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Abstract

Application of Graph Rigidity in Formation Control of Multi-Robot Networks
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Graduate Department of Electrical and Computer Engineering

University of Toronto

2007

This thesis designs a formation control for multivehcile systems that uses only local

information. Formation control of this type can be applied in mobile sensor networks

applications.

The control is derived from a potential function based on an undirected infinitesimally

rigid graph. This graph specifies the target formation. Then the potential function is used

to specify a gradient control, under which the target formation then becomes a manifold

of equilibria for the multivehcile system. The stability of this manifold is studied using

a nonlinear coordinate transformation and linearization techniques.

Using these techniques, we show that the infinitesimal rigidity condition of the forma-

tion graph provides a sufficient condition to show that the equilibrium manifold is locally

asymptotically stable. Finally, a complete study of the stability of the regular polygon

formation is presented. These results were validated experimentally.
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Chapter 1

Introduction

Formation control of multi-robot networks is an area of ongoing research in control sys-

tems. Formation problems are particularly interesting due to their possible application

in multi-robot networks formed using reconfigurable sensor networks.

Sensor networks are comprised of inexpensive devices with computing, communica-

tions and sensing capabilities [41]. Each device has a power supply, a computing device

with some I/O capabilities and a radio transmitter and receiver. This hardware enables

them to form ad-hoc networks. Sensor networks are primarily used to gather data.

A natural extension of sensor networks is to make the network devices mobile, creating

a reconfigurable sensor network. This immediately gives rise to a multi-agent control

problem. Maintaining a specific formation for a reconfigurable sensor network may be

necessary in order to gather data. A particularly useful formation for reconfigurable

sensor networks is the regularly spaced polygon. This formation can be used to form a

large aperture antenna.

The goal of this work is to design a control law that will stabilize an arbitrary for-

mation of n robots. As a first step, the simple kinematic integrator robot model is

considered.

1
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1.1 Literature Review

The simplest multi-robot problem is stabilizing the robots to a common location. This

problem is frequently described as the agreement or rendezvous problem and can be

viewed as a special case of the formation problem where the target formation is a single

point. Many different techniques have been used to solve this problem. Perhaps the

simplest scheme is that of cyclic pursuit as described in [26]. Under this control law,

each vehicle follows or chases one other vehicle, thereby converging to the centroid of the

vehicles. After an initial transient period, the robots move in a spiral motion. Another

possible solution to the rendezvous problem is to have the vehicles move based on the

positions of the vehicles in the sensor range. A very simple sensor model assumes that

each vehicle can sense every other vehicle within a certain radius. As different vehicles

move in and out of range, the behaviours of the vehicles change. Reference [10] analyzes

the behaviour of such an ad-hoc network.

The solution to the rendezvous problem in [21] is a control law of piecewise constant

inputs. The control is a series of “stop and go” maneuvers. During the period when

the robot is stopped, its next target location is calculated based on the robots’ current

neighbours. Although the control is realized as a series of discrete motions, the algorithm

does not require that each robot have synchronous stop and go cycles.

The discrete nature and simplicity of the preceding control law has made it espe-

cially appealing in sensor network applications. Reference [12] considers a problem of

decentralized, self organizing communication nodes with mobility. In this case, the mo-

bility is used to improve communication performance in distributed networks. A variety

of networks are considered: single source-destination pair, multiple source and multiple

destinations, and many to one. The metrics considered in the evaluation of optimality

are power consumption and robustness of transmissions. The control scheme developed

is modified from the rendezvous scheme from [21]. The optimization problem considered

in [12] has the additional constraint that links between communicating nodes should not
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be broken while moving towards an optimal solution.

Another possible goal for mobile sensor networks is to optimize sensor placement by

minimizing a cost function. In [11], the solution to this problem involves robots moving

to the centroids of convex regions called Voronoi regions. The centroids of these regions

are calculated using the cost function as a density function. A specific cost function

makes it possible to have the vehicles form certain geometric figures, including polygons.

This method is considered to be decentralized in the sense of Voronoi as each vehicle

must know only the positions of some of the other robots—its Voronoi neighbours—and

also to know the cost function. However, this technique requires that the vehicles be

contained in a convex region whose boundaries are known and also that there be a global

system of coordinates in order to calculate the cost function.

In [40], another goal for sensor networks is explored. In this case, the control goal is

to patrol the perimeter of a defined area, with the robots distributed evenly about the

boundary. The problem is formulated as a tracking problem on a closed curve, combined

with a desired pattern for the vehicles along the curve. The control is designed using

control Lyapunov functions and requires global coordinates.

While the techniques of [11] can produce regular polygonal formations, reference [32]

considers the problem of producing equilateral formations without global coordinates. In

particular, [32] designed a control that makes an equilateral triangle a stable formation.

However, for larger groups of robots it is possible to achieve only equilateral polygonal

formations, not regular polygonal formations.

The previous papers have all considered problems for mobile networks. Reference [5]

studies a problem that is independent of the reconfigurability of the network; namely, the

problem of network localization. Network localization is the process of determining the

position of each node in a sensor network, given distance measurements between some of

the nodes. This problem is of interest for stationary as well as actuated sensor networks.

The problem is solvable if the positions can be determined uniquely. The sensor network
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is made up of two types of nodes: beacon nodes, whose positions are known; and ordinary

nodes. A set of nodes is said to be in a general position for d dimensional space if they

do not lie in a proper affine subspace. The network localization problem is solvable if

three beacons are in a general position and the graph of known distances is generically

globally rigid.

The use of rigidity in [5] shows the interesting relationship between the concept of

rigidity and problems involving formations. This leads naturally to the idea of designing

a formation control based on rigid graphs. This is the approach to formation control

taken by Olfati-Saber and Murray [29]. They use a double integrator model for point

mass robots and they propose using rigid graph theory to define the formation. In [29],

the concept of an unambiguous graph – essentially a globally rigid graph – is used. They

also propose a gradient control law involving prescribed distances. The work in [29] is

the closest in spirit to the work of this thesis. Indeed, we use similar ideas based on

rigidity theory to formulate a control problem based on distances between agents. As

with [29], we derive a gradient control law that is shown to be locally asymptotically

stable. However, there are important differences between our work and theirs, and these

lie in the methodology and detailed analysis of the problem. Olfati-Saber and Murray

give a proof of stability based on the LaSalle invariance theorem. The proof does not

analyze all equilibria of the control law. The closed-loop dynamics are not proved to be

locally Lipschitz. Also, the control law uses global velocity measurements to stabilize

double integrators. Finally, although a set stability result for the equilibrium set is

claimed, there is no analysis of stability of points in the equilibrium set.

1.1.1 Gradient Controls

Many of the previously discussed multivehicle controls use a gradient function. We define

precisely a gradient control in Section 2.2. Intuitively, gradient controls are those where

the system travels down the gradient of a potential function.
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In formation control, Olfati-Saber and Muray [29], as well as Zhang and Leonard

[40], use the potential function approach in the solutions to their respective multivehicle

control problems.

Gradient controls have also been used in flocking problems [35]. Flocking problems

are related to formation problems. In flocking, the goal is for the group of agents to form

a cohesive group—that is, no agent is far away from all the other agents—but also for

the agents to have no collisions. This type of problem mimics the behaviour of a flock

of birds or a school of fish. In the control in [35], each agent has an individual potential

function based on the location of its neighbours.

A potential function can also be used for path planning problems, as in [30]. The

potential function is used both to reach a target destination and to avoid obstacles.

The potential functions used in [29] and [35] are determined by the relative position

of the other robots. In [30] the potential function is determine by the features of the

environment which are assumed to be static.

Gradient controls are appealing in control problems because such controls have many

desirable properties. Some of this properties are discussed in detail in Section 2.2.

1.1.2 Stable Manifolds

The study of formation control is related to the stability of manifolds. As we will see

in Section 2.1, manifolds represent specific formations of robots. In formation control

our goal is to make the manifold corresponding to the target formation a manifold of

equilibria. The study of the stability of a manifold of equilibria is a field of independent

interest in dynamics.

A widely used approach to show set stability, and consequently the stability of a

manifold, is the application of LaSalle’s theorem (Theorem 4.4, p. 128 in [20]). This

well-known technique uses a Lyapunov function to show that an invariant set is stable

and attractive for initial conditions in a positively invariant set. In practice, the invariant
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set is determined by a well chosen Lyapunov function. However, this technique has

limitations: one must find a Lyapunov function, and further analysis must be done to

determine the behaviour of the trajectories as they approach the manifold.

In [24], Malkin proves an interesting local stability result for an equilibrium manifold.

This theorem considers a neighbourhood of a point on an m-dimensional equilibrium

manifold. If the Jacobian evaluated at the point has m zero eigenvalues and the rest

have negative real parts, trajectories converge to a point on the manifold. The proof

of this theorem uses a Lyapunov function and a time-varying change of coordinates.

Malkin’s result gives more information than local asymptotic stability of the manifold:

the manifold is locally asymptotically stable if the distance to the manifold goes to zero—

but this does not imply that a limit exists for the trajectory. Malkin’s theorem shows that,

in this special case, the trajectories do approach a point on the manifold. The limitation

of this theorem is that it is a local result about a point on the manifold; further analysis

must be done to make any conclusions about the local behavior of the entire manifold.

