means that Anc = Amd, and since d is in a bilateral shift we can

pick an n-th predecessor of it (call it f). Then Anc = Am+nf . This violates the last

condition of a cycle. Indeed, if Ajg = Ajf for some j ∈ N and g in the N cycle, then

for some i ≥ j, Aic = Ajf...(1). However, we also know that there are n,m ∈ N such

that Anc = Am+nf...(2) (ie: the power of A for c is less than the power of A for f).

Multiplying both sides of equation (1) by a power of A to get the same power of A for

the c element of equation (2) and then equating the right hand sides gives that Arf = Asf

where r < n < s. This means that the graph of A has a finite cycle in it, giving us a

contradiction. Thus, if a cycle of a component is an N cycle, then any other must be a

N cycle as well. Finally, by the above, if a component has a Z cycle, by the previous

arguments, it can’t have a finite cycle or N cycle and so any other cycle must be a Z

cycle as well. Thus, if a component has a cycle, then any other cycle of the component

must be of the same cycle type.

Formally speaking however, we can specify a better definition of cycle type.

Definition 3.2.4. For a connected basis map operator A, define an equivalence relation

on the basis of A by x ≡ y if for some n ∈ N, Anx = Any (note that n here is the

same power for both x and y). The induced map of A on these equivalence classes, acts
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injectively and is connected, and so is either a finite cycle, the unilateral shift, or the

bilateral shift. We say that A has cycle type of n if this induced map is a finite cycle

of order n, of type N if it is the unilateral shift, and Z if it is the bilateral shift.

Likewise, in the case of a basis map operator which is not connected, we can also use

the above definition to define a cycle type for each connected component of the graph of

the operator.

The induced map of A on the equivalence classes is well defined since if two elements

are equivalent, then their images under A are in the same equivalence class. Likewise

this induced map is also injective since if Ax ≡ Ay, then AnAx = AnAy for some n, so

An+1x = An+1y, and thus x ≡ y. Finally connectedness of the induced map follows from

connectedness of A.6

While the cycle type for a connected basis map operator will always exist, and as

shown earlier, will be the same for any choice of cycle, this does not mean that every

such operator will have a cycle part. For example, take the unilateral shift, and then add

on an arc of length two going into its second basis element (so we’ve added two basis

elements, with one going into the shift’s second element, and another going into this

added basis element). Next add an arc of length 4 going into the third element, then an

arc of length 6 going into the fourth element, and so on. Call this basis map operator B.

This constructed operator B has cycle type Z since each time we added an arc, we

increased the number of cycle type equivalence classes by one, and if we keep adding

them infinitely, then any equivalence class of the induced map of B will always have

preimages. So if this operator had a cycle part, then B would act like the bilateral shift

on some subset of the basis. However, by construction, every element of the basis has

only a finite chain of predecessors under the map B (either the basis element is in an

attached arc which has only finitely many, or it is on the unilateral shift part, which

also has finitely many since the arcs kept being added further along the shift), so this is

6This induced map on equivalence classes will be studied later in section 3.2.3.
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impossible.

Being of Z type and every basis element having only finite chains of predecessors

classifies such connected basis map operators.

Proposition 3.2.2. B is a connected basis map operator without a cycle part if and

only if B is of Z cycle type and every basis element has only finite chains of predecessors

under B.

Proof. The reverse direction follows the same logic as the argument given for the con-

structed operator above. Thus we need only show the forward direction.

Suppose that B is a connected basis map operator without cycle part. If B is not

of Z cycle type, then either it is of cycle type n or cycle type N. If it is of cycle type

n, then x ≡ Anx, so for some m ∈ N, we have that Amx = Am+nx, so the elements

Amx,Am+1x, ..., Am+n−1x form an n cycle. This is the case since these elements form a

maximally injective subset of the basis, and for any x outside of it, for some k ∈ N, Akx

will be inside the cycle, and going backwards in the cycle k times will give the desired

cycle element y such that Akx = Aky, and thus, this component has a cycle.

If B is of cycle type N, then the equivalence classes on which the induced map of

B acts has a smallest element. Picking any basis element in this equivalence class (call

it y), and then taking all powers of it gives a maximally injective subset of the basis.

Likewise, for any x outside this set, then Anx = Amy, where m ≥ n by the minimality

of the equivalence class that y belongs in. Then Anx = An(Am−ny), so Am−ny is the

desired element in the set, so B has a cycle part. Thus, B must be of Z cycle type.

Finally, we need only show that every basis element must have only a finite chain of

predecessors under the map B. If it did not, then for some B there is an element y with

an infinite chain of predecessors. Take the set M consisting of this element along with

this infinite chain of predecessors, as well as all its successors under B. Then this set is

a maximally injective subset of the basis on which B acts like the bilateral shift. Also,

for any x outside of the set, we have that for some m,n ∈ N, Amx = Any. If n > m,
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then Amx = AmAn−my with An−my ∈ M , and if n < m, then Amx = Amz, where z is

the m− n predecessor of y in M . Thus M is a cycle of B, giving a contradiction. Thus

every basis element must have only finite chains of predecessors under B.

In some sense, such basis map operators are “between” being of Z type and being of

N type, and cause a problem to the idea of starting with a given cycle type and adding

on additional elements going into it. However, while such connected basis map operators

exist, we will find out later that they can never exist as connected semigroup operators

themselves, which help us extend the ideas of the previous section to non-cancellative,

but connected basis map operators.

Due to the maximality of the cycles, for every component of a basis map operator

that has a cycle part, every element outside the cycle will eventually go into the cycle

under enough iterations of the operator. To help with the exposition of this in the future,

we will call these elements the hairs of the graph.

Definition 3.2.5. For a basis map operator A, an element d in a connected component

with a cycle, but not in that cycle itself, will be called a hair for that cycle. A hair will

be called a hair of length k if the minimum number of iterations of A required for d to

go into the cycle is k. Finally, a set consisting of a hair of length l along with its images

under powers of A that are not in the cycle, will be called a branch of hairs of length k.

We note that any hair or branch of hairs of a basis map operator will have to be of

some length (in the case of a branch, possibly infinite), due to the maximality of the

cycle of the connected component it lies in.

As an example of hairs, we see the example of figure 3.1 above, both the elements B

and C would be considered hairs (both of length 1), while A would be considered part

of the cycle.

Finally, we end this section with a lemma about the connected components of semi-

group operators from commutative semigroups.
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Proposition 3.2.3. Let La be a semigroup operator for an element a in a commutative

semigroup S. If x is a-connected to y and c is a-connected to d, then xc is a-connected

to yd. In other words, the connected components of La form a well-defined quotient

semigroup of S under the connected equivalence relation.

Proof. Letting x, y, c, and d be as described in the above, we have that aix = ajy and

amc = and for some i, j,m, n ∈ N. Multiplying these two equations together, we have

that aixamc = ajyand⇒ ai+jxy = am+ncd, showing that xy is a-connected to cd.

We remark that such a multiplication need not exist for non-commutative semigroups.

Indeed, the non-commutative examples constructed previously do not have such a prop-

erty.

3.2.2 Pointed Basis Map Operators

From our study of cancellative basis map operators, we have a good understanding of

the possibilities for the cycle parts of a semigroup operator, so our goal now is to expand

this to include the more general case and ask what kind of hairs a given cycle can have.

If we start with the graph of a cancellative, finite dimensional basis map operator, then

we can add as many hairs of length 1 as we like to the permutation and still have a graph

that can arise as some left multiplication in some semigroup. To see this, suppose that S

is a semigroup with La corresponding to the starting permutation (like the construction

used in Proposition 3.1.2). If one adds a hair to this cycle, then there is an element c in

that cycle that will be sent to the same thing as the element that was just added. The

semigroup can then be extended by just adding on an element to it and declaring that it

acts just like c did, and from here we can do this as many times as we like, as long as the

hairs are added to the permutation part and that we don’t add infinitely many hairs to

a single element or have an increasing, unbounded number of hairs added to a sequence

of elements (as this would give an unbounded operator).
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If we want a semigroup with an identity however, we must have the identity element

going into a in the graph, and if the hairs are all of length 1 then a will must be in the

cycle. Moreover, a must have a hair going into it since otherwise the identity will be on

the cycle, meaning that La must be invertible (since Lna = Le = I for some n ∈ N). So

if we want a semigroup with an identity, then we can do the same construction as the

above, except we must choose a to have at least one hair going into it, remove one of

these hairs, form the semigroup as listed above from this modified graph, and then at

the end adjoin an identity to this semigroup7.

Increasing the possible lengths of these hairs beyond one vertex however is a little

bit more difficult to do. Whereas before La corresponded to left multiplication by an

element in the permutation, adding a second vertex to the hair fundamentally changes

the structure of the semigroup. Take for example a simple n-cycle permutation with a

branch of hairs of length 2 coming out of it like given in figure 3.2 below.

B

A C

D

F

E

Figure 3.2: 4-cycle with F as a hair of length 2

Suppose that this graph corresponds to multiplication by some element a in the

permutation8. We take the element c to be the elements that is two vertices behind

7In the case of a semigroup S which already has an identity e, we take the convention that “adjoining
an identity” means that we add a new element e′ to the semigroup to form a new semigroup S′ with
the property that xe′ = e′x = x for all x ∈ S′. In particular, since ee′ = e′e = e, the identity of S is no
longer the identity of S′.

8Here we use lowercase letters to indicate an arbitrary element a, while uppercase letters will refer
the specific elements in the above graph.
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a in the cycle of the graph, in particular making L2
a(c) = a, so La2c = La. Applying

this operator to the second vertex in the hair F , and we get that La(F ) = La2c(F ) =

La2Lc(F ) = (La)
2(cF ). But, La(F ) = E, so E = (La)

2(cF ), but this is impossible since

E does not have a second predecessor in the graph, so it’s impossible for there to be an

element x such that (La)
2(x) = E. Moreover, by the same argument, the multiplication

must come from either the last, or the second last vertex in the branch of hairs. If it

comes from the last vertex, then the semigroup will not have an identity since in this

case there is no element that is sent to a under La, so if the semigroup has an identity,

then this multiplication must come from the second last vertex in the branch of hairs.

This discussion reminds us that semigroup operators have some additional information

to them then just the graph or operator structure, namely, the semigroup operator has

a distinguished element from which the multiplication arises. As such, one should not

only classify which basis map operators are semigroup operators, but also which basis

element the operator can arise from as a left multiplication in the semigroup. This gives

us the idea of a basis map operator with a distinguished basis element, which we call a

pointed basis map operator.

Definition 3.2.6. The pair (A, a), consisting of a basis map operator A along with a

basis element a, will be called a pointed basis map operator. If A can be realized as

a semigroup operator, with the multiplication coming from a in the basis, then the pair

(A, a) will be called a pointed semigroup operator.

As seen in the above example, the distinguished element can’t be freely chosen (unlike

in the group case), and in fact we will see that the choice can be rather rigid. Before we

look into this deeper however, we will investigate a natural grading that arises on the

connected component of the element a in the graph of La.
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3.2.3 The Functor Ga

We know that for a semigroup operator La, the connected component of an element is

given in a nice algebraic way. Moreover, from the previous discussion on cycle type, if

we look at the connected component of a, then we can form an equivalence relation by

saying that two elements are equivalent if they are the same when we multiply by a large

enough power of a. Due to connectedness, we can form a map from the elements of the

connected component of a to the equivalence classes, each indexed by an integer.

Definition 3.2.7. For a semigroup S with element a ∈ S and M the connected compo-

nent of a, we define the a-grading functor as the map Ga : M → Z such that Ga(x) = i

if for some n ∈ N, anx = an+i. In the case that the connected component of a has a

finite cycle, we replace the target group Z with Z/mZ, where m is the order of the cycle.

The interesting property of Ga is that it is both well defined, and with a suitable

definition of morphisms of pointed semigroups, is also a functor from them to singly

generated, cancellative semigroups (Z,N, and Z
mZ

).

Lemma 3.2.1. For a semigroup S, a ∈ S, and M the connected component of a, then

Ga is well defined (the i such that Ga(x) = i exists and is unique) and has the functoral

property: if x, y ∈M then Ga(xy) = Ga(x) +Ga(y), where addition is taken with respect

to the cycle type of M (that is, either N, Z, or Z/mZ).

Proof. The first thing to show is that the grading is well-defined, that is, for any x ∈M ,

Ga(x) = i for some i ∈ Z, and that this i is unique with respect to the target group.

To do this, we note that since x is connected to a, anx = aka for some n, k ∈ N.

However, we could have that Ga(x) = i for two different i ∈ N. Indeed, it could happen

that for some n ∈ N,i, j ∈ Z, anx = an+i and anx = an+j (by taking the maximum of the

two values of n and multiplying by an appropriate power of a, we can assume that both

of the n’s corresponding to i and j are the same). This gives that anx = an+i = an+j.

Thus, the connected component of a must just have a finite cycle, and moreover, its order
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must divide i− j, and so i is congruent to j modulo the order of the cycle, and so i ∼= j

in Z/mZ, making Ga well-defined.

Next, we wish to show that if x, y ∈ M , then Ga(xy) = Ga(x) + Ga(y). Let

m,n ∈ N such that amx = am+Ga(x) and any = an+Ga(y). Then am+nxy = an(amx)y =

anam+Ga(x)y = am+Ga(x)any = am+n+Ga(x)+Ga(y) = am+naGa(x)+Ga(y). Thus, Ga(xy) =

Ga(x) +Ga(y).

In semigroup theory language, the above lemma states that the equivalence classes

consisting of elements with the same image under Ga form a congruence on the connected

subsemigroup generated by a.

We know formally show that Ga is a functor from the category of connected semi-

groups9 to the category of singly generated10, cancellative semigroups.

Proposition 3.2.4. For any connected semigroup S, with a ∈ S such that the graph of

La is connected, and any semigroup homomorphism φ from S to a semigroup T , then Ga

commutes with φ in the sense that φ′ ◦Ga = Gφ(a) ◦ φ, where φ′ is the induced map of φ

on the grading classes of Ga. Specifically, the map φ′ is defined as the composition of the

pullback map11 to the cycle part of S, with the homomorphism φ, and then the grading

map Gφ(a) on T .

Proof. Let b ∈ S. Then we have to show that φ′(Ga(b)) = Gφ(a)(φ(b)). Let the grading

class of b be k, then φ′(Ga(b)) = Gφ(a)(φ(c)), where c is the element in the cycle of S,

which has a grading of k. So, if we can show that if two elements are in the same grading

class under a in S, then their images under φ will be in the same grading class under

φ(a) in T , then we’ll have that Gφ(a)(φ(c)) = Gφ(a)(φ(b)), and we’ll be done.

To show this, let’s assume that g and h are in the same grading class under a in S.

9The objects of this category consist of connected semigroups, as defined previously. Morphisms
between these objects are the usual semigroup homomorphisms.

10Here, singly generated means either singly generated as a semigroup, or as a group.
11For k in the grading class of Ga, this pullback map sends k to the element in cycle of S which has

a grading of k.
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From the definition of the grading, we have that for some m ∈ Z, amg = amh, and thus

φ(am)φ(g) = φ(am)φ(h). This gives us that the grading classes of φ(g) and φ(h) are the

same under φ(a), and so φ′(Ga(b)) = Gφ(a)(φ(b)).

We note that if the map φ is onto, then the induced map φ′ between the singly

generated semigroups will be onto. This is since the pullback map sends the singly

generated semigroup to the cycle of S, and then the map φ has to send the 1-grading

element of this cycle to a 1-grading element (under φ(a)) in T (since ama = amc, implies

that φ(a)mφ(a) = φ(a)mφ(c)). This element in the 1-grading class of T will then be able

to fill in the remaining positive elements in the singly generated grading semigroup of

T , while the fact that φ is onto guarantees that the negative grading classes must be

mapped into by something in S (here we can pick something in a negative grading class

of T , pick a preimage under φ, and then we have something in a negative grading class

in S that will be mapped to a negative grading class in T ).

We note that the onto requirement of φ is indeed needed here, since as a counterex-

ample, we can take the homomorphism from N to Z under the inclusion map. Here, the

grading maps are isomorphisms, and the induced map between the grading semigroups

will just send N to Z like the inclusion map did.