Additionally, Malkin’s theorem requires that the dynamics be transformed to a normal

form. Finding a coordinate transformation that transforms the dynamics into the form

of Malkin may be difficult.

Malkin’s proof uses Lyapunov’s direct method; in [34] a geometric approach is taken

to prove Malkin’s theorem. By performing a coordinate transformation, [34] is able to

use centre manifold theory to prove Malkin’s theorem.

Hale and Massatt extend Malkin’s theorem in [15] and consider when the linearization

about an equilibrium manifold has no strictly imaginary eigenvalues. Only a one dimen-

sional equilibrium manifold is studied. The result of [15] is to show that if the Jacobian,

evaluated at all points on the manifold, has one zero eigenvalue and remaining eigen-

values not on the imaginary axis, then, in a neighbourhood of the manifold, bounded

trajectories approach a point on the equilibrium manifold. Centre manifold theory is

used to prove the result. This result is appealing as it does not require the dynamics to
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be transformed into a normal form.

In [6], Aulbach extends the results of [15] to an equilibrium manifold of any dimension.

This result is obtained using centre manifold theory. Aulbach also discusses when these

conditions are, in fact, necessary for trajectories to converge to an equilibrium manifold.

In [24], [15] and [6], the stability of equilibrium manifolds is studied using lineariza-

tion techniques. In [31], Ryashko and Shnol consider the more general problem of the

stability of a compact manifold that is invariant—but not an equilibrium. This means

there may be dynamics on the manifold of interest; thus linearization techniques are not

suitable for the problems considered in [31]. The authors of [31] consider under what

conditions an invariant manifold is exponentially stable. Ryashko and Shnol show that

if the dynamics transverse to the manifold tend to zero exponentially then the manifold

itself is exponentially attractive. This result is obtained using a Lyapunov function.

Under certain conditions, the zero level set of a function is a manifold. For instance,

we will construct functions later in this work where the zero level set represents the

target formation. In [1], Absil and Kurdyka consider the stability of zero level sets of a

function f , where the dynamics of the system are the gradient of f . This type of system

is referred to as a gradient system and is discussed in detail in Section 2.2. Absil and

Kurdyka show that for a real analytic f , stability and local asymptotic stability of an

isolated minimum, i.e. a point, of f are equivalent. They show that a minimum of f ,

not necessarily only a point, is stable under gradient dynamics.

1.2 Notation

We denote the Jacobian of a function f : R
n → R

m evaluated at a point x as Jf(x). In

the special case when f : R
n → R, the Jacobian of f is the gradient of f and we denote it

by ∇f(x). Occasionally for convenience during calculations of the Jacobian, the notation
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∂
∂x

will be used to represent

Jf (x) =
∂

∂x
f(x).

Associated with a mapping F : S → T is the special pre-image set

F−1(d) : { p ∈ S | F (p) = d }.

1.3 Illustrative Example

In this work, we design and study controls to stabilize formations. As a preliminary

step, we design a control to stabilize two robots so that they are separated by a specified

distance d. The robots are modeled using a kinematic point model; that is, robot i’s

state is zi ∈ R
2 and

żi = ui.

The combined state of the system is z = (z1, z2) ∈ R
4. If d = 0, then the goal is for the

robots to be collocated. The set of states where the robots have the same location is

S = { z ∈ R
4 | z1 = z2 }.

This set is a subspace, and we can use a linear control to stabilize it. Our interest is in

controls that use only onboard sensors. That is to say, there are no global coordinates

and each robot has only information about the relative positions of the other robots.

One possible solution to stabilize S is for each robot to drive towards the other. Then

the control of agent i is ui = zj − zi, so

żi = zj − zi.

The coincident formation is a special case: in general the formation will not be char-
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acterized by a subspace. When d 6= 0, then the formation of interest is

M = { z ∈ R
4 | ‖z1 − z2‖ = d }.

It can be shown that M is a differential manifold. In this case, the control goal is not a

subspace, and we must use a nonlinear control to make M stable. In particular, when

designing a control, we might try scaling our linear control to obtain

żi = (‖zj − zi‖2 − d2)(zj − zi). (1.1)

This control makes M a set of equilibria. We analyze these equilibria by linearizing at

the point (0, 0, 0, d) ∈ M. Define ∆z := z − (0, 0, 0, d). The linearized dynamics of ∆z

have the form

∆ż = −2



















0 0 0 0

0 d2 0 −d2

0 0 0 0

0 −d2 0 d2



















∆z.

The linearized dynamics have three zero eigenvalues and one stable eigenvalue. So the

stability of the system is not obvious from linearization analysis. Instead, we perform an

analysis of the output, the distance between the robots, of the system.

Let

r := ‖z1 − z2‖2.
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Note that
√
r is the distance between the robots. Then

ṙ = (ż1 − ż2)T (z1 − z2) + (z1 − z2)T (ż1 − ż2)

= (2ż1)
T (z1 − z2) + (z1 − z2)T (2ż1) since ż1 = −ż2

= −4(ż1)T (z2 − z1)

= −4(‖zj − zi‖2 − d2)(z2 − z1)T (z2 − z1) from (1.1)

= −4(r − d2)r from the definition of r.

From the phase portrait of r we can conclude immediately that r = d2 is a locally stable

equilibrium. The region of attraction for the equilibrium r = d2 is (0,∞). Moreover, if

r = d2, then z ∈ M. Thus, we can conclude that we achieve our goal to stabilize the

robots to be a distance d from one another. However, in doing this analysis we have lost

some information about the system. Although we know that the robots are a distance d

apart, we do not know if they have stopped moving. We can, however, analyze the zero

dynamics of the system. The zero dynamics are the possible dynamics of the system when

the output of the system r− d2 ≡ 0. From the form of the z dynamics it is immediately

clear that the centroid of the robots is stationary. Furthermore, the robots remain on a

line. So we can conclude that the zero dynamics are stationary.

Now, consider stabilizing a more complex formation: three robots in an equilateral

triangle with side length d. Again the kinematic point model is studied. Then a system

with three robots has the combined state z = (z1, z2, z3). If d = 0, then the problem has

a linear solution. For instance,

żi = (zj − zi) + (zk − zi)

will result in a control law that stabilizes the system. When d 6= 0, the formation of
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interest is

M = { z ∈ R
6 | ‖z1 − z2‖ = ‖z2 − z3‖ = ‖z3 − z1‖ = d }.

Again, it can be shown that the set M is a manifold.

In order to have the robots converge to M we can scale each term by the error term

(‖zi − zj‖2 − d2), obtaining the following controlled system for robot i

żi = (‖zi − zj‖2 − d2)(zj − zi) + (‖zi − zk‖2 − d2)(zk − zi).

From the form of zi, it is clear that M is a set of equilibria. Again the linearized

dynamics have three zero eigenvalues, with the remaining eigenvalues being stable. For

three robots, the dynamics of the inter-robot distances are unwieldy, so output analysis

is not an attractive approach. Note that the set M is a three dimensional equilibrium

manifold, the same as the number of zero eigenvalues. The working hypothesis is that

these two facts are related and that it is possible to obtain a stability result from the

linearization analysis around a point in an equilibrium manifold.

1.4 Contributions of the Thesis

Our goal is to stabilize particular formations with each robot using only relative informa-

tion. We first present some mathematical preliminaries on manifolds, gradient systems

and graph theory. Next we design a gradient law for a simple robot model to stabilize

formations. We discuss in detail properties of equilibrium manifolds. In particular we

show that for certain types of equilibrium manifolds there exists a nonlinear change of

coordinates to transform the system into the normal form needed to apply Malkin’s the-

orem. This change of coordinates allows us to apply Malkin’s theorem, which we use to

prove stability of this type of equilibrium manifold. Finally, we apply the stability results

to our gradient system.



Chapter 2

Background

The study of formation control applies results from several diverse topics in mathematics.

We will review some key results in the literature of differential manifolds, gradient systems

and graph rigidity relevant to the current work.

2.1 Differential Geometry

Differential geometry, in particular manifold theory, is useful in the current work because

manifolds characterize formations. As we saw in Section 1.3, the set where three agents

form an equilateral triangle is a manifold. In fact, most formations can be described by

manifolds. We will review some properties of smooth manifolds needed for the study of

robot formations. For a rigorous treatment see [9].

2.1.1 Manifolds

An m-dimensional manifold M is a topological space with a collection of open neigh-

bourhoods {Ui} (note that the index i is countable but not necessarily finite) that cover

the entire manifold, with Ui ⊂ M, and a collection of diffeomorphisms ϕi : Ui → R
m.

Additionally, for any two neighbourhoods Ui and Uj the map ϕj ◦ ϕ−1
i must be a diffeo-

12
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M

Uj

R
m

R
m

Ui

ϕi(Ui ∩ Uj)

ϕj

ϕj(Ui ∩ Uj)
ϕi ◦ ϕ−1

j

ϕi

ϕj ◦ ϕ−1
i

Figure 2.1: An m-dimensional manifold M and coordinate charts.

morphism from ϕi(Ui ∩ Uj) to ϕj(Ui ∩ Uj) as illustrated in Figure 2.1; likewise ϕi ◦ ϕ−1
j

must be a diffeomorphism from ϕj(Ui ∩ Uj) to ϕi(Ui ∩ Uj). The pair (Ui, ϕi) is called a

coordinate chart.