3.2.4 Pointed, Connected, and Commutative Semigroup Oper-

ators

From our discussion before we were able to deduce that for a pointed semigroup operator

La, the a can not be just any element. Here, we wish to classify pointed semigroup

operators that are connected and arise from commutative semigroups. To start, we show

that a connected semigroup operator must have a cycle part.

Proposition 3.2.5. Let S be a semigroup, and a ∈ S such that the graph of La is

connected. Then La has a cycle part.



Chapter 3. The Semigroup Problem 46

Proof. By Proposition 3.2.2, we need only consider the case that the cycle type of La

is Z. From the grading we know that a lies inside the 1 grading class of Ga. Pick an

element in the −1 grading class and call it c. Due to connectedness, we know that for

some k, l ∈ N , we have that alc = ak, moreover, from the grading function we know that

we can choose k such that ak+1c = ak.

Now, for c2, we know that ak+1c2 = (ak+1c)c = akc. Likewise for c3, ak+1c3 = akc2,

and in general, ak+1ci = akci−1. Next, we consider the set of elements M = {akci}i∈N.

We have that a(akci) = ak+1ci = akci−1, so if we include the set N = {ak−1+i}i∈N, then

M ∪ N will contain exactly one element from every grading class of a, and a will act /

injectively on M ∪N . Since it has an element in each grading class, this set is maximally

injective, and for any y in the connected component of La, we can choose the element x

in its grading class in M ∪N , to get that for some j ∈ N, ajx = ajy. Thus M ∪N is a

cycle for the graph of La.

Now that we know these graphs must have a cycle part, we try to understand the

possible hair structure on these cycle parts and where the multiplication must arise from.

Lemma 3.2.2. Let S be a unital, bounded, semigroup that has an element a for which

the graph of La is connected. Then La either has a finite cycle, in which there are a finite

number of hairs going into the cycle (hence S is finite) with the element a as one of the

second furthest hairs away from the cycle (or an element on the cycle with a hair going

into it if there are only hairs of length at most 1), or a has a infinite cycle of type N

with each hair being of finite length, with a as a second element on the N ray, or a has

an infinite cycle of type Z with a as the second last vertex of a finite hair or a vertex at

an intersection of infinite branches if there are no branches of finite length.

Proof. For the case that La has a finite cycle, suppose there is an infinite branch of hairs

going into the cycle. For some number k, ak has to be in the cycle, thus, ak+m = ak,

where m is the order of the cycle. Let y be an element on the infinite branch that is
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more than k elements away from the cycle. Then ak+my = aky, but these two can not

be equal since aky is not yet in the cycle and ak+my is further along the branch. Thus,

if La’s cycle is a finite cycle, then it must have hairs of length at most a fixed number.

Likewise, a must be an element whose distance away from the cycle is the second largest,

or if all the hairs are of length at most 1, then a is on the cycle with a hair going into it.

For the case of an infinite cycle of type N, then a can’t have a hair of infinite length,

since then it would be of type Z, so all hairs are of finite length. Moreover by the grading

on S via a, a must be one of the elements that is second furthest back away from the N

ray, otherwise there would be an element in the grading that corresponds to −1 and so

it along with its powers would give an N cycle.

Finally, in the case of a Z cycle, by earlier remarks if there is a finite hair then a

must be the second last vertex in one of the finite branches of hairs. The last thing we

must show is that if La has only infinite hairs, then a must be at one of the intersection

points of the infinite branches. Suppose otherwise, then a has only one preimage under

La. Since S has an identity e, we know that this preimage must be exactly e. Now let g

be any preimage of e. Then we know that ag = e, so a has a right inverse, but as well

a(ga) = (ag)a = ea = a, so ga must be a preimage of a. Since a only has one preimage,

we have that ga = e, so g is also a left inverse of a as well, so a must be invertible, which

contradicts the fact that La is not injective. Thus, a must come from an intersection

point on the graph if there are infinite branches and no finite ones.

The last case of a Z cycle in the above is somewhat uninspiring and leads to the least

restriction on the graph of a. However, if we know that S is commutative, then the graph

of a becomes much more rigid.

Lemma 3.2.3. Let S be a unital, commutative semigroup that has an element a whose

graph is connected and of Z type. Then a can only have hairs of length at most a fixed

number (in particular, there is only one possible cycle, and no infinite branches going
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into it), and if it has hairs, then a must come from the second last vertex of some hair

of maximal length.

Proof. Since the graph of a is of Z type, we can pick an element a1 ∈ S that is in the −1

grading class such that ak = ak+1a1 for some k. Assume that there is a hair of length

at least k + 1 (for example, a hair on an infinite branch), then there are two elements, c

and d such that ak+1c = ak+1d and akc 6= akd. Then, applying a1 to both sides we get,

a1a
k+1c = a1a

k+1d ⇒ ak+1a1c = ak+1a1d ⇒ akc = akd, thus we have a contradiction.

So a must come from a hair of maximal length, in particular there are no branches of

infinite length, with a being a hair of the second furthest length away from the cycle.

Theorem 3.2.1. (Classification of Bounded, Pointed, Connected, Commutative, Semi-

group Operators)

Let (A, a) be a pointed and bounded basis map operator whose graph is connected.

Then A is a semigroup operator from a commutative, unital, and bounded semigroup

with multiplication coming from a if and only if A has a cycle and the conclusions of

lemmas 3.2.2 and 3.2.3 are satisfied. That is, if and only if one of the following cases

holds:

1. The cycle of A is of N type with a as an element in the 1 grading class which has

a predecessor.

2. The cycle of A is of finite type with a finite number of hairs going into it and a is

a hair that is the second furthest away from the cycle, which has a predecessor.

3. The cycle of A is of Z type with hairs of length at most some fixed number, with a

as a hair that is the second furthest away from the cycle, which has a predecessor.

Proof. We need to show that any possible graph given in the above two lemmas is indeed

a left multiplication operator for some commutative, bounded semigroup.
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We begin with the case of an N cycle. We let a be an element in the first grading class,

which has a predecessor, and form an N cycle from it (the set consisting of the predecessor

along with it’s images under powers of A). Using the powers of left multiplication by a,

we can define multiplication for this cycle part (this is a singly generated semigroup, and

so is commutative and associative). Next, we extend the defined multiplication to the

rest of the basis elements over the course of a few steps.

We form a set M by looking at each power ai, and picking some hair going into ai

that is maximal in length (if there are no new hairs on ai, then we just skip it and go

onto the next one). We order M via x < y if the length of the hair y is longer than the

length of the hair x, and then turn this into a total ordering by assigning an arbitrary,

fixed total ordering on each subset Mn consisting of the elements whose length as a hair

is n. Now, we extend the multiplication from the powers of a to include multiplication

on the elements M and their successors under A as follows:

For each x, y ∈M , if x ≤ y, then xy = yx = aky, where k is the a-grading class of x.

Likewise, for x ≤ y, m,n ∈ N, (amx)(any) = am+n+ky. By definition, this multiplication

is commutative, and it is associative since for x ≤ y ≤ z, x(yz) = x(alz) = ak+lz and

(xy)z = (aky)z = ak+lz. By commutativity, all the other possibilities follow as well

from the above case. There is a slight technical concern in that in an intermediate step,

we could get that say, x(yz) = x(alz), but alz is now in the cycle of A, so alz = al+j

for some j ∈ N. This however is a minor concern due to the fact that the length of

z as a hair is bigger than the length of x as a hair, so x(alz) = al+jx = al+j+k, while

(xy)z = (aky)z = ak+lz = ak+l+j.

Now we wish to extend this multiplication to all the basis elements. For each x ∈M

(which is a hair of ai), we define multiplication of each hair y of ai by z, a hair of aj,

as yz = zy = alz if x is less than the representative corresponding to z in M , and

yz = zy = amy (where m is the a-grading class of z) if x is bigger. By the same

logic as before, all composable products associate, but multiplication of two hairs of
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the same element in the cycle is not well-defined. For these products cd, we define

cd = dc = as+t−kx, where s, t ∈ N are the a-grading classes of c and d, x is their

corresponding element in M , and k the a-grading class of x. For any product c(dz) now,

if x ≤ z then c(dz) = c(atz) = as+tz, while (cd)z = (as+t−ix)z = as+tz. Likewise, if

x ≥ z, then c(dz) = c(ald) = as+t+l−ix, while (cd)z = (as+t−ix)z = as+t−i+lx. Finally,

if g also has x as its corresponding element in M , and has a grading of q ∈ N, then

c(dg) = c(at+q−ix) = at+q−i+sx while (cd)g = (as+t−ix)g = as+t−i+qx. This defines

multiplication for the remainder of the possible products, and so we have a semigroup S

with A = La.

Now suppose that the graph has a finite cycle with hairs. Then there must be a

bound on the lengths of the hairs, and by boundedness of the operator, the number of

hairs as well. Thus, the number of vertices themselves must be bounded, so S has to

be finite. To construct the desired semigroup, we preform the construction given in the

above on a modified basis map operator A′ of A. This modified basis map operator is

the same as A, except the largest power of a (say ak) does not go into a smaller power of

a (say al), but rather continues on into an N cycle, and then preform the construction

given in the N cycle case on this A′, to get a semigroup which we will call S ′. On this

semigroup, we then form a quotient semigroup by the relation al+1 = ak. Since a is

on a hair of maximal length, anything in S ′ times ak is again a power of a, larger than

or equal to ak, and so for any product of elements in S ′, if the relation ak = al+1 can

be used to make two elements in S equal that were not equal in S ′, then the elements

would have to be powers of a larger than or equal to ak. Likewise, by taking S ′ with

the functor Ga, and then applying the induced quotient relation (with the same idea as

Proposition 3.2.4, where we pull back the grading class to the cycle of the semigroup,

and then push forward under the homomorphism and take the induced grading) gives a

singly generated semigroup with a l − k cycle. Since the quotient map from S ′ to S is a

semigroup homomorphism, and Ga is a functor, we must have that applying the quotient
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map first and then the induced Ga must give the same result. Thus, left multiplication

by a in S must have an l − k cycle exactly and not something strictly smaller, and so S

is indeed the semigroup we wanted to construct.

Finally, we wish to handle the Z cycle case. Here, we apply the same idea as in

the N cycle case, but only to a subset of the basis, and then expand the multiplication.

Specifically, we pick take the lowest power of a (call it ak) that goes into the cycle, and

then form A′, where A′ is A, but restricted to the hairs that go into ak after enough

iterations, and powers of a. Applying the construction of the N cycle case, we obtain

a commutative semigroup on these elements, and now wish to extend it to the other

elements. First, we extend the multiplication to include all the elements of the cycle by

saying that for any element d, and z in the cycle, dz equals the element in the cycle

whose a-grading is the a-grading of d plus the a-grading of z. Thus, the cycle becomes

an ideal of the semigroup, as shown in Figure 3.3.

A

A C C

Figure 3.3: An infinite Z cycle with LA on the left and LC on the right

Now, we extend the multiplication to include the remaining set of basis elements

(which we call N). For any two elements in N , we define their product to be the element

in the cycle corresponding to the sum of their a-gradings. For an element x which is

outside of N , and d in N , we define xd = amd, where m is the a-grading class of x (here

we note that by construction, either the grading class of x is positive, or x is in the cycle,
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so this is well-defined). This gives us a commutative multiplication, so we need to only

show that it is associative.

For any three product, we break it up into cases based on what elements are in N .

If all three are in N , then the multiplication associates since after one multiplication

we get something in N times something in the cycle, which results in something in the

cycle, whose a-grading corresponds to the sum of the a-gradings of each element in the

product. This is true regardless of the order of the multiplication, and so it associates.

If only two of the products are in N , then either the first multiplication will be between

the two elements in N , in which case we get something in the cycle times something

outside of N , which gives the element in the cycle with the corresponding a-grading, or

the first multiplication is between something in N and something outside of it, which will

result in something from N (from the definition between multiplication of things in N

and outside of N), giving us the second product to be between two things in N , with the

a-grading corresponding to the sum of the a-gradings. Regardless of the order here, we

still get an element in the cycle with the same grading class, and so we must get the same

result. Finally, if only one of the elements is in N , then both orders of multiplication

will send the product to the element in N , but multiplied by ak, where k is the sum of

the a-gradings of the elements outside of N , and so these products also associate. Thus,

this multiplication is associative and so forms a commutative semigroup.

Lastly, we verify that these given semigroups are indeed bounded if A is a bounded

operator. In the case of a finite cycle, we get a finite semigroup, and so the multiplication

is bounded. If the operator has an Z cycle, then there is a bound on the number of

elements in each grading class (the maximum length of hairs times the cardinality norm

of A), and so even if every element of a grading class is sent to one element by some

multiplication, the cardinality norm of this multiplication would still be less than or equal

to the bound of the number of elements in the grading classes. Thus, each multiplication

operator is not only bounded, but also uniformly bounded. Finally, in the case of an
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N cycle, semigroup constructed above, though useful for the finite and Z cycle cases,

will not always be bounded. We will show that in this case, A can still be realized as a

semigroup operator in a bounded semigroup by modifying the above construction.

First, we take the operator A and extend it to a new operator A′, which, for r the

cardinality norm of A, has exactly r basis elements going into every strictly positive

grading class basis element under applying A. For example, if the cardinality norm of A

is 2, then each basis element in the positive grading classes of A′ would have two elements

going into it under A′, and would be equal to Akd for some 0 a-grading class element d,

and k ∈ N ∪ {0}, as shown in Figure 3.4.

F

A

C D

E

B

Figure 3.4: An infinite N cycle with B as the multiplication.

We then preform the construction given above for N cycles to get a semigroup S ′.

Since M here is the set of 0 a-grading elements, and by construction xy = aky for

x < y, x, y ∈ M , we have that S ′ restricted to the original basis elements of A is a

subsemigroup, and so we need only show that S ′ is a bounded semigroup. First, we note

that left multiplication by each 0 a-grading class element is bounded. Indeed, if c is a

0 a-grading element, then Lc acts as the identity on any branch of hairs bigger than c

in the ordering. However, for m the cardinality norm of A′ there are only mk (k the

length of c as a hair on the cycle) 0 a-grading elements on which Lc does not act as the

identity. Thus, Lc is bounded in cardinality norm by mk when we restrict the domain

to 0 a-grading elements, and then bounded by mk−1 when we restrict our domain to 1

a-grading elements, and so on until we look at the k a-grading elements, on which it acts
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as the identity. Thus Lc is a bounded operator, and in general, for every 0 a-grading

element d, Ld is bounded. To show that the entire semigroup is bounded, we just note

that every other element b in the semigroup S ′ is equal to akd for some k ∈ N and d a 0

a-grading element, and thus Lb = (La)
kLd. Since both of these operators are bounded,

Lb is bounded, and so S ′ is a bounded semigroup. Thus, if a commutative, connected,

semigroup operator is bounded, then it can be realized from a bounded semigroup.

The possibly unbounded semigroup case follows immediately, since the forward di-

rections of the above proof did not require the boundedness property of the semigroup

(with the exception of course that the basis map operator was bounded).

Corollary 3.2.1. (Classification of Pointed, Connected, Commutative, Semigroup Op-

erators)

Let (A, a) be a pointed (possibly unbounded) basis map operator whose graph is con-

nected. Then A is a semigroup operator from a commutative, and unital semigroup with

multiplication coming from a if and only if one of the following cases holds:

1. The cycle of A is of finite type with a maximal length to the hairs going into it and

a is a second furthest hair away from the cycle, which has a predecessor.

2. The cycle of A is of N type with a as an element in the 1 grading class, which has

a predecessor.

3. The cycle of A is of Z type with hairs of length at most a fixed length, with a as a

second furthest hair away from the cycle, which has a predecessor.

As well, the possibly non-unital follows.

Corollary 3.2.2. A connected basis map operator A can be realized as a La with a in

some connected, commutative semigroup S if and only if it can be realized in a unital

one. For the pointed basis map operator (A, a), a has to be a hair whose length is the

maximum length k, or k − 1.
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In the previous discussion about semigroup matrices and their corresponding graphs,

there was some ambiguity in the infinite case about the cycle of a graph since for infinite

cycles, a cycle of a graph that had a Y branch or an N cycle with a bunch of finite hairs

coming out of it need not be unique. The above lemma gives the cycle a clear definition

for connected pointed semigroup operators as the unique infinite cycle in a Z cycle if

S is commutative, or as the identity along with the powers of the basis map operator

from which the graph arises (the N cycle case). However, unlike in the finite and Z cycle

cases, the cycle in the N cycle case need not be an ideal12 of the connected subsemigroup

generated by the element the multiplication comes from. This in particular highlights

the main difficulty in constructing semigroups in this case, since not having the cycle as

an ideal limits us from easily defining multiplications on the various hairs of the basis

map operator.

3.2.5 Pointed, Connected, and Non-Commutative Semigroup

Operators

From the previous discussion, we have a classification of the connected basis map op-

erators that come from commutative semigroups, and in this section we will deal with

the non-commutative case. While before we had some lemmas for getting a grasp on the

structure of commutative semigroups, in the non-commutative case we have fewer tools

to work with.

In both the finite cycle and N cycle type cases, all connected, semigroup operators

were possible as left multiplications in a commutative semigroup. Indeed, in the finite

dimensional case, the only real time commutativity became an issue was when one con-

sidered the orders of the cycles of the various components. However, in the case of a Z

type connected semigroup operator, we could not deduce that a Z cycle with an infinite

12There we note that an ideal in a semigroup S is a subsemigroup M for which SM ⊂M and MS ⊂M .
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branch going into it would be impossible in the non-commutative case. In this section,

we will work towards classifying these types of operators.

The main case to consider is when we have a connected graph of Z type such that

there are no branches of hairs of finite length (that is, every element has a predecessor

under the basis map operator, or equivalently, the basis map operator is surjective), and

we want the semigroup to have an identity. For this case however, the requirements on

the basis map operator are not as simple.

Proposition 3.2.6. Let S be a unital and connected semigroup with the graph of La being

connected and surjective, but not injective. Then S contains a subsemigroup isomorphic

to the bicyclic semigroup B =< a, h| ah = e >.

Proof. First, we note that since La comes from a connected semigroup, the connected

component of a in the graph of La has a cycle, and since La is surjective, the cycle can

not be a N cycle. Likewise, the cycle can’t be finite since surjectiveness implies that

any hair of positive length would have to have an infinite branch of hairs going into it,

making it impossible to be a semigroup operator, while if it has no hairs, it would have

to be injective. Thus, the cycle of La must be a Z cycle, and it would have to have at

least one infinite branch of hairs going into it at some point (since it is not injective).

Moreover, a must be such an element at some intersection due to Lemma 3.2.2. Thus, a

must be at a vertex on the graph with e as one predecessor, h as a predecessor of e, and

ha as another predecessor of a (since a(ha) = (ah)a = ea = a).

The subsemigroup generated by a and h in S must be the bicyclic semigroup B =<

a, h| ah = e >, or a quotient semigroup of it. We now show it must be the former.

Suppose there is some relation in the subsemigroup generated by a and h, say, hmak =

hm−k+lal for some m, k, l ∈ N∪ {0} (note that the relation must be between elements in

the same grading class under a, otherwise the resulting subsemigroup would not be of Z

type, and here h is in the −1 grading class, so the class of these two elements is k −m).

Now, k must be either strictly bigger or strictly smaller than l, otherwise the relation is
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trivial. Without loss of generality, we will assume that k is smaller than l.

Since k < l, we right multiply the relation by hk, which gives,

hm(akhk) = hm−k+l(alhk)⇒ hm = hm−k+lal−k

⇒ am(hm) = am(hm−k+lal−k)⇒ e = hl−kal−k

⇒ al−k−1ehl−k−1 = al−k−1(hl−kal−k)hl−k−1 ⇒ e = ha.

This contradicts the fact that ha was different from e, and so the subsemigroup generated

by a and h can only have the relation ah = e. Thus, S must contain a subsemigroup

isomorphic to the bicyclic semigroup.

We remark that the above theorem states that the bicyclic semigroup is the “simplest”

example of a connected semigroup of Z type with no hairs. While there are more examples

of such connected semigroups (and more possible types of basis map operators that arise

as semigroup operators), we will have to leave this question for a later time, due to their

complicated nature.

3.3 General Case

3.3.1 Finite

While the case of connected basis map operators in non-commutative semigroups is rather

complicated, the more general cases for basis map operators in commutative or finite

semigroups is much more tangible. We start with the case of finite semigroups.

Theorem 3.3.1. Let A be a basis map operator over a finite dimensional Hilbert space,

then A can be realized as a La for a in some unital semigroup S if and only if the orders of

the cycles in the cycle decomposition have a common multiple and the length of hairs on

all the cycles is less than or equal to the maximum hair length on some cycle of maximum

order.
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Proof. First we show the forward direction. Let A = La for some a in a semigroup S. By

finiteness of the Hilbert space, we know that each component of the graph of La has a

cycle, so La has a cycle decomposition. Now, for k the length of a as a hair on its cycle,

ak+1 is in a cycle of order n, ak+1+n = ak+1, so for any c ∈ S, ak+1+nc = ak+1c. Thus,

ak+1c is in the cycle of the component of c in the graph of La, meaning that hair lengths

on all the cycles is bounded by the length of the hairs on the component of a. Moreover,

since ak+1+nc = ak+1c, the order of the cycle of the component of c must divide n. This

proves the forward direction.

For the reverse direction we wish to construct a semigroup S with La = A for some

a ∈ S. We take a hair going into the largest cycle that is the furthest away from the cycle,

call it e and let a be its image under A. Next, we fill in the rows of the multiplication

table with the powers of a as the powers of A, like done before in the injective basis map

operator case, and call this the a-semigroupoid. Associativity of this semigroupoid is

equivalent to the condition that Lab = LaLb for the composeable products ab, meaning

that Laal = LaLal = Ll+1
a , l ∈ N, as mentioned in Lemma 3.1.4. Letting k be the

length of the hair e and n the order of the cycle that a goes into, for l < k + n we have

associativity by definition, however, for l ≥ k + n we have that ak+n = ak, so we must

show that Lak = Lak+n = LaLak+n−1 . Since we have that all the hairs of A are of length

k or less, we have that after taking Lka, we have that all the hairs have gone into their

respective cycles, and so, like in the case of finite injective basis map operators, by the

fact that the orders of the other cycles divides n, we have that applying A n more times

gives us Lak+n = Lak = LaLak+n−1 .

Now we extend the a-semigroupoid to the other elements in its connected component.

To do this, for f, x in this component, we define fx the same way as it was defined in

Theorem 3.2.1. As shown before, this is associative, so we extend these left multiplications

to include the rest of the components. Here, we define fd, where f is in the connected

component of a and d in any other component as akd, where k is the k in the definition
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of fx = akx used in Theorem 3.2.1, for multiplication betweens hairs x that are larger

than f on the connected component of a. This multiplication is associative on this

semigroupoid, since there can be only one x in any composable product, where x is in

another component. So we can only get a product of the form f(dx) = f(akx) = ak+lx,

where l is the corresponding k value of f in the definition of its multiplication on the

connected component, and likewise, (fd)x = (akf)x = ak+lx (assuming that f > d on

the hair ordering used in the construction, but similarly follows for f < d).

Thus the a-semigroupoid has been extended to the connected component of a, so we

need only extend the it to the rest of the elements. Like in the injective case, we define

ij = i for i outside the connected component of a. To show that this is associative, we

note that any extended i, LiLx = Li = Lix, and also LaLi will equal the matrix with

the i column of La in all the columns, which equals Lai. Hence, this multiplication is

defined everywhere, associative, and has that A = La, so the reverse direction is done as

well.

Corollary 3.3.1. Let A be a basis map operator over a finite dimensional Hilbert space,

then A can be realized as a La for a in some (not necessarily unital) semigroup S if and

only if the orders of the cycles in the cycle decomposition have a common multiple and

the length of hairs on the smaller cycles is less than or equal to length of some hair of

maximum length plus one on some largest cycle.

Proof. Adjoining on an identity to the semigroup gives us a unital semigroup and by

Theorem 3.3.1, the lengths of the hairs on La in the unitization is less than or equal to

the length of the maximum hair length on the connected component of a in the graph

of La. Removing the identity, we get that the hairs on the other cycles must be at most

one more than the maximal hair length of the a component of the original La, giving the

forward direction.

For the reverse direction, we note that the semigroup constructed in Theorem 3.3.1

has the property that the only things that multiply to get the identity is the identity
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times the identity (with the exception of La being cancellative) since the multiplication

was defined to send everything into one of the cycles. Thus, we can take the La and add

a new element that is sent into a, perform the construction, and then remove the identity

again, giving us the desired semigroup S. In the case that La is cancellative, then there

are no hairs on the cycles, and the unital construction goes through immediately.

Similarly, the analogous theorem for commutative semigroup is also true.

Theorem 3.3.2. Let A be a basis map operator over a finite dimensional Hilbert space,

then A can be realized as a La for a in some unital commutative semigroup S if and

only if the orders of the cycles in the cycle decomposition have a common multiple and

a common divisor and the length of hairs on all the cycles is less than or equal to length

of the hair of maximum length on some largest cycle.

Proof. From Theorem 3.3.1, we need only show that the added condition of a common

divisor cycle is both necessary and sufficient.

For the forward direction we apply the same idea as before for the injective case.

Suppose we have a semigroup that is commutative, and let c and d be from cycles of

orders m and n respectively. Then for some power k of a, both akc and akd will be in

their respective cycles. Then, am(akc)d = (ak(amc))d = akcd, but anakcd = (anakd)c =

akdc = akcd. Thus, the element akcd must be in a cycle whose order is divisible by both

m and n.

Next, we have to show that having a divisor cycle is sufficient, granted that the length

of all the hairs are less than or equal to the length of a hair on one of the largest cycles.

We perform the same construction of the a-groupoid as done in Theorem 3.3.1, and

note that we just need to extend it to the rest of the multiplication table so that it is

commutative.

Like in the cancellative finite dimensional basis map operator case, we pick a dis-

tinguished element from each of the cycles in the other components, and let the divisor
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cycle’s distinguished element be called m. We define ij for these new elements to be am,

while ia = ai. Now we extend the grading equivalence classes to the other components

in the obvious way: x is equivalent to y if and only if alx = aly for some l ∈ N. Every

element now will be equivalent to some element in a cycle and we define multiplication

on all the other elements to act like their corresponding distinguished cycle elements via

the expanded grading equivalence classes.

For associativity, if we take a three product consisting of elements from the cycles,

then it will associate since the multiplication for this construction restricted to the cycles

is the same as the finite and cancellative case for commutative semigroups. Thus, any

three product of elements from the connected components that doesn’t contain a will

also associate since these left multiplications act like their respective elements in their

cycles. Thus, we need only show that a product containing one or two elements from the

a component and the rest from the others will associate (we know that three elements

from the a component will associate since our construction here, when restricted to this

component is the same as our construction for a connected, commutative semigroup).

First, let x be in the a component, and y, z in some other component. Then, x(yz) =

x(alcakd) where y acts like alc, z acts like akd, and c, d the distinguished elements on

their respective cycles. However, x(alcakd) = x(al+k+1m), where m is the distinguished

element of the divisor cycle from the construction. Letting n be the grading equivalence

class of x, we have that this equals an+l+k+1m. For the other product, the equivalence

class of (xy) will be in the same one as an+lc, so when we multiply it by z, it will become

an+l+kcd = an+l+k+1m, so these products associate. Likewise, because of commutativity

of the multiplication, this case extends to the case when one of x, y, z is from the a

component, and the others not.

For the case that two elements x and y are both in the a component, and z is not,

then x(yz) will associate since it’s a composable product in the a-semigroupoid. Finally,

using commutativity again, this covers the case when exactly two of x, y, z are in the
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a component and the other not, and so the product x(yz) must associate. Thus, the

existence of a divisor cycle and the maximality of the hairs on a largest cycle are both

necessary and sufficient for finite, commutative, and unital semigroups.

In the exact same way as the corollary after the finite unital semigroup case, we also

have the finite, non-unital, commutative semigroup case as a corollary of the unital one.

Corollary 3.3.2. Let A be a basis map operator over a finite dimensional Hilbert space,

then A can be realized as a La for a in some (not necessarily unital) commutative semi-

group S if and only if the orders of the cycles in the cycle decomposition have a common

multiple and a common divisor and the length of the hairs on all the cycles is less than

or equal to length of the hair of maximum length plus one on some largest cycle.

3.3.2 Infinite and Possibly Non-Bounded, With Full Cycle De-

composition

The easiest case to deal with in infinite dimensions is when the semigroup can be un-

bounded. As we have seen from the injective case, having a bounded condition on the

semigroup can be rather limiting in terms of what kind of operators we can get, so re-

moving this condition will make constructing a desired semigroup much easier. As well,

we will consider in this section only what happens in the case that each component of

the basis map operator has a cycle.

The first case considered is for non-commutative, unital semigroups, and the basis

map operator has only finite cycles.

Theorem 3.3.3. Let A be a basis map operator over an infinite dimensional Hilbert

space which has a full cycle decomposition. If A has only finite cycles, then it can be

realized as a La for a in some unital (possibly unbounded) semigroup S if and only if the

orders of the cycles in the cycle decomposition have a common multiple and the length of
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hairs on the smaller cycles is less than or equal to length of the hair of maximum length

on some largest cycle.

Proof. We apply the same idea as the finite dimensional case. For the forward direction,

we note that a has to be connected to some cycle, and so an is in a cycle for some integer

n. Thus, an+k = an for k the length of this cycle. Thus, for any element in the cycle

decomposition of A, if we multiply it by An+k we must get the same as multiplying it by

An, and so the order of all the cycles must divide k. Next if we assume that some other

cycle has a hair of greater length than the ones on any largest cycle (call this element x),

then there is a non negative integer l such that ala is in a cycle, while alx is not. Thus, for

some k, al+ka = ala⇒ alx = al+kx. But al+kx can not be alx since if it did, then for some

i, al+ikx would be in the cycle of the component of x, but al+ikx = al+(i−1)kx = ... = alx,

contradicting the fact that alx is not in the cycle. Finally, there can’t be an infinite

branch going into the cycle of a since if there was, then there would be integers l, k such

that al = al+k, while using the above idea we can pick an element y that is more than

l + k elements from the cycle, giving us that aly 6= al+ky.

For the reverse direction, we apply the same construction as in the finite dimensional

connected case, and extend it to all the cycles here. Any three product here now will

reduce down to the subsemigroup generated by the three elements, which will be finite

by the construction, so by Theorem 3.3.1 it will be associative. Thus, this constructed

semigroup is indeed associative (though incredibly unbounded).

As expected, if one wishes for the semigroup to be commutative, then the additional

requirement is the existence of a cycle whose order divides the order of all the other

cycles.

Theorem 3.3.4. Let A be a basis map operator over an infinite dimensional Hilbert

space, with A having a full cycle decomposition, and only finite cycles. A can be realized

as a La for a in some unital (possibly unbounded) commutative semigroup S if and only if
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the orders of the cycles in the cycle decomposition have a common multiple and a common

divisor, and the length of hairs on all the cycles is less than or equal to length of a hair

of maximum length on some largest cycle.

Proof. First we show the forward direction. Let La be a semigroup operator from an

element a in a commutative semigroup S. Like in previous arguments, multiplying an

element in an m cycle by an element in an n cycle results in an element that is in a cycle

of an order that divides both m and n. Thus, there must be a cycle whose order divides

the order of all the other cycles, and also a cycle whose order is a common multiple of

all the others as well.

For the reverse direction, we just apply the same construction as in Theorem 3.3.2,

but use it for infinitely many cycles. For any three basis elements from A, there will

be a finite stage of the construction that will contain all three, and so the product will

associate in this bigger semigroup. Thus, this A can be realized as a La for some a in a

commutative, unital semigroup.

Again, like in the finite dimensional case, the corresponding theorem without the

unital condition on the semigroup follows as a corollary.

Corollary 3.3.3. Let A be a basis map operator over an infinite dimensional Hilbert

space with A having a full cycle decomposition, and only finite cycles. Then A can be

realized as a La for a in some (possibly unbounded and non-unital) semigroup S if and

only if there is a cycle whose order is a common multiple of the orders of all the cycles,

and the length of the hairs on all the cycles is less than or equal to the length of a hair of

maximum length plus one on some largest cycle. Likewise for a commutative semigroup,

also requiring a cycle whose order is a common divisor is both necessary and sufficient.