Trivially, R
m is an m-dimensional manifold; any neighbourhood of a point in R

n is

topologically equivalent to R
n. From the definition it is clear that each Ui is topologically

equivalent to R
m. For instance, a sphere is a 2-dimensional manifold; locally, each point

on the manifold appears to be in a plane; a phenomenon that may have led to the

erroneous conclusion that the Earth is flat.

Many common geometric structures are manifolds and can be given coordinate charts.
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For example, consider the unit circle

S1 := { x ∈ R
2 | ‖x‖ = 1 }.

We can cover the set S1 with the two open neighbourhoods

U1 = { x ∈ S1 | x 6= (1, 0) }

U2 = { x ∈ S1 | x 6= (−1, 0) }.

Associated with these neighbourhoods are the diffeomorphisms ϕ1 : U1 → (0, 2π) and

ϕ2 : U2 → (−π, π). Both functions ϕi(x) are defined to map x to the angle between x

and the positive x1 axis.

2.1.2 Tangent Space

Define M to be an m dimensional manifold in R
n. We now consider some vector spaces

associated with a manifold M. Each point p ∈ M has an associated vector space referred

to as the tangent space, TpM. Although it is possible to define the tangent space of a

manifold without using coordinates, as in [9], in this work the manifolds considered will

always be subsets of R
n.

The tangent space at a point p ∈ M is a translated subspace of dimension m that is

tangent to the manifold at p. For the manifold S1, the tangent space at a point p is the

line tangent to the circle at p as shown in Figure 2.2. Next consider the sphere S2. The

tangent space TpS
2 at a point p on the sphere is the plane tangent to p, see Figure 2.3.

We refer to the set T (M) :=
⋃

p∈M TpM as the tangent bundle of M. The tangent

bundle can also be given the structure of a manifold.

If we have a parametrization of a manifold in R
n on a neighbourhood U of p ∈ M,
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TpS
1

p

S1

Figure 2.2: The tangent space at the point p for a circle, the manifold S1.

S2

TpS
2

p

Figure 2.3: The sphere S2 with the tangent space at p, TpS
2.
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i.e. there exists h : R
m → R

n such that

M∩U = h(Rm) (2.1)

then the m columns of Jh(θ) form a basis for TpM, (p. 112, [9]).

Let’s return to S2 and calculate a basis for the tangent space at the point p =

(
√

3
4
, 3

4
, 1

2
). A parametric representation of the sphere in the positive orthant is

h(θ) =













cos(θ1) cos(θ2)

cos(θ1) sin(θ2)

sin(θ1)













.

Note that h(π
6
, π

3
) = p. Define θp = (π

6
, π

3
). The Jacobian of h(θ) is

Jh(θ) =













− sin(θ1) cos(θ2) − cos(θ1) sin(θ2)

− sin(θ1) sin(θ2) cos(θ1) cos(θ2)

cos(θ1) 0













.

At θp,

Jh(θp) =













1
4

−3
4

−
√

3
4

√
3

4

1
2

0













.

Then at the point p a basis for TpM is













1
4

−
√

3
4

1
2













and













−3
4

√
3

4

0













.

The plane formed by the span of these two vectors is shown in Figure 2.3.
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2.1.3 Normal Space

If M is a manifold in R
n, then, in addition to the tangent space TpM associated with

a point p, there is a second vector space associated with the point p, the normal space

NpM. The normal space NpM at a point p ∈ M is the orthogonal complement in

R
n to the tangent space TpM. Analogous to the tangent bundle, we refer to the set

N(M) := ∪p∈MNpM as the normal bundle of M. The normal bundle can also be given

the structure of a manifold.

In certain circumstances, for instance when the normal bundle is trivial, it is possible

to calculate the normal bundle without solving for the orthogonal complement of the

tangent space; this simplifies the calculation of the normal bundle. The normal bundle

of an m-dimensional manifold M is trivial when it is diffeomorphic to M× R
m, (p.76,

[13]). That is to say the normal space to any point on the manifold can be determined

globally using some diffeomorphism. The following lemma describes the conditions for a

manifold M in R
n to have a trivial normal bundle. First we require a definition. Define

gi : M → R. Let G(x) = (g1(x), . . . , gk(x)). The functions gi are independent at p ∈ R
k

if ∇g1(q), . . . ,∇gk(q) are linearly independent, for all q ∈ G−1(p). Note that the rows of

JG(q) are linearly independent when evaluated at every point q ∈ G−1(p).

Lemma 2.1: (From [13], p. 77) Let M ⊂ R
n be an n − k dimensional manifold. The

normal bundle of M is trivial if and only if there exist k independent globally defining

functions for M on some open set U in R
n such that

M = { x ∈ U | g1(x) = g2(x) = . . . = gk(x) = 0 }, (2.2)

where gi : U → R is C∞. Moreover

{∇g1(x)T , . . . ,∇gk(x)T}
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is a basis for NxM, ∀x ∈ M.

Let’s continue with the example of S2 and calculate the normal space NpS
2 where

p = (
√

3
4
, 3

4
, 1

2
). The manifold S2 has one globally defining function, ‖x‖ − 1 = 0, with

x ∈ R
3 and U = R

3, and thus Lemma 2.1 applies. A basis for NpS
2 is



































√
3

4

3
4

1
2



































.

It is clear that NpS
2 is the vector space spanned by p and thus is a ray that is normal to

the sphere, as expected.

2.1.4 Functions on Manifolds

Let M and N be manifolds with the coordinate charts (Wi, ϕi) on M and (Uj, ψj) on

N . The mapping F : M → N is C∞ if ψj ◦F ◦ϕ−1
i ∈ C∞ for any coordinate charts such

that F : Wi → Uj .

The rank of a mapping F : M → N at a point p ∈ M is defined to be

rank F = rank Jψ◦F◦ϕ−1(p),

where (W, ϕ) is a coordinate chart such that p ∈ W and (U , ψ) is a coordinate chart

such that F (p) ∈ U .

The rank of a function is useful for studying features of functions on manifolds. In

particular, we often consider the rank of a function on an inverse set. For a smooth

mapping F : M → N , a point p ∈ N is a regular value if rank(F (q)) = dim(N ), for all

q ∈ F−1(p).
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2.1.5 Submanifolds

Analogous to a subspace of a vector space, we can also have a submanifold of a manifold.

In the current study, we will be considering submanifolds of R
n. Unlike subspaces, there

is more than one class of submanifold. In particular, we are interested in a class of

submanifolds referred to as embedded submanifolds.

Let M and N be two manifolds in R
N with dim(M) = m and dim(N ) = n, as shown

in Figure 2.4. The manifold N is an embedded submanifold of M if N ⊂ M and for

every p ∈ N there exists a coordinate chart (W, ϕ) of M, with p ∈ W such that

N ∩W = { q ∈ W | ϕ1(q) = ϕ2(q) = . . . = ϕm−n(q) = 0 }, (2.3)

where ϕi are the components of ϕ. So ϕ(N ∩ W) is contained in an n-dimensional

subspace in R
m. For this reason N is often called an n-dimensional slice of W. Locally,

N is the zero level set of the function F (p) := (ϕ1(p), . . . , ϕm−n(p)). By definition it is

clear that F maps from W → R
m−n. Thus, we can view an n-dimensional embedded

submanifold locally as the level set of an (m− n)-dimensional function. Notice the close

resemblance between (2.3) and (2.2). In fact, (2.2) is a global version of (2.3) where the

larger manifold is R
n. Unfortunately, the definition of an embedded submanifold does

not provide an easy algebraic test to determine if a particular submanifold is embedded.

Consider the function h : R → R
2 where

h(t) =























(t, 0) t ≤ 0

(sin t, cos t− 1) 0 < t ≤ 3π
2

(−1, 3π
2
t−1) t > 3π

2

Figure 2.5 shows a plot of the map h. The image of h is not an embedded submanifold of

R
2 because the manifold does not have the required form in the neighbourhood of (−1, 0).

In this case, the value of h at t = −1 and in the limit as t → ∞ are both (−1, 0). In
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M

N

W

R
n

R
m−n

p

ϕ

ϕ(N ∩W)

Figure 2.4: An m-dimensional manifold M with an n-dimensional embedded submanifold
N . The set N ∩W is mapped to a subset of an n-dimensional plane.



Chapter 2. Background 21

y

x

Figure 2.5: Example of a submanifold of R
2 that is not embedded.

any neighbourhood of the point (−1, 0) the manifold has a ‘T’ shape. It is impossible for

this ‘T’ to be diffeomorphic to a one dimensional subspace, so the embedded submanifold

definition does not hold.

We have seen that an embedded submanifold is locally the zero level set of a function.

This leads to the question, if a set is the level set of a sufficiently smooth function, is

it an embedded submanifold? The following theorem from [9] gives a condition when a

level set of a function is also an embedded submanifold.