Proof. As before, the above constructions for the commutative and non-commutative

semigroups do not have any non-trivial product decompositions for the identity. Thus,
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we can just add an appropriate hair to the basis map operator, construct the desired

semigroup, and then remove the identity.

Next, we consider the case when some components may be of infinite type, but all

have a cycle. Since connected non-commutative semigroups of Z type have a rather

complicated structure, we will only consider the commutative case.

Theorem 3.3.5. Let A be a basis map operator over an infinite dimensional Hilbert

space, with A having a full cycle decomposition. Then A can be realized as an La for

some a in a commutative semigroup S if and only if the orders of the cycles have a

common multiple and a common divisor (with the understanding that an N cycle is “a

multiple of” a Z cycle, and both are multiples of any finite cycle), and if the multiplication

does not have an N cycle, then the length of all hairs is bounded by some finite number,

which is the maximum hair length on some cycle of largest order.

Proof. We show the forward direction first and assume that A = La for some a in a

commutative semigroup S. By Theorem 3.3.4 we may assume that there is at least

one infinite cycle for the basis map operator, and as such, it has a cycle whose order

is maximal. We also note that if there are no finite cycles, then there is a cycle whose

order divides all the orders of the cycles (either there is a Z cycle whose order divides

any infinite cycle, or there are only N cycles, in which all cycles divide themselves). If

there are finite cycles, then the product of any elements with an element from another

finite cycle must be in a finite cycle whose order divides it, and so there must be a cycle

whose order divides the orders of all the other cycles. For the case of there not being

an N cycle, by Theorem 3.3.4 we can assume that there is a Z cycle, and by Corollary

3.2.1 we know that one of these cycles (the one in the component that the multiplication

comes from) must have a hair of maximal length (call this length k) away from the cycle,

and this element is the identity of the semigroup. Now, take an element f that is in the

−1 grading class of a, then ak = ak+1f . If there is a hair of length greater than k on any
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of the finite cycles, then in particular there is one that is of length k+1 (call this element

h), so akh is not in any cycle, but ak+1h is. Now, akh = ak+1fh = f(ak+1h), however,

ak+1h is in a cycle, so for some l ∈ N, ak+1h = ak+1+lh. Thus, f(ak+1h) = f(ak+1+lh) =

ak+1falh = ak+lh. So akh, which is not in any cycle equals ak+lh, which is in a cycle,

giving us a contradiction. Finally, consider the case that there is a hair of length k + 1

on another Z cycle component. Then there are two elements h, z in this component such

that ak+1h = ak+1z, but akh 6= akz (h is the hair of length k + 1, and z is in the cycle of

the component), but since ak = ak+1f , ak+1h = ak+1z ⇒ fak+1h = fak+1z ⇒ akh = akz,

another contradiction. Thus the forward direction is done.

Now we show the reverse direction and construct a commutative semigroup S from

which A arises. Letting a be the image of a hair of maximal length in a maximal cycle,

we preform the same construction as in Theorem 3.2.1 for the connected component of

a (which we denote as S0) but extend it to include the other cycles as well. For x ∈ S0,

y ∈ S − S0, define xy and yx as aGa(x)y. In the case that the connected component of

a is an N cycle or a finite cycle the above definition works fine, but if the connected

component is a Z cycle, and x has a negative grading, then it is not well defined. For

this case, we instead define xy as the element y′ in the cycle of the connected component

of y such that for some sufficiently large k ∈ N, aky′ = ak+Ga(x)y.

Next, we use the same idea as in Proposition 3.1.3 to define the multiplication on the

rest of the elements by selecting a distinguished element yi from all the other cycles in

the cycle decomposition, and then extending the grading functor to these components.

Explicitly, this extension is given by Ga(y) = j if and only if aky = ak+jyi, where yi

is the distinguished cycle element in the connected component of y. Finally, the for

x, y ∈ S − S0, we define xy as aGa(x)+Ga(y)c, where c is the distinguished element in the

common divisor cycle.

This multiplication is now totally defined, so we need only show that it is associative.

From Theorem 3.2.1 we know that for x, y, z ∈ S, x(yz) = (xy)z. If x, y ∈ S with



Chapter 3. The Semigroup Problem 67

both a-gradings non-negative, and z ∈ S − S0, then x(yz) = x(aGa(y)z) = aGa(x)+Ga(y)z,

while (xy)z = kz = aGa(x)+Ga(y)z, where k is some element in S with a a-grading of

Ga(x) +Ga(y).

If x, y ∈ S with at least one of their a-gradings negative, and z ∈ S − S0, then

x(yz) = x(aGa(y)z0) = aGa(x)+Ga(y)z′ (where z′ is in the cycle of the connected component

of z and z0 is either z or z′ depending on if the a-grading of y is negative), while (xy)z =

kz = aGa(x)+Ga(y)z′, where k is an element in the cycle of the connected component of a

with a a-grading of Ga(x) +Ga(y) (here we note that the construction used in Theorem

3.2.1 makes the multiplication of a negative grading element with any other element in

the connected semigroup part of the cycle automatically, and so kz will indeed be in the

cycle even if Ga(x) +Ga(y) > 0).

Next, if x ∈ S, and y, z ∈ S − S0, then x(yz) = x(aGa(y)+Ga(z)c) = aGa(x)+Ga(y)+Ga(z)c,

while (xy)z = (aGa(x)y0)z = aGa(x)+Ga(y)+Ga(z)c, where y0 is either y (if the a-grading

class of x is non-negative), or the grading equivalent element in the cycle of y (if the

a-grading class of x is negative). Finally, if x, y, z ∈ S − S0, x(yz) = x(aGa(y)+Ga(z)c) =

aGa(x)+Ga(y)+Ga(z)c, while (xy)z = (aGa(x)+Ga(y)c)z = aGa(x)+Ga(y)+Ga(z)c. The rest of the

possibilities for products follow from commutativity, and so the defined multiplication is

associative, and hence S is a semigroup with A arising as La.

3.3.3 Infinite and Possibly Non-Bounded, Without Full Cycle

Decomposition

Now, the case of a basis map operator without all connected components having a cycle

should be examined. These operators require more investigation to understand how they

behave inside a semigroup, and so we start with some lemmas.

Lemma 3.3.1. Let S be a semigroup, and a ∈ S. If the graph of La has a component

that does not have a cycle, then La must have a component that is an N cycle. Moreover,
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if c ∈ S is in a component that does not have a cycle, then any product cz can not be

in an N cycle, and in particular, if b ∈ S is in a component of La with a Z cycle (or

a finite cycle of order n) then the product bc must be in a component with a cycle (or a

finite cycle whose order divides n if b was from a finite cycle of order n).

Proof. For the first assertion, we have the possibilities that a is on a component with

an N cycle, it is on a component with a Z cycle, it is on a component with a finite

cycle, or it is on a component without a cycle. If the component of a had a finite cycle,

then for some k, l ∈ N, ak = ak+l, and so (La)
k = (La)

k+l. Thus, for any element in

the component without a cycle, after multiplying by a on the left k times, the resulting

element will have infinitely many predecessors, contradicting Proposition 3.2.2. Likewise,

Proposition 3.2.5 tells us that the connected component of a must have a cycle, so we

just need to show that the connected component of a can not have a Z cycle.

Suppose it did, then for some power k of a, ak has an infinite number of predecessors,

and in particular has a predecessor in the −1 grading class. Call this element f and take

an element d on the component without a cycle that does not have any predecessors.

Then akd = ak+1(fd), and likewise, for any l ∈ N, akd = ak+l(f ld). So akd must have an

l-th predecessor for any positive integer l, contradicting the fact that Proposition 3.2.2

says that all the element must have only a finite number of predecessors. Thus, a must

come from an N cycle.

For the second part, we can do a similar trick to the above. Assume that the product

cz is in an N cycle, where z is in some cycle. Now, cz must have only a finite length

(say l) to its predecessors under La, so we pick a c′ in the component of c such that

akc = ak+l+1c′. Then ak(cz) = ak+l+1(c′z), so ak(cz) must have a k+ l+1-th predecessor,

which is a contradiction. Thus cz can not be in an N cycle.

Finally, if b is in a component with a cycle that is of Z type, then for some k ∈ N, akb

has an infinite branch of predecessors. Hence, for any l ∈ N, there is an b′ ∈ S such that

ak(bc) = ak+l(b′c), so ak(bc) must have a k+ l-th predecessor, in particular, it can’t have
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only a finite number, thus the component it belongs to must have a cycle, and moreover,

one that is not an N cycle. In the case that b is in a component with a finite cycle, then

for k, l ∈ N, k < l, ak(bc) = al(bc), so bc must be in a component with a finite cycle

under La.

We note that in the above lemma, zc can be in an N cycle if z is. One reason for

this is because was can still do the idempotent trick for the non-commutative case, which

leads us into the next theorem.

Theorem 3.3.6. Let A be a basis map operator with at least one of its components not

having a cycle. Then A can be realized as a Lb for some unbounded (unital) semigroup

S if and only if A has an N cycle.

Proof. Lemma 3.3.1 gives the forward direction, so we need only prove the reverse im-

plication. We pick the second element in some cycle of the N cycle component, and call

it a. Using A, we can define La and all of its powers by Le = I (where e the predeces-

sor of a), La = A, La2 = A2, and so on. This gives a semigroupoid such that the left

multiplications on the cycle are defined.

Next, we extend the multiplication to be defined on the rest of the connected compo-

nent of a in the same way as was done in previous, noncommutative cases. Specifically,

we define the multiplication as in Theorem 3.3.5, but only for left multiplication of the

connected connected component of a (note that is did not need cycle elements in the

other components when a was in an N cycle).

As before, for all elements i outside of the connected component of a, we define ix = i,

for any x. By the same argument as in Theorem 3.3.1, this multiplication is associative

and defined on the entire semigroup, so we are done. Finally, we note that if we did

not want a unital semigroup, we could have just picked a to be the first element in the

cycle, and the same construction without using e would give a non-unital semigroup with

La = A.
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In a similar way, some parts of the commutative case can also be handled like in the

finite cases.

Theorem 3.3.7. Let A be a basis map operator with at least one of its components not

having a cycle. If A has a component with a Z cycle or a finite cycle, then A can be

realized as a La in a commutative (unital) semigroup if and only if, A has an N cycle

and a component with a cycle that divides the types of all other components with a cycle.

Proof. For the forward direction, we know that Lemma 3.3.1 requires that there is an

N cycle, and from previous proofs we know that if c and d are in finite m and n cycles

respectively, then the product cd will have to be in a cycle whose order divides both m

and n. Thus, there must be a component with a cycle whose order divides the orders of

all other components with a cycle, and so the forward direction is shown.

Now, we wish to prove that a basis map operator with an N cycle, and a divisor

cycle, must exist as a left multiplication in some commutative (and unital) semigroup.

We start with the same idea as before in Theorem 3.3.6, and define multiplication by

a (where a is an element with a predecessor in the 1-grading class of the N cycle), as

A. Likewise, we can continue and define multiplication on the other elements in the

connected component of a with the same construction as the previous theorem. We

obtain a semigroupoid that is associative for the composable products, and now wish to

extend it to multiplication between elements of the other components. For this, we do

the same idea as before with distinguished elements in each of the components and define

multiplication between the other components by summing their corresponding, extended

a-gradings, and taking the element with that a-grading in the divisor cycle as the result.

For the same reasons as before, this multiplication will associate, and so gives the desired

commutative semigroup.

We are now left with the case that the basis map operator has at least one component

without a cycle, and every component with a cycle is of N type. We establish some more
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lemmas regarding the possibilities in this case.

Lemma 3.3.2. Let S be a commutative semigroup, and a ∈ S. For any element f in a

component of the graph of La that does not have a cycle, if fm and fn are in the same

component, then this component must have a cycle. In particular, if La has only a finite

number of components without a cycle, then there must be a component that does have a

cycle and is of type Z or finite type.

Proof. We first show that if f 2 can not be in the same component as f . Suppose it

was, then for some i, j ∈ N, we have that aif 2 = ajf . We note that if i > j, then

aif 2 = ai−j(ajf)f = ai−j(aif 2)f = a2(i−j)(ajf)f 2 = a3(i−j)(ajf)f 3, and so on. This

means that aif 2 must have an infinite chain of predecessors (since i − j > 0), and so

the component of f must have a cycle. Thus, we only have to deal with the case that

i ≤ j. The idea we wish to use now is that the elements of this component must respect

a particular grading structure with respect to a, but unlike in the a component, there is

no obvious reference point as to which equivalence class is which. So we will just keep

checking each grading class preceding the class of f until we find the right now.

Specifically, we start by choosing some element c such that akf = ak+1c for some

k ∈ N. Moreover, we may assume that k is large enough that k > i. Then, a2k+2c2 =

a2kf 2 = a2k−i(aif 2) = a2k−i(ajf) = ak−iajakf = ak−i+jak+1c = a2k−i+j+1c. Since (2k −

i + j + 1) − (2k + 2) = (−i + j) − 1, we see that amc2 = anc, but n −m = (j − i) − 1.

Thus, if i < j for f , we can just replace f with the described c so that the new difference

(j − i) in the equation aif 2 = ajf is decreased by 1, and we can do so inductively until

we get a difference of −1, and then use the first case on this new element. Thus, if f 2 is

in the same component as f , then the component of f must have a cycle.

For the more general case that aifm = ajfn, we use the same idea as the above.

Without loss of generality, assume that n < m. If i > j, then aifm = ai−j(ajfn)fm−n =

ai−j(aifm)fm−n and so on, giving an infinite branch of predecessors for aifm. For the

case that i ≤ j, we use a similar idea as before and take c in a previous grading class of f .
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There is a k such that akf = ak+1c, where k ∈ N and k > i, and so amk+mcm = amkfm =

amk−i(aifm) = amk−i(ajfn) = amk−i+jfn = amk−i+j−nk(ankfn) = amk−i+j−nk(ank+ncn) =

amk−i+j+ncn. Taking (mk − i + j + n) − (mk + m) = −i + j + n − m, we note that

this is less than j − i since n < m, so applying this process inductively, we can find an

element d such that aidm = ajdn with i > j, putting us back in the first case. Thus, if

the component of a power of f is the same as the component of a different power of f ,

then the component must have a cycle.

Finally, if La has only a finite number of components without a cycle, then there must

be a cycle of Z or finite type. If not, then multiplication by an element in a component

without a cycle will eventually have to have a power in the same component as another

different power, which contradictions what was shown above.

The above lemma tells us in particular that the case of having only finitely many

components without a cycle is only possible if there is a dividing cycle to go into, which

was covered in Theorem 3.3.7. Thus we can restrict our attention to the case that there

is at least one N cycle, and infinitely many components without a cycle.

In addition, the above also tells us that in this case in the quotient semigroup of a

commutative semigroup S by the connected subsemigroup generated by a a such that

La has a component without a cycle, the multiplication by any image of an element in a

component without a cycle inside the quotient semigroup, must either have at least one

N cycle, or at least one Z cycle. The next lemma shows that the former is always the

case.

Lemma 3.3.3. Let S be a commutative semigroup, and a ∈ S. For any element f in a

component of the graph of La that does not have a cycle, there is no element d ∈ S such

that fkd is in the same component as fk, and the components of fk and d both do not

have a cycle.

Proof. We proceed with a similar idea as before. Suppose that fd is in the same com-
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ponent as f , then for some i, j ∈ N, aifkd = ajfk. If i > j, then aifkd = ai−j(ajfk)d =

ai−j(aifkd)d = a2(i−j)(ajfk)d2 and so on. Thus aifkd has finitely many predecessors, and

so the component of fkd (and hence fk) must have infinitely many predecessors. Now,

if i ≤ j, we just pick an element g in the component of d such that ald = al+mg. Then

alaifkd = al+maifkg, and if m is chosen sufficiently large enough, then we are in the case

of i > j and by the same logic, for some n ∈ N, anfkd would have to have an infinite

number of predecessors, and thus the connected component of fkd would have to have a

cycle.

In particular, this shows that in the main case we are concerned with (La has at least

one N cycle, infinitely many components without a cycle, and no other components),

multiplication in the quotient semigroup by the connected component of a must have

only multiplications that are of N type when one restricts their attention to only the

components without a cycle.

With further investigation, one can see that a construction in the final case of an

N cycle and the rest of the components without a cycle part, would involve a clever

definition of multiplication so that the component multiplication would respect the length

of predecessors on each of the components. While this is possible, we will leave this

problem for a later time.

3.3.4 Bounded and Commutative, with Full Cycle Decomposi-

tion

The final case that we will consider here is the bounded and commutative semigroup

case, with every component of the basis map operator having a cycle. Non-commutative

semigroups are more difficult to work with because of their lack of structure regarding

the connected components, and as such we will avoid dealing with this case. As stated, in

the commutative case we have a strong relationship between the connected components
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of an element and the multiplication on the semigroup.

Lemma 3.3.4. Suppose S is a bounded, unital, commutative semigroup S with a ∈ S.

Given b, c ∈ S, both in finite components of La, then the order of the cycle of bc must

divide both the order part of b and c. In the infinite case, if one of b and c are in an Z

cycle, then the product must be in a Z cycle.

Proof. By lemma 3.2.3, we may replace both b and c with x and y that are in the cycles

of their respective components. Then there is an n ∈ N such that an(xy) = (bnx)y = xy

for n the order of the cycle x is in. Likewise there is an m ∈ N such that am(xy) =

x(amy) = xy, and thus, xy must be in a component that is of an order that divides both

the orders of the cycles of x and y, and therefore, b and c.

In the infinite case, let c be in the Z cycle. Then c has an n-th predecessor d so

anbd = band = bc. Thus bc has an n-th predecessor for any n ∈ N, and so bc must be

in a Z cycle. All cases are covered by this since La can not have both infinite and finite

cycle components if the semigroup is bounded.

First, we classify the case of basis map operators containing only finite cycles in their

cycle decompositions.

Theorem 3.3.8. Let A be a bounded basis map operator over an infinite dimensional,

separable Hilbert space, with A having only finite cycles in its cycle decomposition. Then

A can be realized as an La for a in some bounded, unital, and commutative semigroup

S if and only if there is a cycle of maximal order that is a multiple of the orders of all

the other cycles, there is a cycle that divides the orders of all the cycles (with this cycle

occurring infinitely many times), and the lengths of the hairs on all the cycles is less than

or equal to the length of the hairs on some cycle of maximal order.

Proof. The only difference between this theorem and the previous Theorem 3.3.4 is the

necessary and sufficient condition of there being infinitely many cycles of the smallest
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order to give boundedness of the semigroup. First, if A arises in a bounded semigroup

S, we note that the set consisting of the union of all the cycles gives us an ideal of the

semigroup, and in particular is a subsemigroup of S. This subsemigroup is bounded,

with the cycle part of A arising as the cycle part of Lc for some c in one of the cycles (in

particular, one example would be Lak+l , where k is the maximum length of the hairs on

the cycles, and l ∈ N such that the a-grading class of ak+l is 1). By Proposition 3.1.7,

we know that this semigroup must have its smallest cycle occurring an infinite number

of times.

In a similar way, assuming that the smallest cycle occurs an infinite number of times,

we can construct a semigroup for which A arises as some La. This can be done in a

similar way as in Proposition 3.1.7, except we use a modified definition of the semigroup

T used.

Here, if there is only a single cycle type of maximal order, then we take this component

(which we will denote M) and we add a single copy of each of the other cycle types of A

to form a basis map operator A′. If there are two or more cycles of the maximal order,

then we add an extra copy of this cycle to the above as well. We then add hairs to every

element in each component of A′ that is not M , such that the cardinality norm is the

same as A, the maximum hair length is the same as A, but if we add any more hairs to

any component other than M , one of these properties will fail to hold.

Now, we apply Theorem 3.3.2 to this modified version of A′, with the multiplication

coming from the component M , and call the resulting semigroup T . Two important

things to note here is that when we multiply together any two element that are not in

M , then we get something in the smallest cycle, and also that when we take x /∈M and

multiply it by y ∈ M , we get aky for some k ∈ N. These two facts will be important

since we can remove any component (other than M and the smallest cycle) or remove

any number of hairs from any component other than M (with the understanding that

if one removes a hair, you must remove all of its predecessors as well), and still get a
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subsemigroup of the constructed semigroup T .

From here, we construct the semigroup as in Proposition 3.1.7 using the above defined

semigroup T instead, treating the component M as being a different component type than

any of the others (this is done so that if we have another component with a cycle of this

type, then the only way we can multiply to get to an element in this cycle is to multiply

this cycle by something in M , which allows us to remove hairs from this component to

form a subsemigroup). The semigroup we get from this (call it S ′) now has the correct

number of components and component types, but has too many hairs on every component

other than M . However, as stated before, since we can remove any collection of hairs we

like from the components other than M , so we can remove all the hairs that are not in

A, and get that A arises as La for some a in the component M in this subsemigroup S

of S ′. This finishes the reverse direction, and completes the proof.

In a similar way, one can also the analogous theorem for the infinite, non-separable

case by requiring that the cardinality of the smallest cycle must be the same as the

dimension of the Hilbert space.

The next case to consider is when the cycle decomposition has only Z cycles.

Theorem 3.3.9. Let A be a basis map operator over an infinite dimensional, separable

Hilbert space, with A having only Z cycles in its cycle decomposition. Then A can be

realized as an La for a in some unital commutative, bounded semigroup S if and only if

A is bounded and there is a p ∈ N such that every component of the graph of La has at

most p elements in each grading equivalence class.

Proof. We start with the forward direction. If A has only Z cycles, then we know from

Lemma 3.3.1 that all the components of A must have a cycle part. Furthermore, we

know from Theorem 3.2.1 that the component that A = La comes from has all its hairs

being at most k iterations of La away from the cycle part, for some k ∈ N. Now, looking

at any other component, if there are two elements c and d in it such that akc 6= akd but
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ak+1c = ak+1d, then we let f be an element in the cycle part of the component that La

comes from, in the −1 grading class. Then ak+1cf = ak+1df ⇒ (ak+1f)c = (ak+1f)d ⇒

akc = akd, and so all the components of La must have hairs of length at most k away from

the cycle part. Since A must be bounded, it must have a cardinality norm of at most

some m ∈ N, and so the grading classes of A must have at most mk elements in them

since every element in a particular grading class is a predecessor of the cycle element of

that grading class times ak (denote this by z). Because hair lengths are bounded by k,

and the cardinality norm by m, z has at most m immediate predecessors, and each of

those have at most m, and so on until we have at most mk predecessors of z that are

in the particular grading class. Thus, the number of elements in each grading class is

bounded by mk, and so they are uniformly bounded, which finishes the forward direction.

For the reverse direction, we pick a component that has hairs which are k iterations

away from the cycle part, and let a be a hair that is of length k − 1, which also has a

predecessor. Here now, we extend the basis map operator A to A′ which includes new

basis elements, such that every element has exactly l distinct predecessors (where l is

the cardinality norm of A) except for the elements which are exactly k iterations away

from the cycle part of their component, which have no predecessors, in a similar way

as done in Theorem 3.3.8. From here, we use the same construction that was used in

Theorem 3.3.8 for defining multiplication on the connected component of a, and call

this connected semigroup S ′. We note that the logic for showing that the products were

associative before also holds here as well.

Next, we have two cases to consider: the case where A has finitely many connected

components, and the case where it has infinitely many. In the first case, we let m be the

number of connected components that A has, and we construct the semigroup S ′ ⊕Nm,

where Nm is the first m non-negative integers with the maximum as the multiplication.

We can then form the desired semigroup S as a subsemigroup of this direct sum by first

removing the basis elements of the form (b, 0) from the connected component of A that
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were added to it in the construction of A′, and then removing the elements (x, i) that do

not appear in the graph of A (there is a lot of possible ways of doing this, but any way

will work). This gives a semigroup with A arising as L(a,0).

For the second case of A having infinitely many connected components, we can just

apply the same construction as in the above, but with N∪{0}, where the multiplication

is just the usual addition on N, and we remove elements in a similar way as in the finite

number of components case.

Finally, we need to be sure that the multiplication defined above is actually bounded.

In the case of a finite number of components, for fixed elements (w, z) and (x, y), if

(w, z)(c, d) = (x, y), then we must have that both wc = x and zd = y. The maximum

number of c’s that can satisfy the first equation is lk, where k is the maximum hair length

of La in S ′, and l is the cardinality norm of A, while the maximum number of d’s that

can satisfy the second equation is m (the size of the second summand’s semigroup). Thus

the maximum cardinality norm for the left multiplications in this constructed semigroup

S is lkm, so S is not only bounded, but uniformly bounded. Lastly, in the case of there

being infinitely many components, the only difference is in the second equation zd = y.

Here, since the multiplication on the second summand is cancellative, the maximum

cardinality norm for the left multiplications in this case is lk, and in particular, is again

uniformly bounded. Thus, we have indeed constructed the desired semigroup for the

reverse implication, and so we’re done.

The above condition on the uniform finiteness of the equivalence classes of the basis

map operator need not be required for the case of N cycles. However, in the cases that

it does hold, an easy construction can be used to obtain a bounded semigroup with the

desired basis map operator, if we also assume a uniform bound on the hair lengths as

well.

Theorem 3.3.10. Let A be a basis map operator over an infinite dimensional Hilbert

space, with A having a full cycle decomposition, and only N cycles in this decomposition.
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Moreover, suppose that on each component of the graph of A, the length of every hair

is at most some fixed number k. Then A can be realized as a La for a in some unital

commutative, bounded semigroup S if and only if A is bounded.

Proof. We will construct a semigroup for which A arises as a La for some a in the

semigroup by applying Theorem 3.3.9 to a modified basis map operator. We select any

component of the graph of A which has a hair of length k, and for every other component

we extend the multiplication by adding an infinite chain of predecessors onto the first

element of the cycle. This turns each of the cycle parts of these components into Z cycles.

Finally, for the component that was selected first, we look at all elements in this connected

component, which are predecessors of Ak−1+ia, i ∈ N, but are not predecessors of Ak−2a

(in terms of the graph, if one wished to find a path between a and these elements, one

would have to go through the vertex of Ak−1a). Out of all of these elements, we pick one

in the lowest grading class, and then add an infinite branch of hairs going into it. This

makes a a hair of length l − 1 of this new cycle, where l ∈ N and l ≥ k.

From here, we take the component of a, and form the basis map operator A′ with

the property that every element that is not a hair of length l has exactly m distinct

predecessors, where m is the cardinality norm of A, while the hairs of length l have no

predecessors at all. From here we note that each grading class of A has at most ml

elements, so we can construct the semigroup S ′ from Theorem 3.3.9. This makes a huge,

bounded semigroup, in which La restricted to some subset of the basis is A, but we need

to be sure that when we restrict to such a basis, the multiplication is still closed.

First, we note that for the component of a, since we chose to add the infinite branch of

hairs to an element in the lowest possible grading class, if we remove the infinite branch

of hairs, and the extra elements of A′ that we added, then we get a closed subsemigroup

on this component. This is true since if we multiply something that is a predecessor

of Ak−2a (in Theorem 3.2.1’s notation, these elements were the complement of set N)

by x in this component, then the result is just x times a power of a (which is closed in
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this subsemigroup), and if we multiply something in N by something else in N , then the

result is an element in the cycle whose grading is the sum of the gradings of these two

elements (which again is closed since the grading classes of N are all non-negative, and

for every element in N , there is an element in what remains of the old Z cycle which has

the same grading as it). This makes multiplication closed on this component.

For each of the rest of the components, we can remove the infinite branch of hairs that

we added to them and still have that the multiplication is closed since these elements

all have negative grading classes on their respective components. Then, as in Theorem

3.3.9, we can also remove the added hairs in these components for the same reason that

we could remove them in the connected component of a: xy = aky if x is not in N , while

xy is in the cycle (which for these components has all the non-negative grading classes)

if both x and y are in N .

Finally, the forward direction of the implication is obvious.

Using the above, with a slight bit of work, we can form a corollary that includes the

case of both N and Z cycles.

Corollary 3.3.4. Let A be a basis map operator over an infinite dimensional Hilbert

space, with A having a full cycle decomposition, and only N and Z cycles in this de-

composition. Moreover, suppose that on each component of the graph of A, the length of

every hair is at most some fixed number k. Then A can be realized as a La for a in some

unital commutative, bounded semigroup S if and only if A is bounded, and it is not the

case that A has infinitely many N cycles and finitely many Z cycles.

Proof. For the forward direction, we apply the same construction as in the case of Theo-

rem 3.3.10 except we separate the components by their cycle types. Then, we apply the

same idea as before, but when we form the direct sum semigroup, we include an addi-

tional factor of N2. Then, the components of type N are grouped into the components

corresponding to (S, n, 0), while the Z components are grouped into the components cor-
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responding to (S, n, 1). When we have a bijection between the set of N cycles and the set

of Z cycles, we can just take the subsemigroup of this semigroup, where we remove the

negative grading elements of the form (S, n, 0) (like in Theorem 3.3.10), while keeping

the rest of the form (S, n, 1). Here, we obtain A as L(a,0,0).

If there is no bijection between the semigroups, then we apply the idea of Proposition

3.1.7 and take an appropriate subsemigroup. That is, for infinitely many Z cycles and

finitely many N cycles (say k of them), we take the semigroup S⊕N∞⊕N2, where N∞

refers to the non-negative integers with maximum as the multiplication. We associate

the N cycles with elements of the form (S, n, 0), where n < k, and we associate the Z

cycles with elements of the form (S,m, 1), where m can be any non-negative integer.

From here, we take above semigroup, remove all the elements that are not of the above

form, and then we remove elements from each cycle component so as to get L(a,0,0) = A.

For the case of both N and Z cycles being finite in number, we can let m be the number

of N cycles, and n the number of Z cycles, and take the semigroup as S ⊕Nm+n ⊕N2.

Here we associate the N cycles with the elements (S, i, 0), i < m, and the Z cycles with

the elements (S, j, 1), j ≥ m. Taking the same subsemigroup then gives A as L(a,0,0).

Finally, boundedness follows from the fact that the above semigroups are subsemi-

groups of a bounded semigroup (the direct sum of S along with Nm, N∞, etc.).

The case of basis map operators consisting of N cycles without a uniform bound on

their norms is rather difficult since the cycle structure of the components do not in general

form a nice ideal like in the other cases, and makes the method of taking appropriate

subsemigroups of a direct sum of semigroups not as feasible as it would have to be to

obtain the desired classification result in this case. However, some beginning progress

can be made.

Proposition 3.3.1. Supposed that A is a bounded basis map operator arising as La

in some bounded, commutative semigroup S. Suppose furthermore that the graph of

A contains components that have uniform boundedness on the elements in the grading
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equivalence classes while other components do not. Then a must be on a component that

does have the uniform boundedness of the elements in the grading equivalence classes.

Proof. Suppose otherwise, then a is on a component without uniform boundedness of the

element in the grading classes. Let c be an element on a component with the boundedness

condition (moreover, let this bound be denoted l), and let b0, b1, ..., bk be a collection of

elements in the component of a that are in same grading class. Then cb0, cb1, ..., cbk are

all in the same grading class in the component of c, and thus, the cardinality norm of Lc

must be at least k/l (Lc sends this set of k elements to a set of l elements, so there must

be at least k/l elements that are sent to the same element under the map). However,

since we can pick any number of elements in the same grading class in the connected

component of a, we have that k can be chosen to be as big as we like. Thus, Lc is

unbounded, and we are done.

3.4 Applications

We have spent considerable time and effort trying to classify what a semigroup operator

looks like, but this is a somewhat local property and does not immediately tell us that

much about what the rest semigroup can be itself. However, as we have seen, there is some

global information attached to such a semigroup operator, as well as some restrictions as

to which basis element the multiplication comes from.

One example of an application of our results is in the area of extensions of partially

defined semigroupoids to semigroups. In general, this problem is rather difficult, but for

some cases (like the cases we have dealt with involving a single row being defined) the

problem can be solved explicitly. We can also extend the results to include the case of

allowing extra elements to be added to the multiplication table. We call this the Function

Extension Theorem.