Theorem 2.1 (Preimage Theorem, [9], p. 79) : Let N and M be two manifolds, with

dimN = n and dimM = m. Let F : M → N be a C∞ mapping. If rank F = k for

all points in M, then, for all q ∈ F (M), F−1(q) is a closed embedded submanifold of M

with dimension m− k.

In [9] there is also a useful corollary to the Preimage Theorem.

Corollary 2.1 ([9], p. 80) : Let N and M be two manifolds, with dimN = n and dimM =

m, with n ≤ m. Let F : M → N be a C∞ mapping. If for some point q ∈ F (M)

rank F = n for all points in F−1(q), then F−1(q) is a closed embedded submanifold of M

with dimension m− n.
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Corollary 2.1 has a less restrictive condition on the rank of F—it must have constant

rank only on a subset of N . However, because the rank is maximal, there exists a

neighbourhood of F−1(q) with constant rank. The Preimage Theorem can then be applied

on this neighbourhood to obtain Corollary 2.1. We will use this corollary in the proof of

Theorem 5.1.

Let’s continue with the example of the circle to show that the unit circle is an em-

bedded submanifold of R
2. Define F (x, y) := ‖(x, y)‖2. Note that F : R

2 → R, so in this

example M = R
2 and N = R. Then the unit circle is the set F−1(1). If we check the

rank of F , using ϕ as the identity map, we obtain

rank F = rank

[

x y

]

The rank of F equals 1 except at the origin, when rank F = 0. On F−1(1), F has constant

maximal rank, so by applying Corollary 2.1 we can conclude that the set F−1(1) = S1 is

an embedded submanifold of R
2.

In fact, there is an interesting result, the Whitney embedding theorem (p. 197, [9]),

that shows that any manifold can be embedded into a sufficiently large Euclidean space.

For instance, the 1-dimensional manifold in Figure 2.5 can be embedded in R
3. Consider

the function h : R → R
3 where

h(t) =























(t, 0, 0) t ≤ 0

(sin t, cos t− 1,−t) 0 < t ≤ 3π
2

(−1, 3π
2
t−1,−t) t > 3π

2

Figure 2.6 shows a plot of the map h. The image of h is an embedded submanifold of

R
3.

The results in subsequent chapters will involve embedded submanifolds which are

level sets of smooth functions. In this special case, the normal and trivial space have
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x

y

z

Figure 2.6: Example of an embedded manifold in R
3 that is diffeomorphic to the manifold

from Figure 2.5.

some interesting properties. Let gi : R
n → R, i = 1, . . . , k be smooth functions. We then

define M ⊂ R
n such that

M = { x ∈ R
n | g1(x) = g2(x) = . . . = gk(x) = 0 },

and zero is a regular value. Note that M has exactly the form of (2.2). We have seen in

Lemma 2.1, when the functions gi are globally defining and independent, then there is a

simple method to obtain a basis for the normal bundle. In addition, recall from Section

2.1.2 for embedded submanifolds, the tangent space at a point has an explicit local basis

obtained from a parametric representation of the submanifold. The form of M is not a

parametric representation, but we can construct a parametric representation.

In particular, the submanifold M can also be represented as the image of an em-

bedding as in Theorem 3.1 (p. 21, [18]). To construct such an embedding, we begin

with the functions g1, . . . , gk defining M. Let p ∈ M. Then, by the implicit function

theorem, there exists a neighborhood U ⊂ R
n of p and a set of functions ψ1, . . . , ψn−k,

with ψ : U → ψ(U), such that the map ψ has the form ψ := (ψ1, . . . , ψn−k, g1, . . . , gk) and

ψ is a diffeomorphism (see, for example, Proposition 2.18 from [28]). By construction,

(U , ψ) is a coordinate chart for R
n. In these “preferred coordinates” M is locally defined
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by

M∩U = { x ∈ R
n | ψn−k+1(x) = · · · = ψn(x) = 0 },

where ψn−k+i(x) = gi(x). The preferred coordinates provide a local representation of an

embedding h : V → R
n where V = {θ ∈ R

n−k | (θ, 0) ∈ ψ(U)}. The embedding is given

by

h(θ) := ψ−1(θ, 0) .

Thus, h is a local homeomorphism from V onto M and a local parametric form for M.

In Remark 4.1 we discuss a global version of this result.

For example, let’s consider the unit circle S1 embedded in R
3 such that

S1 = { x ∈ R
3 | x2

1 + x2
2 − 1 = x3 = 0 }.

The function g that defines S1 is g = (x2
1 +x2

2−1, x3). On the set U := { x ∈ R
3 | x2 > 0}

we can define ψ1 to map x to the angle between (x1, x2) and the positive x1 axis. Then

ψ = (ψ1, g), as shown in Figure 2.7 and (U , ψ) is a coordinate chart of R
3. We define

h(θ) := ψ−1(θ, 0).

The homeomorphism h can be used to define a basis for the tangent space. If for

all x ∈ M, we define θ = h−1(x), then from the definition of the tangent space TxM =

Im(Jh(θ)).

This leads to the following fact showing that, as expected, the basis vectors for the

normal space and tangent space are orthogonal.

Fact 2.1 For all x ∈ M, with θ = h−1(x),

(∇gi(h(θ))Jh(θ) = 0

for 1 ≤ i ≤ k.
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x1

x2

x3

ψ1(x)
ψ2(x) = g1(x)

ψ3(x) = g2(x)
x

S1

Figure 2.7: Example construction of ψ for S1 embedded in R
3.

Proof: For any i, and ∀θ, gi(h(θ)) = 0. If we differentiate with respect to θ we obtain

the required result. �

2.2 Gradient Systems

Let V : R
n → R be a continuously differentiable function. Let f(x) := −∇V (x)T . Then

the system

ẋ = f(x) (2.4)

is a gradient system. The function V (x) is referred to as a potential function.

Note that if A is symmetric, the linear system

ẋ = Ax

is a gradient system, with the potential function V (x) = −1
2
xTAx.

Gradient systems have some useful properties that we state below; for proofs see
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[19]. In order to describe these properties, we use the Lie derivative. The Lie derivative,

denoted LfV , is a map from R
n → R and is related to the derivative of V (x) along

solutions x(t) of (2.4). We take the time derivative of V (x(t)) and find that

d

dt
V (x(t)) = ∇V (x(t))ẋ(t)

= ∇V (x(t))f(x(t)).

We then define

LfV (x) := ∇V (x)f(x).

Note that LfV (x(t)) = d
dt
V (x(t)). The Lie derivative of a gradient system has the

following important property.

Theorem 2.2 ([19], p 200): The Lie derivative, LfV (x), satisfies LfV (x) ≤ 0 for all x.

Furthermore, LfV (x) = 0 if and only if x is an equilibrium of (2.4).

The proof of Theorem 2.2 follows directly from the fact that LfV (x) = −||∇V (x)||2.

From Theorem 2.2 we see that the trajectories of (2.4) either remain on the same level

set of V or move down level sets of V (x); the value of V (x(t)) cannot increase. Note that

this property of the trajectories does not imply stability as we have not restricted V (x)

in any way; V (x) may have no minimum value.

Associated with any system of the form (2.4) (not just gradient systems) are two

special sets: the α- and ω-limit sets. A point p is an ω-limit point of (2.4) if there exist

an initial condition, x(t0), and a sequence of times ti, with ti → ∞ as i→ ∞, such that

lim
i→∞

x(ti) = p. (2.5)

The ω-limit set is the set of all ω-limit points. Similarly, an α-limit point is a point p

where there exist an initial condition, x(t0), and a sequence of times ti, with ti → −∞
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as i→ ∞, such that

lim
i→∞

x(ti) = p. (2.6)

The α-limit set is the set of all α-limit points.

The α- and ω-limit sets of a gradient system have a special property.

Theorem 2.3 ([19], p. 203): Let z be an α-limit point or an ω-limit point of a trajectory

of (2.4). Then z is an equilibrium.

Theorem 2.3 is particularly interesting because it implies that a gradient system can have

no limit cycles or other steady-state periodic behaviour.

Let’s consider a simple example using a potential function to stabilize the origin of

the system

ẋ = u,

with x ∈ R
n. A possible potential function is 1

2
‖Mx‖2, with M ∈ R

m×n. Then

ẋ = −MTMx.

The stability of the origin then depends on the size of the kernel of MTM . The following

fact shows the relationship between ker(MTM) and ker(M).

Fact 2.2 For any matrix M , ker(MTM) = ker(M).

Proof: It is immediate that ker(M) ⊂ ker(MTM). We now show the converse by letting

x ∈ ker(MTM). So MTMx = 0. It follows that

xTMTMx = 0

‖Mx‖2 = 0.

So Mx = 0 and x ∈ ker(M). �

Applying Fact 2.2 we can conclude that if ker(M) = 0 then the origin will be stable.
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1
2

3

4

Figure 2.8: Example of a directed graph.

2.3 Graph Theory

The solution to multivehicle problems is strongly dependent on the sensor information

each robot knows about its neighbours. For instance, in [22] the robots achieve rendezvous

only if there are a sufficient number of sensor connections. A graph is a particularly useful

and commonly used way to encode this information.