Theorem 3.4.1. (Function Extension Theorem) Given a set B and a map f : B → B,
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there exists a semigroup B′, and f ′ : B′ → B′, such that B ⊂ B′, f ′|B = f , and f ′

is given by left multiplication of some element in B′. Moreover, the semigroup can be

chosen so that it is commutative.

Proof. We look at the structure of f as a basis map operator on the set B. We add new

elements ci, i ∈ N and d, to B (forming a set B′) and extend the definition of f to a

f ′ defined on B′ by f(ci) = ci+1 and f(d) = d. In terms of the graph structure of f ,

this process just adds a new component consisting of an N cycle, and a new component

consisting of a 1-cycle. Since f ′ as a basis map operator now has an N cycle, and a cycle

whose order divides the orders of all the other cycles (the 1-cycle), By Theorem 3.3.7,

there exists a semigroup multiplication on B′ such that f ′ is left multiplication by some

element in B′ (specifically in this case, it will be c1). Moreover, this semigroup is also

commutative.

We note that there is no corresponding theorem for extensions to bounded semigroups.

For example, as we have seen, no bounded semigroups can contain multiplications that

have infinite and finite cycles in them, or finite cycles without a least common multiple of

their orders. So the corresponding theorem for the above is dependent on some conditions.

We outline some broader cases.

Theorem 3.4.2. (Bounded Function Extension Theorem For Finite Cycles) Given a

countable set B and a map f : B → B with only finite cycles in its cycle decomposition,

there exists a bounded semigroup B′, and f ′ : B′ → B′, such that B ⊂ B′, f ′|B = f ,

and f ′ is given by left multiplication of some element in B′ if and only if the cycles in

the cycle decomposition of the basis map operator of f have a bound on the orders of the

cycles, there is a bound for the maximum hair length on these cycles, and as a basis map

operator, f is bounded. Moreover, the semigroup can be chosen so that it is commutative.

Proof. For reverse direction, since the orders of the cycles is bounded by some integer

k, we include a new cycle of order k! to f . Next, we add a branch of hairs of length l
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to this cycle, where l is the bound on the hair lengths for the other cycles. Next, we

include a countable number of cycles of order 1. By Theorem 3.3.8, we have that this

multiplication can be extended to the entire semigroup.

For the forward direction, we note that if there is no bound on the orders of the finite

cycles, then we can not form a finite cycle whose order is a multiple of all the others,

and so if we could extend the function, we would have to use an infinite cycle, and thus,

the semigroup can not be bounded. Likewise, if the maximum hair lengths do not have

a bound, then one of the cycles whose order is a multiple of all the other orders will have

to contain an infinite branch of hairs, and thus, it would have to again contain an infinite

cycle, making the extension unbounded. Finally, if the basis map operator of f is not

bounded, then it obviously can’t be extended to a bounded semigroup.

In a more complicated way, some other cases can also be handled.

Theorem 3.4.3. (Uniformly Bounded Function Extension Theorem For N Cycles) Let

B be a countable set and f a map from B to B, which as a basis map operator has only

N cycles in its cycle decomposition. There exists a bounded (commutative) semigroup

B′, and f ′ : B′ → B′, such that B ⊂ B′, f ′|B = f , and f ′ is given by left multiplication

of some element in B′ if and only if f , as a basis map operator, is bounded.

Proof. The forward direction is obvious, so we need only prove the reverse. Since f is

bounded, it has a cardinality norm of, say, k ∈ N. Using this k, we extend f so that for

every element z in its new domain which is not in the lowest grading class of its cycle,

there are exactly k elements y such that f(y) = z (that is to say, every basis element

has exactly k predecessors under f except those that are the in the 0-grading class of its

connected component). As well, we extend the multiplication to include countably many

connected components.

By Theorem 3.2.1, we know that if there was only one component, then this extended

basis map operator would be possible as a semigroup operator coming from a commuta-



Chapter 3. The Semigroup Problem 85

tive semigroup S ′. To account for infinitely many components though, all we have to do

is take S ′⊕Z, and we have that f ′ = L(a,0), where a is the element that the multiplication

arises from in Theorem 3.2.1.

For the case of there being both N and Z cycles however (or without a loss of gener-

ality, just Z cycles), the extensions to take do not seem as obvious.

Another application of the ideas from these sections is to extensions of semigroup

actions.

Theorem 3.4.4. (Semigroup Action Extension Theorem) Let S be a semigroup which

has an action φ(., .) : S×B 7→ B on a set B. Then there exists a semigroup T such that

T = S∪B, S is a subsemigroup of T and for s ∈ S, b ∈ B, sb = φ(s, b). Moreover, if the

action has a fixed point, and S is commutative, then T can be made to be commutative.

Proof. For this proof, we note that the semigroup S and the action φ determines the

multiplication for Ls, s ∈ S ⊂ S ∪ B. Like in the non-commutative cases, since we have

associativity for all composable products, we can define Lb, b ∈ B as Lb(x) = b for all

x ∈ S ∪B, and obtain an associative multiplication on all of S ∪B.

In the case that there is a fixed point of the action, we can apply the commutative

version of the construction where for s ∈ S, b ∈ B, bs = sb = φ(s, b), and for any

b, c ∈ B, bc = d, where d is the fixed point of the action. For the same reason as in

the previous theorems, this gives an associative multiplication on S ∪ B, which is also

commutative.

Finally, we end this section with one last application to finitely generated, commuta-

tive, connected, and bounded semigroups. First however, we need a lemma.

Lemma 3.4.1. Let S be a bounded, connected semigroup with La being connected. Denote

Dist(c, a) as the length of the hair c ∈ S to the cycle induced by a (if c is in the cycle, then
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we will define Dist(c, a) as 0). Then for c, d ∈ S, Dist(cd, a) ≤ maxDist(c, b), Dist(d, a).

Proof. Let Dist(c, a) = k and Dist(d, a) = m. Then akc = ak+i, and amd = am+j for

some i, j ≥ 0. Thus, for some i, j ≥ 0, (amax k,mc)d = amax k,m+id = amax k,m+i+j, thus

Dist(cd, a) ≤ maxDist(c, a), Dist(d, a).

This notion of distance to the cycle induced by a gives us a new method for deter-

mining structure properties of connected subsemigroups of a semigroup that is in a sense

transverse to the grading functor (the grading tells us which element in the cycle the

element corresponds to, while the distance tells us how far it is from the cycle).

With this, we are now able to show that for finitely generated commutative and

connected semigroups, boundedness is the same as uniform boundedness.

Theorem 3.4.5. Let S be an commutative, connected, unital, bounded semigroup. If S

is finitely generated, then it is uniformly bounded.

Proof. To prove this result, by commutativity and S being finitely generated, we need

only show that for any element a in the semigroup, sup
n∈N
||an|| is bounded. If La has finite

hairs, then we know that there must be a maximum length m to these hairs. Since La is

bounded, this means that Lma is bounded and has only hairs of length 1. Multiplying by

La again only shifts the hairs around the cycle part.

Now we have to investigate the cycle part. If La has a nice cycle part, say just one

finite cycle, or just one shift, then as we multiply by La, the cycle parts may increase (for

example, like the unilateral shift and its square), but the norms do not since as we recall

from the first proposition that the norm of La is determined by the maximum number

of arrows going to a particular point, and if the graph splits, then this cardinality norm

doesn’t change.

However, there is a possible problem if the cycle part is an infinite shift and there are

an infinite number of hairs. For example, one could imagine a Y shaped graph, and then
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split each leg of the Y into two new Y shapes and so on. As we continue to take powers

of this operator, the norm will increase.

We wish to show that if a semigroup does indeed have such an operator, then it must

be infinitely generated anyway. From commutativity, we know that the only case that

this can happen is when the cycle is of type N and the lengths of the hairs are not

bounded (for example the multiplication given by Figure 3.4).

Suppose that the hair lengths are unbounded and that the semigroup is finitely gen-

erated. Then for some elements, a0, ..., ak ∈ S, the semigroup generated by them is the

entire semigroup. However, each one of these must be a hair of finite length, and by

Lemma 3.4.1, all their products will always be a bounded distance away from the cycle

part (concretely, the maximum of {Dist(a0, a), ..., Dist(ak, a)}, where a is the multipli-

cation that the graph arises from). Hence, we have a contradiction, and so S in this case

must be infinitely generated, and thus, a finitely generated, commutative, and connected

semigroup that is bounded must also be uniformly bounded.

We note however that not all finitely generated commutative and connected semi-

groups are uniformly bounded. The boundedness condition is required in the above since

one could take any infinite but finitely generated semigroup and add a zero element z

(that is, zg = gz = z for any generator g). This makes the semigroup connected by Lz,

but Lz is unbounded since it sends everything to itself.

As well, we note that the requirement that S be commutative is required. As a

counter example, take S to be the bicyclic semigroup < a, h | ah = e >. Then this

semigroup is bounded, connected, and finitely generated, but the cardinality norms of an

tend to infinity as n tends to infinity.



Chapter 4

Basis Map Operator Properties

Before continuing on, it will be useful to first explore a little more about the semigroup

operators that were discussed in the previous chapter, but without having to refer to

the underlying semigroup. In this setting, it often more useful to work with basis map

operators instead of just semigroup ones.

As defined earlier, a basis map operator is an operator in B(H) that sends a basis

element to another basis element (equivalently, its matrix has exactly one 1 in each

column and zeros elsewhere). Each Ls ⊂ L(S) for s ∈ S is a basis map operator on

l2(S), but as seen before, basis map operators are more general than what the operators

Ls can be.

In this section we will explore some of the properties of basis map operators that will

be useful for the following chapters. In particular, we will be concerned with the Jordan

Canonical Form, as well as diagonalizability conditions for basis map operators in finite

dimensions.

As with any computation of the Jordan Canonical Form, we will have to find its

eigenvalues.

Lemma 4.0.2. Let W be a basis map operator over a finite dimensional Hilbert space,

then the eigenvalues of W will be the union of the an-th roots of unity for some finite
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collection of an ∈ N, and if W is not a permutation, then also 0.

Proof. Since W is a finite dimensional basis map operator, it has a cycle decomposition,

so we can take all of the elements in the cycles of W and permute the basis of the

basis map operator so that these k elements are at the beginning of the basis. Next, we

permute each of the hairs of length one (if there are any) so that they are next in the

basis. Likewise, continue this for the hairs of length two and so on.

Now, since the the first k×k block of this permuted basis map matrix is a permutation,

we can diagonalize that part of it. This now gives us an upper triangular matrix, with

diagonal entries consisting of the an-th roots of unity for some collection of an ∈ N

(comming from the permutation), and 0 for the rest of the diagonal entries since the

columns for the hairs of length one have their ones above the diagonal (the images of

these hairs are in the cycle), and likewise for the hairs of length two (their images are

the hairs of length one, which are before them in the reordered basis), and so on.

Thus, if W is just a permutation, then the eigenvalues will be a union of the an-th

roots of unity for some collection of an ∈ N, and if it is not a permutation it will also

include 0.

Theorem 4.0.6. (Jordan Canonical Form For Basis Map Operators) If W is a basis

map operator for a finite dimensional Hilbert space, then the Jordan Canonical Form of

W consists of Jordan 1-blocks with eigenvalues as a union of the an-th roots of unity for

some collection of an ∈ N, and the Jordan blocks for the 0 eigenvalue. The longest chain

of hairs (say, of length l) going into some element of the cycle gives a Jordan block of

size l, and then the next longest chain of elements (say, of length j) going into the cycle

or some basis element of the previous chain gives another Jordan block of size j, and

then the next longest chain of elements (say, of length k) going into the cycle or some

basis element of the previous chains gives another Jordan block of size k, and so on.

Proof. To prove this, we will give an explicit basis that will put W into its Jordan

Canonical Form. First, we take W and permute the basis so that the cycles come first.
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From Lemma 4.0.2, we know that these basis elements will give us the desired eigenvalues

for W with an appropriate change of basis on the cycle elements.

For the rest of the operator W , we take a hair a of maximal length going into the

cycle, and do a change of basis to send it to a − b, where b is an element in the hair’s

cycle whose grading class is the same as a. Likewise we do same for W (a), sending it

to W (a) − W (b), and so on for all W k(a)’s that are not in the cycle. Since for some

l ∈ N, W l(a) will be in the cycle, and W l(b) will have the same grading class as W l(a),

W l(a)−W l(b) will equal zero, and so once we have done the above change of basis, we

have that W restricted to these elements W k(a) −W k(b) form a Jordan block of size l.

We denote set of basis elements consisting of the cycle, and a along with powers of W

applied to it as the set M .

Next, of the basis elements that are not in M , we take an element c that is furthest

away from it (that is, some element such that for some j ∈ N, W j(c) ∈M , W j−1(c) /∈M ,

and of all elements not in M , this j is maximal). We do a change of basis to take c to

c−d, where d ∈M with the property that for the smallest j ∈ N, such that W j(c) ∈M ,

W j(c) = W j(d). Again, as before, W restricted to c− d along with W k(c)−W k(d) form

another Jordan block of size j.

We continue the above process inductively until we have done a change of basis to the

entire basis. This gives a change of basis of W consisting of diagonal entries and Jordan

blocks, making it the Jordan canonical form of W .

Diagonalizability of the left multiplications can also be easily characterized as follows.

While the following proposition is phrased for semigroups, we note that with the exception

of 3), it also holds for basis map operators.

Proposition 4.0.1. For a bounded, finite semigroup S, s ∈ S, the following are equiva-

lent:

1.) Ls is diagonalizable.

2.) The graph of Ls has hairs of length at most 1.
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3.) For all t, d ∈ S, if s2t = s2d then st = sd.

4.) For all v ∈ l2(S), if L2
s(v) = 0 then Ls(v) = 0.

Proof. 1) ⇒ 2): By Theorem 4.0.6, we know that if Ls is diagonalizable, then it must

not have any hairs of length 2. Thus, it must have hairs of length at most one.

2) ⇒ 3): Since all the hairs of Ls are of length one, this means that sS is the set of

cycles of Ls. Left multiplication of Ls with respect to this set is a permutation, and so

if s(sd) = s(st) then sd = st.

3) ⇒ 4): Let v = c0e0 + c1e1 + ... + cnen, where ci ∈ C and ei ∈ S, then L2
s(v) =

c0L
2
s(e0) + c1L

2
s(e1) + ... + cnL

2
s(en) = 0. Breaking this up into coordinates gives us

a bunch of equations of the form a0L
2
s(eb0) + a1L

2
s(eb1) + ... + akL

2
s(ebk) = 0, where

L2
s(eb1) = L2

s(eb2) = ... = L2
s(ebn). Since L2

s(ebi) = L2
s(ebj), we get that Ls(ebi) = Ls(ebj),

and so Ls(v) must be 0 as well.

4)⇒ 1): Switch Ls into its Jordan Canonical Form. Then all Jordan blocks will be of

size one, since otherwise the first entry in such a Jordan block will not satisfy 4). Thus

Ls is diagonalizable.

Finally, we remark on a decomposition of basis map operators that is similar in nature

to the Wold decomposition of isometries. It should be noted though that unlike in the

isometry case, we can not put the operator into such a decomposition with just a unitary

change of basis.

Theorem 4.0.7. (Wold Decomposition For Basis Map Operators) Let A be a bounded

basis map operator. Then A is similar to some direct sum of U , T and S, where U is

unitary, T is a direct sum of unilateral shifts and S is a direct sum of the adjoint of the

unilateral shift and finite rank Jordan blocks with eigenvalues λ = 0, if and only if, the

cardinality norms of the positive powers of A are uniformly bounded.

Proof. We show the forward direction first and assume that a basis map operator A has

such a decomposition. If we suppose otherwise that the powers of A are not uniformly
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bounded, then we note that under the change of basis to the Wold decomposition, we

have that A is uniformly bounded (since it is a direct sum of unitares, isometries, Jordan

blocks (with 0 along their diagonals), and adjoints of these), giving us a contradiction.

So we just have to show the reverse direction, where we assume that A is uniformly

bounded, and find the desired decomposition. First, we note that A must have a full

cycle decomposition. For, if we assumed otherwise, then some component of the graph of

A would not have a cycle, and by Proposition 3.2.2, for this component, while the grading

classes have Z type, every element would only have finitely many predecessors. Since A

has a uniform bound on the number of elements in each grading class, we pick a grading

class M , and note that for some sufficiently large power k of A, all of these elements

in this grading class will be sent to the same element (call this element b). However, if

this component is of Z type, then this component would have to have infinitely many

grading classes before the grading class M . If each of these grading classes had at least

one element in them, then each of these element will eventually be sent into one of the

element in M , and so they all would have to be predecessors of b, contradicting the fact

that b must have only finitely many predecessors.