Typically, set notation is used to describe a graph. A directed graph G = (V,E) is

a pair consisting of two sets: a finite set of vertices V := {1, . . . , n} and a set of edges

E ⊂ V × V . We assume the edges are ordered. That is to say that E = {1, . . . , m},

where m ∈ {1, . . . , n(n−1)}. Each edge ei has a source vertex j and a destination vertex

k. For example, in Figure 2.8 there is an edge from vertex 1 to vertex 2. We exclude

the possibility of self loops: edges with the same source and destination node are not

permitted.

An undirected graph is a special case of a directed graph. In an undirected graph if

there is an edge ei from vertex j to vertex k then there is also an edge el from vertex k

to vertex j. In a directed graph, this is not necessarily the case. For undirected graphs,

we will omit the arrows in the pictorial representation of the graph, as in Figure 2.9.

A special undirected graph is the graph Kn, the complete graph with n vertices. The
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Figure 2.9: The complete graph with five vertices, K5.

graph Kn has an edge between every pair of nodes. Figure 2.9 shows K5, the complete

graph with five vertices.

We can associate several useful matrices with a graph G. The adjacency matrix,

AG = (aij), is a matrix of zeros and ones. There is a 1 in position aij if there is an edge

from vertex i to vertex j. If the graph G is undirected then AG is a symmetric matrix.

A second useful matrix is the degree matrix. The degree matrix of a graph G is denoted

DG = (dij) and is defined to be the diagonal matrix where the value of dii is the number

of edges leaving from vertex i. The incidence matrix, HG, is determined by the edges ei

of G: row i of HG is determined by ei and has two non-zero entries: a 1 in column k and

a −1 in column j. For undirected graphs the location of the 1 and −1 can be chosen

arbitrarily. In the graph G then ei is the edge between vertex j and vertex k. Thus, by

definition, HG1 = 0, where 1 is the vector with a 1 in each component.

Property 2.1 The incidence matrix, HG, has the following properties:

1. each row has two non-zero entries: a 1 and a −1,

2. the rank of HG is n−c where c is the number of connected components in the graph;

see Proposition 4.3 (p. 23) from [8].
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For the remainder of this work we will assume that all graphs we are considering

are connected and thus ker(HG) is one dimensional. In this work directed graphs are

considered connected if the corresponding undirected graph is connected.

Finally, the graph Laplacian is LG = DG − AG. If G is a symmetric graph then

L = HTH (see Proposition 4.8 p. 27 in [8]). In contexts where the meaning of G is

unambiguous, we will drop the subscript.

For the graph in Figure 2.8 the adjacency matrix A and the degree matrix D are

A =



























0 1 0 0 1

0 0 0 0 0

0 1 0 1 1

0 0 0 0 1

1 1 0 0 0



























, D =



























2 0 0 0 0

0 0 0 0 0

0 0 3 0 0

0 0 0 1 0

0 0 0 0 2



























.

For the graph in 2.8 the incidence matrix is

H =















































−1 1 0 0 0

0 1 −1 0 0

0 0 −1 1 0

0 0 0 −1 1

0 0 −1 0 1

0 1 0 0 −1

1 0 0 0 −1

−1 0 0 0 1















































.

2.3.1 Graph Rigidity

In order to consider the rigidity of graphs we view them as frameworks embedded in

the plane, R
2. Let G = (V,E) be an undirected graph with vertices V and edges E.
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We then embed G into R
2 by assigning to each vertex i a location pi ∈ R

2. Define the

composite vector p = (p1, . . . , p|V |) ∈ R
2|V |, where |V | is the cardinality of the set V .

Then a framework is a pair (G, p).

We define the rigidity function associated with the framework (G, p) as the function

fG : R
2|V | → R

|E|, such that

fG(p) := (. . . , ‖pk − pj‖2, . . .),

with vertices j and k connected by the edge ei in E. Then the ith component of fG(p),

‖pk − pj‖2, corresponds to the edge ei. Note that this rigidity function is not unique and

depends on the ordering given to the edges.

There are several equivalent definitions of rigidity. The definitions below are taken

from [4]. Rigidity is related to the isomorphisms of frameworks. Two frameworks are

isomorphic if they are related by some sequence of translations and rotations in the plane.

We will describe a framework as rigid if the only local deformation of the framework is

isomorphic to the original framework.

The intuitive idea of rigidity is as follows: Imagine the framework is represented by a

collection of magnets and metal bars. Each vertex is represented with a magnet, or some

other connector that will allow free movement in the plane, at its location. Then for

every edge in the graph we connect the source and destination vertex magnet with a thin

metal bar. Now, deform the framework by translating the vertices independently, while

maintaining the lengths prescribed by the metal bars. If the graph is embedded as a

rigid framework, then the only possible motions of the vertices will result in a framework

isomorphic to the original framework.

For example, consider the framework in Figure 2.10(a). It is possible to translate

the top two points of the framework while maintaining the four edge lengths to obtain a

graph that is not isomorphic to the original graph; the lengths of the diagonals change.
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(a) Example of a flexible framework. (b) Example of a rigid framework.

Figure 2.10: Two different frameworks with four nodes.

So the framework in Figure 2.10(a) is not rigid. If we add one more edge to the framework

in Figure 2.10(a), we obtain the framework in Figure 2.10(b). For this framework, every

perturbation of the vertices that maintains the edge lengths is isomorphic to the original

framework. So the graph in Figure 2.10(b) is rigid. Note that in this case, all the edge

lengths stay the same, not just the edges specified in the graph.

In particular, the complete graph, K, is always rigid.

Definition 2.1: A framework (G, p) is rigid if there exists a neighbourhood U of p such that

f−1
G (fG(p)) ∩ U = f−1

K (fK(p)) ∩ U , where K is the complete graph with the same vertices

as G.

The level set f−1
G (fG(p)) is all the possible locations that have the same edge lengths

as the framework (G, p). For the complete graph K the set f−1
K (fK(p)) corresponds to

rotations and translations, i.e., rigid body motions, of the framework (K, p). Thus we

see that a graph G is rigid if the level set f−1
G (fG(p)) in the neighbourhood of p contains

only rotations and translations of the formations corresponding to the point p.

We refer to the matrix JfG(p) as the rigidity matrix of (G, p). The rigidity matrix is

useful in defining some other concepts related to graph rigidity.
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Definition 2.2: A point p is a regular point of the graph G with n vertices if

rankJfG(p) = max
{

rankJfG(q) | q ∈ R
2n

}

.

In Figure 2.11(a) we see that the graph K3 is embedded at a regular point. Conversely,

Figure 2.11(b) shows the graph K3 embedded at a point that is not regular.

Next we consider infinitesimal rigidity. In this case, we allow the vertices to move

infinitesimally, while keeping the rigidity function constant up to first order. Let δp be

such an infinitesimal motion of the framework (G, p). Then the Taylor series expansion

of fG about p

fG(p+ δp) = fG(p) + JfG(p)δp+ higher order terms.

The rigidity function remains constant up to first order when fG(p + δp) = fG(p) +

JfG(p)δp = fG(p). This is equivalent to

JfG(p)δp = 0.

All the possible infinitesimal motions δp such that fG(p+δp) = fG(p) are in ker(JfG(p)).

Intuitively, the rigidity function remains constant under translations and rotations. For

planar graphs, this gives δp three degrees of freedom while keeping JfG(p)δp constant.

We will consider a framework to be infinitesimally rigid if the only possible infinitesimal

motions correspond to the rigid body motions.

Definition 2.3 ([4] ) : A framework (G, p) is infinitesimally rigid in the plane if dim(ker JfG(p)) =

3, or equivalently if

rankJfG(p) = 2|V | − 3.

If a framework is infinitesimally rigid, it implies that it is also rigid. The converse
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(a) Example of a rigid and infinitesi-
mally rigid framework with K3 as the
underlying graph.

(b) Example of a rigid but not in-
finitesimally rigid framework with K3

as the underlying graph.

Figure 2.11: Two different embeddings in the plane of the graph K3 show that the same
graph can be infinitesimally rigid for two frameworks embedded at different points.

is not true. The following theorem outlines when rigidity and infinitesimal rigidity are

equivalent.

Theorem 2.4 ( [4] ) : A framework (G, p) is infinitesimally rigid if and only if (G, p) is

rigid and p is a regular point.

A final useful concept of graph rigidity is the concept of global rigidity.

Definition 2.4: A framework (G, p) is globally rigid if f−1
G (fG(p)) = f−1

K (fK(p)).

From this definition, and the definition of infinitesimally rigidity, we see that for a graph

to be infinitesimally rigid in the plane it must have at least 2|V | − 3 edges. If it has

exactly 2|V | − 3 edges, we say that the graph is minimally rigid.

The two different embeddings of K3 shown in Figure 2.11 illustrate some of the rigid-

ity properties. Both frameworks shown are embeddings of the complete graph. It follows

immediately from the definition of rigidity and global rigidity that the two frameworks
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Figure 2.12: Example of a rigid but not infinitesimally rigid graph.

are both rigid and globally rigid. The framework shown in Figure 2.11(a) is also infinites-

imally rigid. If we check the rigidity matrix for any point p where the vertices are not

collinear we will find it has rank 3. Thus we can conclude for the graph K3 that any

non-collinear point is a regular point.

By changing the positions of the vertices we can obtain the graph in Figure 2.11(b).

The framework in Figure 2.11(b) is, as previously noted, rigid and globally rigid, however,

unlike Figure 2.11(a), not infinitesimally rigid. We can check this using the rigidity

matrix. Let the embedding of the points in the plane be z1 = (0, 0), z2 = (0, 1), z3 =

(0, 3). The rigidity function for this graph is

fG(z) =













||z1 − z2||2

||z2 − z3||2

||z3 − z1||2













.

Then

JfG(p) = 2













zT1 − zT2 0 zT2 − zT1

0 zT2 − zT3 zT3 − zT2

zT1 − zT3 0 zT3 − zT1













.

If we check the rank at a collinear point p we see rank JfG(p) = 2 < 2n − 3, so the

framework is not infinitesimally rigid. As the rigidity matrix does not have maximal
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rank, we see that p is not a regular point; consistent with Theorem 2.4, we see that a

rigid framework is not infinitesimally rigid at a non-regular point.

In general, frameworks that are rigid but fail to be infinitesimally rigid have collinear

or parallel edges. For instance the graph in Figure 2.12 is rigid, but not infinitesimally

rigid and has three parallel edges connecting two infinitesimally rigid components—the

triangles.

2.3.2 Level Sets of fG(p)

The level sets of fG(p) are a particularly interesting topological object—they are a real

algebraic variety. A real algebraic variety is the intersection of the zero level sets of

polynomial functions, see [36]. For example the set

{x ∈ R
2 | x1 = 0 and x2

2 − x1 − 1 = 0}

is a real algebraic variety.

A subset S of a topological space is topologically disconnected if and only if there

are two disjoint open sets U and V such that S ⊂ U ∪ V, S ∩ U 6= ∅ and S ∩ V 6= ∅.

If S cannot be expressed in this way we say that it is topologically connected (p. 191,

[38]). A topological component is a subset of a topological space that is topologically

connected.

Lemma 2.2: ([36]) A real algebraic variety has at most a finite number of topological

components.

The set f−1
G (d) is a real algebraic variety. Recall that p ∈ f−1

G (d) if and only if

fG(p) − d = 0. Each component of the function fG(z) − d is a polynomial in pi. So the

set f−1
G (d) is a real algebraic variety. We now apply Lemma 2.2 to conclude f−1

G (d) has a

finite number of topological components. Each component of f−1
G (d) corresponds to one

possible embedding of the graph in the plane, up to translations and rotations.
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Figure 2.13: Possible unique embeddings of the graph in Example 2.1.

Example 2.1: Let’s consider the example of a graph with four vertices and

fG(z) =



























||z1 − z2||2

||z2 − z3||2

||z3 − z4||2

||z4 − z1||2

||z3 − z1||2



























and d =



























1

2

1

2
√

5



























.

There are four possible distinct frameworks for this graph, as shown in Figure 2.13.

Rotating and translating one of these frameworks generates one connected component of

f−1
G (d). ⊳

If the particular graph being studied is not only rigid, but globally rigid, then f−1
G (d)

has only two components. There are only two distinct embeddings of the graph and
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43
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(b)

Figure 2.14: The two possible embeddings of the graph K4. Note that Figure 2.14(a) is
a reflection of Figure 2.14(b).

they are reflections of one another. The complete graph K4 is globally rigid. Figure 2.14

shows the two distinct embeddings of K4 for the same edge lengths.

2.3.3 Constructing Rigid Graphs

Any collection of n points in the plane can be connected to form a rigid framework. For

instance, we can connect the points using Kn, the complete graph. In subsequent sections

we will find that the complexity of the control is proportional to the number of edges in

a certain graph. Obviously, using the complete graph will result in a design that is not

scalable: as the number of connections needed for n vertices is n2−n
2

.

However, from the definition of infinitesimal rigidity, we see a graph can be infinites-

imally rigid with only 2n − 3 edges. Since infinitesimal rigidity implies rigidity, we can

see a rigid graph can be made with only 2n−3 edges. For n > 3, this is fewer edges than

the complete graph.

A rigid graph can be constructed for any embedding of n vertices in the plane in the

following manner. First, number all the vertices. Next, add an edge between vertex 1

and vertex 2. If we consider the framework formed by vertex 1 and vertex 2, we see that

it is the complete graph, and thus is rigid. The remaining vertices are added in order to

the connected component of the graph, connecting each one to the previously connected

graph structure by two edges. This operation is sometimes referred to as a Henneburg
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e7

Figure 2.15: Graph created by recursively adding vertices in order. The edges are created
in the order e1, e2, . . . , e7. In particular note that there are 7 edges, which equals 2n−3 =
2 × 5 − 3 = 7.

insertion, see [7]. This type of insertion preserves graph rigidity because each vertex

has two degrees of freedom. By connecting the vertex to the previously connected graph

structure by two edges the position of the vertex is subject to two constraints, removing

both degrees of freedom. This procedure results in a framework which is not only rigid

but also minimally rigid; that is, if we remove any edge the framework is no longer rigid.

Figure 2.15 shows a graph created using this procedure.

2.3.4 Graphs in Formation Control

The formation control problem has two associated graphs. The first graph is a formation

graph; an undirected graph used to specify the desired formation.

We define a formation to be a pair (G, d) where G is an undirected graph and d ∈ R
|E|.

The vector d specifies the target lengths for the edges. We refer to G as the formation

graph. Each robot is represented as a vertex in the graph. The robots achieve the target

formation when the length of edge i is the prescribed distance di. We assume that the

set where the robots achieve the target formation is non-empty. However, if the target

distances are chosen arbitrarily it is possible to select a vector d for which there exists no

point p such that fG(p) = d. In general, G may not have enough constraints to form a
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p6

p1

p2

p3

p4
p5

Figure 2.16: A polygon with labeled vertices.

rigid graph. However, the graph can be augmented by additional edges to form a graph

which will be infinitesimally rigid if embedded at regular points. Given a formation

(G, d), the control goal is for z(t) → f−1
G (d).

If the target formation is given as an ordered polygon p as in Figure 2.16, the procedure

outlined in Section 2.3.3 can be used to construct a rigid framework (G, p). Then the

formation is (G, fG(p)).

The second graph in the formation control problem is the sensor graph. The sensor

graph is a directed graph with each robot represented as a vertex in the graph. The

edges in the graph are defined by the closed-loop dynamics of the multi-robot system.

Let zi be the state of the robot i. Further suppose the dynamics of robot i are

żi = f(zi) + g(zi)ui.

If in the closed loop system, ui is a function of zj , where j 6= i, then the sensor graph

will have an edge between vertex i and vertex j.

Depending on the control the sensor graph may be time varying. This is the case

when the robots’ control is determined by those robots within a certain radius of the

robot. Other multivehicle problems have a fixed sensor graph. This is the situation in

the cyclic pursuit law described in [25]. In the present work, the sensor graph will also
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be fixed, as we will see in Chapter 5.



Chapter 3

Gradient Control

In this chapter we develop control laws to stabilize robots to nearly arbitrary formations.

Then we simulate these laws to gain some intuitive understanding of their behaviour.

Consider N robots in the plane, R
2. The robots are wheeled vehicles with sensors

that allow them to measure the relative positions of some of the other vehicles. Such data

can be obtained using a camera or a radar system. The simplest model for a wheeled

vehicle is the kinematic unicycle. The unicycle has a location in the plane (x, y) and a

R
2

u1
z4

z5

z1

z2

z3 z6

Figure 3.1: Point robots.

42
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heading angle θ. The kinematics are then

ẋ = υ1 cos θ

ẏ = υ1 sin θ

θ̇ = υ2,

where υ = (υ1, υ2) is the control input.

If we linearize the unicycle model about an arbitrary point equilibrium we find that it

is uncontrollable. However, using feedback we can transform the model into a controllable

linear model. We do this by considering a point a distance l > 0 in front of the unicycle,

represented by the outputs

ξ1 = x + l cos θ

ξ2 = y + l sin θ.

It follows that

ξ̇ = A(θ)υ,

where ξ = (ξ1, ξ2) and

A(θ) =







cos θ −l sin θ

sin θ l cos θ






.

The determinant of A(θ) is l, so the matrix A(θ) is invertible for all θ. Define w = A(θ)υ.

Then the model becomes

ξ̇ = w.

If we consider only the output dynamics ξ we have a simple kinematic integrator

model. The trade-off for this simplification is that we are no longer directly controlling
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z1

visibility multiplexer

u1 u2 z2 un zn

C2C1

P1 P2

Cn

Pn

. . .

Figure 3.2: The control structure and plant model for the problem.

the unicycle: the point ξ will be at the target location, however the unicycle could be

located anywhere on a circle of radius l around the target location. This is a drawback if

the goal is to control the precise position of the unicycle. For sensor network applications

the end goal of formation control is to precisely place the transmitter and receiver. Thus

uncertainty of the location of the unicycle could possibly be overcome by placing the

transmitter and receiver at the location l in front of the unicycle.