Now that we know that A must have a full cycle decomposition, we can find the

desired unitary U . Using the cycle decomposition on A, and note that for each cycle that

A has which is of finite or Z type, then A restricted to this cycle is unitary. The unitary

U then becomes the restriction of A to the union of these cycles. Then, applying the

cycle part construction, we can take A restricted to the N cycles to get a direct sum of

unilateral shifts T .

These two direct summands have been unilaterally chosen, but for the S, we must

use a non-unitary change of basis. First, we restrict our attention to a single component

of A (call this component N). Here, we use a change of basis where we send the cycle

to itself, and for all the other elements x in this component, we send x to x − y, where

y is the element in the cycle with the same grading as x. After we’ve done this change
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of basis to a new operator (call it A0), the graph of this part of the operator now has a

bunch of connected components, but instead of just being a basis map operator, it can

send some basis elements to the zero vector. The important thing about this change of

basis however, is that the number of elements in each grading class of the components

is now strictly less than before. This is because, if two elements (say, w and z) in A0’s

graph are in the same grading class (that is, for some k ∈ N, Ak0(w) = Ak0(z)), then their

preimages under the change of basis would have to have been in the same grading class

under A, since Ak0(w) = Ak0(z) means that Ak(w0 − c) = Ak(z0 − d) for some c and d in

the cycle of the component N , with c having the same grading as w0 and d having the

same grading as z0. This however, means that w0 and z0 must have the same grading

under A.

The important thing about this change of basis however, is that the new operator A0

now has a cardinality norm (where we extend our previous definition of the cardinality

norm of a basis map operator to include the possibility that the operator can send some

elements to the zero vector), of at most k−1, where k is the cardinality norm of A. This

is because from the above argument we know that if two basis elements of A0 are in the

same grading class under A0, then their preimages under the change of basis must be in

the same grading class of A, (making the cardinality norm of A0 at most k), but we also

know that the cycle of A that we chose is in a separate component after the change of

basis (since all the hairs are sent to a difference of the original basis elements, and so

under enough iterations of A, they go to the zero vector and never into the cycle itself).

Thus, the cardinality norm of A0 must be at most k − 1.

After doing the, we have to choose a cycle for each connected component of the graph

of A0, noting that it is the same procedure as with basis map operators, except the cycle

can eventually terminate and go to the zero vector. After choosing a cycle, we can do

another change of basis with the same idea of sending x to x− y, and we further reduce

the cardinality norm of the result by 1, and we can inductively keep doing this until we



Chapter 4. Basis Map Operator Properties 94

have an operator with a cardinality norm of 1, at which point, since it is a basis map

operator (with the exception that it can send some basis elements to the zero vector), it

must be a direct sum of finite cycles, N cycles, and Z cycles, except that some of these

cycles will terminate at some stage, and thus either be an infinite branch of elements

going that eventually goes to the zero vector (and thus the operator restricted to this

component is the adjoint of the unilateral shift) or is a finite branch of n elements that

goes to the zero vector (and thus the restriction is a Jorden block of size n with an

eigenvalue of 0).

Thus, after we compose these k − 1 changes of basis together, we have the desired

change of basis for the restriction of A to the component N . To finish the decomposition,

we proceed as follows. First, we take the basis elements of A, and form the equivalence

relation based on connectedness (x y if for some n,m ∈ N, Anx = Amy). We then

use the axiom of choice to pick a representative for each equivalence class, and form the

connected component for each representative, and decompose the operator A into a direct

sum of its cycle parts to these connected components, as done in Theorem 3.1.1. We then

choose a cycle for each of these components (requiring again, the axiom of choice), we

preform the algorithm above to each component and combine all the change of bases on

the individual components into a single change of basis of the entire Hilbert space (each

change of basis was defined only on a direct summand of A). After applying this algorithm

k − 1 times (noting that at each step we have to use the axiom of choice again to form

the new connected components of the operator and to choose a new cycle for each such

component), we have that doing these k− 1 change of bases, and again, using the axiom

of choice, we can form the connected components of the final operator, in which every

connected component is either a cycle, or a cycle that eventually terminates. Moreover,

and we also have a change of basis that sends A to a direct sum of cyclic permutations

(finite cycles), bilateral shifts (Z cycles), unilateral shifts (N cycles), adjoints of the

unilateral shift (Z cycles that eventually terminate and go to zero), and Jordan blocks
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with eigenvalues of 0 (finite or N cycles that eventually terminate and go to zero).

Finally, grouping the cyclic permutations and bilateral shift summands into a single

operator, we obtain the unitary U , grouping the unilateral shift summands together

gives us T , and grouping the adjoint of the unilateral shift and Jordan block summands

together gives us S. Thus, we have that A is similar to a direct sum of U , T , and S.

We note, as implied by the proof of the result, that the corresponding decomposition

also holds for modified basis map operators that may send some basis elements to zero,

granted that the powers of these operators are uniformly bounded in norms.



Chapter 5

Reflexivity

Davidson and Pitts have done much work on the free semigroup of n generators, and in

particular have shown that they are in fact hyper reflexive [1]. One would desire similar

properties in the non-free case, or that the very least instead of hyper reflexivity just

reflexivity.

However, when one does a quick investigation, one sees that these semigroup algebras

may not be reflexive. As an example, take the simplest, non-trivial, unital semigroup

that contains a multiplication with a hair of length 2. This semigroup has the following

multiplication table:

. | a b c

a | a a a

b | a a b

c | a b c

Looking at L(S), we obtain the algebra


c+ d+ e c+ d c

0 e d

0 0 e

 with c, d, e ∈ C.
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This subalgebra of the 3× 3 matrices, shares same invariant subspaces of the matrix

that has zeros everywhere except a one in the middle of the first row and a minus one in the

middle of the second row. Hence, it is not reflexive. Another, less explicit approach as to

why this algebra is not reflexive is because S is a singly generated semigroup with identity,

so reflexivity for L(S) is just reflexivity for the generator Lb. A quick computation of Lb’s

Jordan Canonical Form, along with Deddens and Fillmore’s characterization of reflexive

linear transformations on finite dimensional Hilbert spaces in [2], tells us that L(S) can

not be reflexive.

Using this, we can expand the above result to include all singly generated semigroups.

However, we first should recall what a singly generated semigroup looks like.

Proposition 5.0.2. If S is a singly generated unital semigroup with generator a, then

either S is N∪{0}, or for some n ∈ N∪{0}, La is a finite cycle with a single branch of

hairs of length n attached. Likewise, if La is a finite cycle with a single branch of hairs

of finite length attached, then the semigroup S it arises from must be singly generated.

Proof. In the infinite case, the powers of a give a semigroup that is the same as the

natural numbers, while the identity acts as 0.

In the finite case, for some k ∈ N, ak = al for some l ∈ N, l < k. Including the

identity, we get a cycle (if l = 0), or a cycle (of length k − l) with a branch of hairs

(of length l) attached. For the converse, we know from the structure theorems of the

previous section that a has to be the second furthest element on the hair, and so it with

the identity generates the entire semigroup.

Now, we can answer when such semigroups have a reflexive left regular representation.

Proposition 5.0.3. If S is a finite, singly generated, unital semigroup then L(S) is

reflexive if and only if S = G or S = G ∪ e, where G is a cyclic group and e is a new

identity adjoined on.
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Proof. We first assume that L(S) is reflexive. We use the previous proposition with

Deddens and Fillmore’s result in [2], and note that the generator La will have a single

Jordan block for the eigenvalue λ = 0. If the hair is of length more than one, then

the Jordan block will be of size two or more, making La not reflexive. Thus, La only

hairs of length at most one, moreover, it must have at most one such hair (otherwise the

semigroup would not be singly generated). If it has a hair, then it must be the identity,

while restricting to the cycle gives a cyclic group.

For the converse, the generator of S will be a cycle with at most one hair sticking

out of it. In the Jordan Canonical Form this will be diagonal, and thus a reflexive

transformation. Since L(S) is singly generated, this gives that L(S) is reflexive.

For the above case, we see that the process of adding on a new identity to a group

(whose left regular representation is reflexive) will result in a semigroup S in which L(S)

is still reflexive. This result however is true for any semigroup.

Theorem 5.0.8. Let S be a bounded, unital semigroup with L(S) being reflexive. If

S ′ = S ∪ {e}, where e is a new adjoined identity, then L(S ′) is also reflexive.

Proof. We begin by noting that the invariant subspaces of L(S) (with understanding of

these as l2(S) ⊂ l2(S ′)) are included in the lattice of L(S ′) since they are all invariant

subspace of the new multiplication (the new identity) as well. Thus, we may think of

any matrix T in Alg(Lat(L(S ′))) as follows:

T ∈ Alg(Lat(L(S ′))) =

 B x

0 0 ... y


where B ∈ L(S), x is some n-dimensional vector (n the cardinality of S), and y some

complex number. Here however, we note that, i − e, where i was the old identity of S,

and e the new identity, is an invariant subspace for L(S ′) (it is in the null space for any

La, where a ∈ S, and Le(i − e) = i − e. This determines the right column of T since
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T (i− e) = λ(i− e)→ (T −λI)(i− e) = 0→ (T −λI)(i) = (T −λI)(e). Since I = Le, all

we have to show now is that (T − λI) is in L(S) when considered as a subset of L(S ′).

Since (T −λI)(i) = (T −λI)(e), 〈(T − λI)e, e〉 = 0, and so we may think of (T −λI)

as:

(T − λI) ∈ Alg(Lat(L(S ′))) =

 B′ x

0 0 ... 0


where B′ = B − λLi ∈ L(S), and x = B′(i). However, since for any a ∈ S, La as an

element of L(S ′), has the property that La(i) = La(e), and taking linear combinations,

this is true for any y ∈ L(S) as well. This precisely means that the column of e is the same

as the column of i. Thus, since x = B′(i), and B′ ∈ L(S), we have that (T − λI) is the

same linear combination of La’s as B′, but embedded in L(S ′). Thus (T − λI) ∈ L(S ′),

and so T ∈ L(S ′). Since T was an arbitrary matrix in Alg(Lat(L(S ′))), we have that

L(S ′) must be reflexive, as desired.

From this, we also have a nice corollary.

Corollary 5.0.1. The algebras L(Ni), where Ni is the semigroup of integers from 0 to i

with ab = max{a, b}, are reflexive.

Proof. We note that N0 is the group of one element and so L(N0) is reflexive, while Ni

is isomorphic to Ni−1 with a new identity adjoined on. So by induction, all the L(Ni)’s

are reflexive.

Since the non-diagonalizability of a basis map operator comes from its possession of

hairs of length greater than 1, one may be interested in looking at semigroups that have

sufficiently small hairs for their multiplications. In particular, Proposition 5.0.3 seems

to indicate that semigroups with too many hairs of length more than one will not have

reflexive left regular representations.
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As a starting point, one may be interested in semigroups that have no hairs, such as

left cancellative semigroups. For a finite semigroup though, this implies that each Ls is

actually a unitary, which in turn implies that L−1s also comes from a semigroup element,

which in turn means that L(S) is *-closed. So L(S) is a von Neumann algebra, and

moreover, S is actually a group.

If one wished to study locally diagonalizable semigroups (that is, each Ls is diago-

nalizable), then we see that in the finite case, each one will turn out to be a regular

semigroup. These semigroups have the property that for each x ∈ S, there is a y ∈ S

such that xyx = x and yxy = y. Unlike inverse semigroups though, regular semigroups

need not have a unique y for each x.

Proposition 5.0.4. If S is a finite, locally diagonalizable unital semigroup, then S is a

regular semigroup.

Proof. In the finite case, each Ls being diagonalizable implies that it has hairs of length

at most one, and since S has a unit, this means that the s for Ls must be on a cycle

part. Thus sk = s for some k > 1, and so ssls = s for some l.

And interesting question to ask now is if the locally diagonalizable condition is equiv-

alent to the regular condition for semigroups in the finite case.

With the more general condition of a twice cancellative semigroup, then in case of an

infinite semigroup, this need not be true. In particular, cancellative implies twice can-

cellative, and so taking the natural numbers with 0 along with addition gives a semigroup

that is twice cancellative but not regular.



Chapter 6

The Universal Map Algebra

6.1 Definition and Properties

After having studied the structure of the induced left multiplication operators in L(S),

one may be interested in constructing a universal object for all possible algebras L(S).

Definition 6.1.1. For a given dimension n, the Universal Map Algebra, which we shall

denote as UMA(n) or just UMA where the dimension is understood from context, is

the algebra generated by all basis map operators in B(H). Moreover, since the collection

of basis map operators is closed under multiplication, the Universal Map Algebra can be

defined as just the span of all basis map operators in B(H).

It should be noted here that UMA is not defined to be closed in any topology, but

its closure will be consider later.

The Universal Map Algebra may be considered as being a universal object in the same

sense as the group Sn can be considered as a universal object for all groups of size n or

less. Like in the group case, all semigroups of size n (and consequently, all semigroups

with fewer than than n elements) can be realized as a subsemigroup of the basis map

operators in UMA. In this way, one can see that all the left regular representations of

semigroups of size n sit inside UMA(n).
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In finite dimensions, the vector space dimension of UMA(n) can be easily computed.

Proposition 6.1.1. For n ∈ N, The vector space dimension of UMA(n) is n2 − n+ 1.

Proof. We use a counting argument for the dimension. We start with the basis map

matrix W that has all its ones in the first row, and then note that the basis map matrices

that have all their ones in the top row, except for the first column are linearly independent.

Likewise, when we add in the basis map matrices that have their ones in the first row

except in the second column (excluding W since we already added it), then we still have

a linearly independent set of matrices, and so on. After doing this for all the columns, we

have a linearly independent set of matrices that has dimension n(n− 1) + 1 (the number

of columns times the number of additional rows plus the basis map matrix that has all

its ones in the first row).

To show it spans UMA(n), we just note that from the set of basis map matrices

above, we can form all matrices that have zeros everywhere except in one column, where

there’s exactly one 1, one −1, and the rest zeros (just take the two basis map matrices

that have ones in the first row except at the desired column, where one has a 1 in one

position and the other basis map matrix in the other position and take their difference).

These matrices now allow us to take W to any other basis map matrix, and so the span

of the set constructed above is UMA(n).

Corollary 6.1.1. In finite dimensions, the algebra generated by both L(S) and R(S) is

strictly contained in B(H).

Proof. In finite dimensions, both L(S) and R(S) is contained in UMA(n) and so the

algebra they generate must be strictly contained inside B(H).

Theorem 6.1.1. For any finite dimension n, UMA(n) is reflexive. Moreover, its only

non trivial invariant subspace is the hyperplane

M = {(x1, ..., xn) ∈ B(H) |
n∑
i=1

xi = 0}.
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Proof. The best way to do this is to reinterpret what it means for a matrix A to leave M

invariant. Since vectors of the form em − en, where em and en are from the basis of H,

span the subspace M , for any two basis elements ei and ej, the vector A(ei − ej) must

have coefficients that sum to zero, or equivalently, the sum of the entries in the ei column

of A is the same as the sum of the entries in the ej column. Doing this for the rest of

the columns, we have that the entries in each column of A must sum to the same value.

All the matrices inside UMA(n) satisfies this since the basis does, so it remains

to show that the matrices outside of UMA(n) do not. Using the basis constructed in

Proposition 6.1.1, we extend it to a basis to all by B(H) by adding in the matrix units

along the first row except at the last column (since we only needed to add n−1 of them).

Suppose we a matrix B written with respect to this vector basis and that B is invariant

on M . Without loss of generality, we may assume that B is 0 on UMA(n) since if B

has a common sum in each column, then each column will still have a common sum after

subtracting off the UMA(n) part. Now we have that B is a matrix with zeros everywhere

except in the first n − 1 entries in the first row, and also that B has the same sum in

each column. So the first n − 1 columns must sum to 0 since the last column sums to

zero. Thus, B is the zero matrix, and so B must be in UMA(n). Thus, UMA(n) must

be reflexive.

So, even though for a given finite semigroup S, L(S) need not be reflexive, we see

that the matrices that need to be added to make it reflexive must be linear combinations

of basis map matrices.

Corollary 6.1.2. If S is a finite, unital semigroup, and L(S) is not reflexive, then

Alg(Lat(L(S))) = Alg{L(S), B}, where B is a set of linear combinations of basis map

matrices.

With the above theorem complete, it seems natural to try to extend the result to

infinite dimensions. Indeed, if we take the WOT closure of UMA on a separable Hilbert
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space we get a reflexive algebra, but it is B(H).

Proposition 6.1.2. In infinite dimensions, UMA is weakly dense.

Proof. One reason to suspect this result is that the infinite analogue of the invariant

subspace M is not a closed subspace. Then by a theorem of Nordgren, Radjavi, and

Rosenthal [[4]] we know that if UMA doesn’t have any invariant subspaces, then it must

be B(H) since it contains many finite rank operators.

However, an easier method would be to just show that UMA is weakly dense directly.

For any fixed i,j, take the sequence {A(i, j, k)}∞k=i+1, where A(i, j, k) is the matrix that

is zero everywhere except at the (i, j) entry, where it is 1, and at the (k, j) entry, where

it is −1. Each A(i, j, k) matrix is in UMA, and the WOT limit of the given sequence

above is the matrix that is zero everywhere except at the (i, j) position, where it is 1.

Thus, the WOT closure of UMA contains all the matrix units, and so, UMA is weakly

dense.

The above examination may not leave much interest left in studying UMA since in

infinite dimensions it’s too big. However, there is a generalization of it that is of more

interest, which corresponds to attaching a sequence of weights in a certain way to the

underlying Hilbert space, but these modified UMA algebras will not be discussed here.

6.2 A Multiplicative Functional for UMA(n)

Before we end this chapter, there is an interesting functional that arises in UMA(n) for

finite n. This functional is analogous to the non-trivial invariant subspace of UMA(n)

and will prove very useful in the next section.

Definition 6.2.1. For any linear combination of basis map operators X = a0w0+a1w1+

... + amwm in UMA(n), we define the basis map operator class of X as the sum of

coefficients of X in any column.
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Of course, the first order of business for this new definition is to make sure it is

well-defined.

Proposition 6.2.1. The above definition of the basis map operator class is well defined

(that is, all columns have the same sum), and in the above definition is equal to
∑m

i=0 ai.

Proof. To show that all columns have the same sum, we just recall that for any X ∈

UMA(n), and standard basis vectors ei and ej, X(ei) − X(ej) = X(ei − ej) is in the

non-trivial invariant subspace. Thus the coefficient sum must be 0, so the column sum

for ei is the same as the column sum of ej.

Finally, to show that this class is
∑m

i=0 ai, we just note that all basis map matrices

have exactly one 1 in each column. So for any column, the sum in that column will just

be the sum of the coefficients ai.

The notation of basis map operator class now gives us a reasonable notation of basis

map operator equivalence. Namely,

Definition 6.2.2. The map ω : UMA(n) → C will be defined as the map that sends a

linear combination of s to its basis map operator class. Moreover, two linear combinations

of basis map operators will be called class equivalent if they have the same basis map

operator class.

Using this map, we have the follow theorem.

Theorem 6.2.1. (Basis Map Operator Functional for UMA(n)) For any finite n and

X, Y ∈ UMA(n), the map ω has the following properties:

1.) ω induces an equivalence relation on UMA(n).

2.) ω(X + Y ) = ω(X) + ω(Y ).

3.) ω(XY ) = ω(X)ω(Y ).

4.) ω(cX) = cω(X).
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Proof. The proof of property one follows easily from the fact that ω is well defined.

For number two, we note thatX and Y are linear combinations of basis map operators,

so X+Y is a linear combination of basis map operators as well. Thus ω(X+Y ) is just the

sum of the coefficients of these basis map operators, which is the same as the coefficient

sum for ω(X) + ω(Y ).

For the third property, we note that XY is also a linear combination of basis map

operators. So, since a basis map operator times another basis map operator is a basis

map operator, we have from the distributive property of matrix multiplication that XY =∑
i,j<n

aibjwiwj. Thus, ω(XY ) =
∑
i,j<n

aibj = ω(X)ω(Y ).

Finally, property four comes immediately by factoring out a constant from the sum

of coefficients.

The fact that a multiplicative linear functional for UMA(n) exists may be a bit

surprising, but after some thought it may become clear that such a functional would be

associated to the trivial character of a group. Indeed, if we restrict to the group case,

then ω can be seen to be the trivial character but with an extended domain. However,

because this functional would work with any semigroup (instead of group), the reasoning

may not be so obvious that it should exist since there is no common one dimensional

invariant subspace for all semigroup representations (unlike for groups).

The above though can be viewed in a different light - instead of viewing the one

dimensional subspace, instead look at its complement. This subspace is then an invariant

subspace for any semigroup representation (it is the subspace M given before as the

invariant subspace of UMA(n)), and the above argument shows how the functional arises

for it.

Before we go onto the next section and use the ω functional for the isomorphism

problem, we should check to see if there are any other multiplicative functionals on

UMA(n). After some work, we see that there are none.
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Theorem 6.2.2. The functional ω is the only non-trivial multiplicative functional on

UMA(n).

Proof. Let φ be a non-trivial multiplicative functional on UMA(n). First, we note that

the kernel of φ is an ideal of UMA(n), and has vector dimension n2−n. We will find an

explicit basis of this ideal. First we note that there is an element A in UMA(n) where

φ(A) 6= 0, and thus, since φ is multiplicative, φ(A) = φ(I)φ(A), so φ(I) = 1. Next, we

let B be the matrix that is zero everywhere except in one column, where the sum in this

column is zero and the diagonal entry is also zero. Since B2 = 0, we must have that

φ(B) = 0. The vector span of all such matrices B form a n(n− 2) dimensional subspace

of the kernel of φ (a basis for each of the n columns can be given by matrices with exactly

two non-zero entries whose sum is zero, of which there are n− 2 which don’t include the

diagonal entry.

Next, we note that for a matrix C with zeros everywhere, except for a single column

(call this the k-th column), in which there is a one in the diagonal entry and a −1

somewhere else in the column, we have that C2 = C. This gives us that φ(C)2 = φ(C),

and so φ(C) = 0 or 1. Assume that there is such a C that φ(C) = 1. Then, for

any other D which has only a single column that is non-zero, with a 1 on the diagonal

entry, a −1 somewhere else, and zeros elsewhere, we take the product CD. Adding a

matrix B of the form in the above paragraph, we can make any given row of D zero,

meaning that we can make CD = 0, while not changing the value of φ on D (since

φ(D + B) = φ(D) + φ(B) = φ(B)). Thus φ(CD) = 0, and thus, φ(D) is zero. This

means that all such matrices C must have a φ value of 0, except possibly one. In

particular, we have now found (n − 2)n + (n − 1) = n2 − n − 1 basis elements for the

kernel of φ.

Now, we wish to show that φ(C) must be 0 for all C. Assume otherwise that there is

a C such that φ(C) = 1, and consider C − I. This matrix has −1’s along the diagonal,

except in the k-th column, where it has a −1 in some row m, and zeros everywhere else.
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From here, we add on a matrix B which has zeros everywhere except in the m-th column,

where it has a 1 in the diagonal entry, a −1 in the k-th row, and zeros elsewhere. The

matrix C − I + B is now −1 times a permutation matrix (moreover, a transposition

matrix), with it’s square equal to the identity. By the above paragraph, φ(B) is 0, so

φ((C−I+B)2) = φ((C−I)2) = φ(C−I)φ(C−I) = 0, but φ((C−I+B)2) = φ(I)2 = 1,

so we have a contradiction. Thus, φ(C) must be zero as well. Thus, we now have n2− n

basis elements for the kernel of φ, and since all of these basis vectors are also basis vectors

for the kernel of ω (every column sum in these matrices is 0), and since φ(I) = ω(I) = 1,

we have that φ(A) = ω(A) for all A ∈ UMA(n), so we are done.



Chapter 7

The Isometric Problem

In this chapter we investigate the isomorphism problem for semigroups. This can be

stated as the problem of deducing when L(S) ∼= L(T ) implies that S ∼= T . In general for

groups this need not be true, and may even depend on the field that one chooses to take

the representation over, and what class of groups one considers.

In the semigroup case things are much more general, so if we hope to get any results,

we will have to require some basic conditions on the given semigroups.

7.1 Basic Properties

The first such condition we should require is that the obvious map going from S to the

semigroup of matrices Sm = {La|a ∈ S} is actually an isomorphism of semigroups (after

all, the idea of a representation is to embed the original object into B(H)). Clearly,

regardless of what the semigroup looks like we will have Lab = LaLb, so the map from S

to L(S) is a homomorphism and onto, but it does not need to be injective.

For example, consider the two element semigroup with both left multiplications acting

as the identity. Under left multiplication this is seen to not be injective, hence not an

isomorphism. Thus a condition should be placed on the semigroup so that for all a, b ∈ S,

there exists s ∈ S such that as 6= bs, which prevents left multiplication from being defined

109
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exactly the same for both elements a, b. If this condition is not met, then a and b become

indistinguishable when one looks at their left multiplications, and one can think of the

condition above as being similar in idea to the T0 condition for a point set topology.

7.2 The Isomorphism Problem

Considering a semigroup with the above property, we now look to the slightly different

question of whether or not two semigroups can give rise to the same algebra L under the

left regular representation. If the semigroups fail the above property, then one can easily

form the following (non isomorphic) semigroups,

. | a b c d

a | a a a a

b | a a a a

c | a a a a

d | d d d d

. | a b c d

a | a a a a

b | a a a a

c | d d d d

d | d d d d

the first being the semigroup that sends any word with the furthest left letter as d to d

and the rest to a, while the second sends any word with the furthest left letter as c or d

to d, while the rest is sent to a.

This gives a strong counter example in the sense that with the above labelings for

the elements of both semigroups and that of l2(S), the left regular representation of both

semigroups are indeed the same, not just isomorphic. To clarify this, we present another

example with the two semigroups of order two that have identity,
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. | a b

a | a b

b | b a

. | a b

a | a b

b | b b

While both of these semigroups map isomorphically into their left regular represen-

tations and moreover have an identity, their left regular representations are isomorphic.

The transformation φ that sends La to La and Lb to La − 2Lb gives an isomorphism

since it is bijective, preserves the identity, and φ(Lb)φ(Lb) = (La − 2Lb)(La − 2Lb) =

La−2Lb−2Lb+4Lb = La = φ(L2
b). This makes for a rather slim hope for two isomorphic

representations to come from the same semigroups (in fact the above isomorphism will

work with any underlying ring instead of C), especially since in general it is not true for

groups. One result that is known is that for finite and abelian (or more generally, metaa-

belian1) groups, isomorphic integral representations implies isomorphic groups. General-

izing this to semigroups however will not be possible since the example given above again

gives a very strong counter example.

To deal with these difficulties, we will have to first require the injectivity of the map

from semigroup to the left regular representation. As stated before, all that this requires

is that each La differs on at least one element of the semigroup. However, there is

still a possibility that two different semigroups could map to the same representation.

The problem this time is that the semigroup matrices involved may not be linearly

1A group G is said to be metaabelian if its commutator group [G,G] is abelain
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independent. Indeed, when we consider the sum
1 0 0

0 1 0

0 0 1

−


1 0 0

0 1 1

0 0 0

 +


0 0 0

0 0 1

1 1 0

 =


0 0 0

0 0 0

1 1 1


we see that it is still possible for two semigroups to give the exact same representation. As

such, we may want the additional property that the semigroup’s corresponding matrices

are linearly independent. The easiest way to ensure this is to require that the semigroup

has an element whose right multiplication is cancellative, since then the column that

corresponds to that element will make any linear combination that is not a single matrix

fail to have exactly one 1 and the rest 0 in that column. In particular, this can be done

by assuming the semigroup has an identity.

As shown previously though, this doesn’t give very much to work with for the isomor-

phism problem. Even in the group case it is not true, and the extension into semigroups

would just make it even more difficult. As such, it may prove better to require a stricter

form of isomorphism between the left regular representations than just an isomorphism

of algebras. To inspire this, when one looks at the counter example for the two unital

semigroups of order two, one may notice that the isomorphism is induced from a change

of basis, and that this change of basis does not preserve inner products. Indeed the only

other possible isomorphism for these two semigroups will send b to −a+2b, making these

two representations not isometrically isomorphic. This seems to indicate that it could be

useful to consider the isomorphism problem in a Hilbert space sense and use the inner

product as a means of distinguishing representations.

As such, we pose the problem:

Problem 7.2.1. (The Isometric Isomorphism Problem) Given two unital semigroups S

and T , if there is a unitary change of basis that takes L(S) to L(T ), must S be isomorphic

to T?
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We note though that the requirement of the semigroup having a right cancellative

element is essential. The first counter example given in this section will work no matter

what notion of isomorphism we may require, so at the very least we have to require

that two non-isomorphic semigroups can not map to the same algebra. Having a right

cancellative element will make sure that if two semigroups map to the same algebra,

then they also map to the same, linearly independent semigroup matrices, and so both

images of the semigroups into the left regular representation are are the same, hence the

semigroups are not only isomorphic, but the same with respect to the labeling from the

vector space.

7.3 Isometric Problem and Basis Map Operator Class

While we will not go in a lot of detail about the isomorphism or isometric problems, we

will give a partial start to working with them. We wish to get an idea of what happens

when dealing with an isomorphism between two L(S)’s, and will use the functional ω

that was introduced in Chapter 6.

Lemma 7.3.1. Suppose there is a isomorphism φ between L(S) and L(T ) for some

semigroups S and T of order n. For s ∈ S, we have that ω(φ(Ls)) is an ith root of unity

for some i ≤ n, or possibly 0 if s is not invertible.

Proof. Let ω(Ls) = m. Taking powers, we have that φ(Lsk) = φ(Ls)...φ(Ls) (k times).

Thus ω(φ(Lsk)) = mk. If s is not invertible, then for some l < n, mn = ml. Thus,

mn−l = 1 or m = 0. If s is invertible, then for some k ≤ n, sk is the identity, so mk = 1,

so m = 0 is not possible.

Here we note that if s is invertible, then k is the order of s with m as a k-th root of

unity, and if s is not invertible, then m is either 0, or it is a l-th root of unity, where l is

the order of the cycle on the connected component of s in the graph of Ls.
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Now, using the above, we can show that some assumptions on the isomorphisms

between semigroup representations can be made without a loss of generality.

Theorem 7.3.1. Suppose that G and H are finite groups, and that L(G) is isomorphic

to L(H) under the map φ. Then there is an isomorphism ψ between L(G) and L(H) that

preserves basis map operator class. Moreover, if φ respects inner products, then ψ can be

made to respect inner products as well.

Proof. We start with any isomorphism φ from L(G) to L(H), and compose φ with the

map M : L(H) → L(H), such that for a ∈ H, M(La) = ω(φ−1(La))La. Since G and H

are groups, ω is never 0, and so φ composed with M is still bijective. Denoting this com-

position ψ, for Lx, Ly ∈ L(G), ψ(LxLy) = ω(LxLy)φ(LxLy) = ω(Lx)ω(Ly)φ(Lx)φ(Ly) =

ω(Lx)φ(Lx)ω(Ly)φ(Ly) = ψ(Lx)ψ(Ly), and so ψ is still an isomorphism of representa-

tions. Since ω(La) = 1 for all a ∈ H, ψ also preserves the basis map operator class since

the coefficient ω(φ−1(La)) changes φ from sending something of class k to 1 to sending

it from a class of k to k again. By linearity, the preservation of basis map operator class

extends to all of L(G).

Finally, we wish to show that if φ preserves inner products, then so will ψ. Since φ

preserving inner products means that φ is given by a unitary change of basis, and since

M preserves inner products (as a matrix on a vector space, it is a diagonal matrix with

numbers of norm 1 along the diagonal, and so as an operator on the Hilbert space, is a

unitary change of basis), the composition of M with φ also can be written as a unitary

change of basis on the Hilbert space, and so ψ preserves inner products as well, and we

are done.
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