To simplify the analysis, we assume that the robots’ dynamics have been feedback

linearized in this way. The robots then have a point kinematic model given by the

differential equation

żi = ui, i ∈ {1, . . . , N} (3.1)

where zi = (xi, yi) ∈ R
2 is the location of the ith robot in the plane and ui ∈ R

2 is the

control input for the ith robot—see Figure 3.1. We define the composite state vector

z = (z1, . . . , zN ), as a vector in (R2)N .

The control is restricted to be a function only of relative measurements. Each robot’s

onboard sensors provide relative position measurements of one or more other robots. For

example if robot 1 can see robots 3 and 5, then the measurements available to robot 1 are

z3−z1 and z5−z1. Therefore, u1 can be a function of these two measurements. This defines

a distributed control structure, see Figure 3.2. Figure 3.2 shows a visibility multiplexer
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that determines the relationship between robot states and each robot’s control input.

The boxes Ci and Pi model the controller and dynamics of robot i.

Let G be the formation graph and fG(z) = d be the rigidity function defining the

desired formation. Such a graph can be created from several types of specifications as

outlined in Section 2.3.4. With this setup, we have the following problem statement:

given the system (3.1) and given a target set specified by the equation fG(z) = d, design

a distributed control system as described above so that every point z such that fG(z) = d

is a stable equilibrium (the issue of asymptotic convergence will be discussed later).

In Section 2.3.4 we noted that there are two graphs associated with the formation

control problem: the formation graph and the sensor graph. In general, these graphs are

not related. However, it is particularly advantageous if the two graphs are related. Then

when the formation graph is designed, the effect on the sensor graph will be known. To

this end, we continue our study with the following assumption.

Assumption 3.1: A solution to the formation problem exists where the formation graph

and sensor graph are the same.

From Assumption 3.1, we know that when the formation graph and sensor graph are the

same, then the sensor graph is undirected. That is to say, if robot i can see robot j, then

robot j can see robot i.

Under Assumption 3.1, the goal is to construct a global potential function that defines

a distributed gradient control that uses only the relative measurements permitted by the

sensor graph such that any z where fG(z) = d is stable.

Let m be the number of edges in the formation graph. Since the formation graph

and sensor graph are the same, there are m available relative positions. We define ei,

i ∈ 1, . . . , m, to be the available two dimensional relative position measurements with

ei = zk − zj , where without loss of generality j < k. Note that ei is the direction of edge

i1 and ‖ei‖2 is the ith term in the rigidity function, fG(z). We also form the composite

1The notation ei is used to refer both to the edge i and the direction of edge i in the framework. In
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vector e = (e1, . . . , em). This vector is a linear function of z and is related to the

incidence matrix, H , of the graph G. Recall from Property 2.1 that ker(H) = span{1}

for connected graphs. Additionally, from the definition of H we know that H ∈ R
m×N .

We define

Ĥ := H ⊗ I2. (3.2)

Then e is related to z by

e = Ĥz. (3.3)

For example, let’s consider the complete graph K3. The incidence matrix for this

graph is

H =













1 −1 0

0 1 −1

1 0 −1













then

Ĥ =













I2 −I2 0

0 I2 −I2
I2 0 −I2













.

3.0.5 Special Case: The Rendezvous Problem

The rendezvous problem is a special case of the formation stabilization problem, when

d = 0. If L is the Laplacian of the sensor graph, and L̂ = L⊗ I2, a linear solution to this

problem is to let u = −L̂z, and then

ż = −L̂z. (3.4)

In [22], it is shown that when the sensor graph is connected, rendezvous is achieved with

this control law.

this second usage, the vector ei is also referred to as an error vector.
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Recall that if the sensor graph is undirected, the Laplacian is a symmetric matrix.

Lemma 3.1: The matrix L̂ = ĤT Ĥ.

For a proof of Lemma 3.1 see Proposition 4.8 (p. 27) in [8]. The form of the Laplacian

in Lemma 3.1 leads to the interesting observation that

−L̂z = −
[

∇
(

1

2
‖Ĥz‖2

)]T

.

The function 1
2
‖Ĥz‖2 is positive semidefinite. So the control law in (3.4) is not only a

gradient control law, as all symmetric linear controls are, but a gradient control law for a

positive semidefinite potential function. This suggests considering a gradient control of a

positive semidefinite potential function for the general formation stabilization problem.

3.0.6 Control Law

We now consider a gradient control law to maintain an arbitrary formation of robots.

First we define a vector norm function v : R
2m → R

m:

v(e) = (||e1||2, . . . , ||em||2).

Then using (3.3) we define

g(z) := v(e) = v(Ĥz). (3.5)

Note that g(z) ≡ fG(z) is the rigidity function for the formation graph in our problem.

As a candidate potential function, we consider the positive definite function of g(z) − d

φ(z) =
1

2
‖g(z) − d‖2. (3.6)

Note that φ(z) is a positive semidefinite function of z and φ(z) = 0 if and only if g(z) = d.

Inspired by the rendezvous problem, in particular the solution given in (3.4), we propose
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the gradient control

u = −(∇φ(z))T .

It follows from (3.1) and applying the chain rule to (3.6) that

ż = −Jg(z)T (g(z) − d), (3.7)

where Jg is the Jacobian of g(z).

We now consider some interesting properties of the control. A fairly easy computation

using (3.5) gives

−[∇φ(z)]T = −ĤT (Jv(e))
T (v(e) − d) (3.8)

and so the control is a function only of the relative measurements, as required by the

problem specification.

If we check the control of each agent we see that

żi = −
∑

j∈edges leaving i

1

2
(‖ej‖2 − dj)ej ,

consistent with Assumption 3.1. The sensor graph is the same as the formation graph.

3.1 Simulations

Let’s simulate the control law (3.7) for some different graphs, to gain some intuitive

understanding about the robots’ behaviour.
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Example 3.1: Let’s start by considering the complete graph K4 with the rigidity function

g(z) =

































||z1 − z2||2

||z2 − z3||2

||z3 − z4||2

||z4 − z1||2

||z3 − z1||2

||z4 − z2||2

































and d =

































1

22

1

22

5

5

































.

Note that this graph is globally rigid and the set g−1(d) is where the robots form a one

by two rectangle. Figure 3.3 shows a trajectory that converges to g−1(d), using g(z) and

d to derive the control from (3.7). So we know that under (3.7) some initial conditions

converge to the goal formation.

If we continue simulating different initial conditions, we see that some trajectories

converge to an equilibrium where the rectangle formed by the robots is “twisted”; the

robots converge to an equilibrium that is not in g−1(d). Such a trajectory is shown in

Figure 3.4. These equilibria are undesired. From the simulation shown in Figure 3.4, we

can conclude that the control in (3.7) has other equilibria than the target formation.

Now let’s try initializing the simulation with the robots in a collinear configuration.

Such a simulation is shown in Figure 3.5. From the simulation in Figure 3.5 it is clear

that the collinear set is invariant and stable collinear equilibria exist.

Clearly, the simulations in Figures 3.4 and 3.5 show that the set g−1(d) is not globally

attractive. However, the simulations suggest that it may be locally stable. Figure 3.6

shows a simulation where the robots are started close to the target formation and converge

to it. ⊳

Example 3.2: Now let’s consider the control law derived from the minimally rigid graph
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Figure 3.3: Four robots converging to an equilibrium that is in the target formation.
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Figure 3.4: Four robots converging to an equilibrium that is not in the target formation.
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Figure 3.5: Four robots converging to an equilibrium in the collinear set. Note that some
robots are coincident in the final configuration.
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Figure 3.6: Four robots converging to a nearby equilibrium in the target set.
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G with four vertices

g(z) =



























||z1 − z2||2

||z2 − z3||2

||z3 − z4||2

||z4 − z1||2

||z3 − z1||2



























and d =



























1

22

1

22

5



























.

This graph has one less edge than the one used in Example 3.1. Additionally, if we

remove any edge the graph will no longer be able to form a rigid graph.

It is interesting to note that this graph is in fact a subgraph of the graph used in the

previous simulations, i.e. G is a subgraph of K4. Due to this relationship we know that

the target set from Example 3.1 is a subset of the target set in this example. However,

because the two graphs are not equal we know the two target sets are not equal. This is

confirmed in the two example simulations shown in Figure 3.7 and Figure 3.8.

Although we have introduced additional equilibria in g−1(d), no twisted or unde-

sired equilibrium has been found in simulation—other than the collinear equilibria. We

conjecture that this may be because the minimally rigid framework has no symmetry.

⊳

These simulations give us some insight in the behaviour of the multi-robot system.

The simulations showed that other equilibria exist—not just the formation that we wish to

stabilize. In particular, note that there were collinear equilibria and that if the robots are

initialized in a collinear position they converge to a collinear equilibrium. Additionally,

the simulations suggest that the formation is locally stable. In the next chapter we

will study the stability of equilibrium manifolds in order to understand the multi-robot

system analytically.
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Figure 3.7: Four robots converging to the target formation.
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Figure 3.8: Four robots converging to an equilibrium that is not the target formation.



Chapter 4

Stability of Equilibrium Manifolds

In this chapter we study the stability of equilibrium manifolds. In particular, we will use

linearization techniques to study the local stability of a point on an equilibrium manifold.

From the linearization it is not immediately apparent if the manifold is stable. To reach

a conclusion we must analyze the dynamics normal and tangential to the equilibrium

manifold. To put the system in this form, we perform a nonlinear change of coordinates,

using a property of manifolds with trivial normal bundles. Finally, we study the special

case where the manifold of equilibria is the zero level set of a gradient system.

We start our study of equilibrium manifolds with the system

ẋ = f(x) (4.1)

with x ∈ R
n and f ∈ C∞. Let E be an isolated (n−k)-dimensional manifold of equilibria

of the system (4.1).

In order to study the stability of E , we must first define what conditions must hold

for the set to be stable. The definition of stability of an isolated equilibrium is well

known, for instance see [20]. To precisely define what we mean by set stability we use

54
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the notation dist(x,S) to define the distance between a point x and a set S:

dist(x,S) = inf
y∈S

||x− y||.

The following definitions of set stability are from [31].

Definition 4.1 (Stability of a Set): A set S is stable if

(∀ǫ > 0)(∃δ > 0) dist(x(0),S) < δ ⇒ (∀t ≥ 0) dist(x(t),S) < ǫ.

A stronger type of set stability is asymptotic stability, analogous to asymptotic stability

of an equilibrium point.

Definition 4.2 (Asymptotic Stability of a Set): A set S is locally asymptotically stable if it

is stable and if

(∃δ > 0) dist(x(0),S) < δ ⇒ lim
t→∞

dist(x(t),S) = 0.

Finally, we have the strongest definition of set stability, that of exponential stability.

Definition 4.3 (Exponential Stability of a Set): A set S is exponentially stable if it is stable

and if

(∃δ, α, a > 0) dist(x(0),S) < δ ⇒ (∀t ≥ 0) dist(x(t),S) < ae−αt.

Our goal is to study the stability of the equilibrium manifold E . For an isolated

nonlinear equilibrium point p of the system (4.1), a standard way to determine if p is

stable is to evaluate the eigenvalues of Jf(p). If Jf(p) is Hurwitz, then we know that the

equilibrium p is stable.

Consider instead the Jacobian of (4.1) at a point p ∈ E . It follows directly that Jf(p)

will have at least n − k zero eigenvalues. These zero eigenvalues mean we cannot make

a conclusion about the stability of the system, complicating the analysis.
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Instead of linearizing the dynamics, we can also use LaSalle’s Theorem to analyze

the stability of a set as described in [20]. Let’s consider some examples to gain some

insight into the behaviour of trajectories near stable equilibrium manifolds. We will

prove stability of these manifolds by an application of LaSalle’s Theorem.

Example 4.1: Consider the system (θ̇, ṙ) = f(θ, r) where

θ̇ = (1 − r)2

ṙ = (1 − r).

The set {(θ, r) | r = 1} is a manifold of equilibrium solutions. We can apply LaSalle’s

theorem using the Lyapunov function V (r, θ) = 1
2
(1 − r)2. Then

LfV (θ, r) = −(1 − r)2,

so we can conclude that the manifold is locally stable. If we linearize at a point (θ0, 1)

we see that

Jf (θ0, 1) =







0 0

0 −1






.

The Jacobian has one zero eigenvalue and one stable eigenvalue. If we simulate, we see

that trajectories converge to a point on the manifold, as shown in Figure 4.1. ⊳

Example 4.2: Consider the system (θ̇, ṙ) = f(θ, r) where

θ̇ = (1 − r)2

ṙ = (1 − r)3.

The set {(θ, r) | r = 1} is a manifold of equilibrium solutions. We can apply LaSalle’s
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Figure 4.1: Possible trajectory for r and θ, plotted using (r, θ) as polar coordinates. The
trajectory converges to a point on the unit circle.

theorem using the Lyapunov function V (r, θ) = 1
2
(1 − r)2. Then

LfV (θ, r) = −(1 − r)4,

so we can conclude that the manifold is locally stable. However if we linearize at a point

(θ0, 1) we see that

Jf(θ0, 1) =







0 0

0 0






.

This matrix has two zero eigenvalues. If we simulate the system we see that trajectories

spiral towards the unit circle without converging to a point, as shown in Figure 4.2. ⊳

In both these examples, the unit circle is a stable manifold. However in the first

example the trajectories converge to a point on the manifold, and in the second the

trajectories do not converge to a point. Note that the dynamics in these two examples

have a special form: close to the manifold, the θ dynamics are the dynamics tangent to the

manifold, and the r dynamics are the dynamics normal to the manifold. In Example 4.1,

close to the manifold the normal dynamics are much faster than the tangential dynamics.

Conversely, in Example 4.2, close to the manifold the tangential dynamics are faster than
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Figure 4.2: Possible trajectory for r and θ, plotted using (r, θ) as polar coordinates. Note
that the trajectory does not converge to the unit circle but spirals around it.

the normal dynamics.

For many applications, including the multi-robot formation problem, it is preferable

for the trajectory to converge to an equilibrium. Thus, our goal is to study not only

when an equilibrium manifold is stable, but also when local trajectories converge to a

point on the manifold.

Interestingly, in the example where the manifold is both stable and the trajectories

converge to a point the Jacobian has one zero eigenvalue, the same as the dimension of

the manifold, and the remaining eigenvalue is stable. For (4.1), if the number of zero

eigenvalues is exactly n− k it seems that it might be possible to obtain a stability result

based on the linearization by performing some additional analysis of the relative speeds

of the tangential and normal dynamics.

In the remainder of this chapter we study equilibrium manifolds in this normal form.

In Section 4.1 we study a coordinate transformation that puts a specific class of equi-

librium manifolds into such a normal form—where the tangential and normal dynamics

are separated. Next in Section 4.2 we study the stability of a point in an equilibrium

manifold with dynamics in this normal form. Finally we combine these two results in

Section 4.3 to obtain a stability result for a class of equilibrium manifolds.
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4.1 Coordinate Transformation

Transforming (4.1) into its normal and tangential components will help us analyze the

stability of the system. In general, this may be difficult to do. However, for manifolds

with trivial normal bundles, i.e. manifolds that satisfy Lemma 2.1, we can use the

following theorem. The result is an adaptation of a technique in [14], p. 214.

Theorem 4.1: Let E be an (n − k)-dimensional embedded submanifold of R
n defined on

the open set U ⊂ R
n by

E := { x ∈ U | g1(x) = g2(x) = . . . = gk(x) = 0 },

where each gi : U → R is C∞, and g = (g1, . . . , gk) has rank k for all x ∈ U . Further

assume that E is a set of equilibria of (4.1). Then for each p ∈ E there exists an open

neighbourhood W of p, an open set V ⊂ R
n−k × R

k, and a diffeomorphism ϕ : V → W

such that

1. E ∩W = { x ∈ W | x = ϕ(θ, 0), (θ, 0) ∈ V}, as shown in Figure 4.3.

2. The dynamics of (4.1) in the new coordinate system (θ, ρ) = ϕ−1(x) have the form

θ̇ = B(θ, ρ)ρ + f̂1(θ, ρ) (4.2)

ρ̇ = A(θ)ρ + f̂2(θ, ρ), (4.3)

where A, B, f̂1 and f̂2 are C∞ and f̂1 and f̂2 satisfy

(a) f̂1(θ, 0) = 0 and f̂2(θ, 0) = 0,
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ϕ

h(θ) = ϕ(θ, 0)

Figure 4.3: The map ϕ, and the associated sets W and V.

(b) f̂1 and f̂2 are restricted in order as follows:

(∀θ) f̂1(θ, ρ)

‖ρ‖ → 0 as ρ→ 0 (4.4)

(∀θ) f̂2(θ, ρ)

‖ρ‖ → 0 as ρ→ 0. (4.5)

Proof: First we will construct the diffeomorphism ϕ(θ, ρ). Since E is an embedded

submanifold of R
n, the conditions of Lemma 2.1 hold and we can conclude that for each

point p ∈ E

∇g1(p)
T , . . . ,∇gk(p)T

form a basis for NpE .

From the discussion in Section 2.1.5, for each p ∈ E there exists a coordinate chart

(W1, ψ) for R
n such that

E ∩W1 = {x ∈ W1 : ψn−k+1(x) = · · ·ψn(x) = 0},

and h(θ) := ψ−1(θ, 0) defines a local embedding of E ∩ W1. The diffeomorphism ψ is

related to the defining functions gi; the last k components of ψ are the functions gi. Let

V1 = ψ(W1).



Chapter 4. Stability of Equilibrium Manifolds 61

R
n

E

Im H(θ) = Th(θ)E

G(θ)T ρ

Im G(θ)T = Nh(θ)E

h(θ) = ϕ(θ, 0)

x = h(θ) + G(θ)T ρ =: ϕ(θ, ρ)

Figure 4.4: The relationship between ϕ and the normal and tangent spaces of E at a
point h(θ).

We then define the matrices

H(θ) :=
∂

∂θ
h(θ) and G(θ) :=













∇g1(h(θ))

...

∇gk(h(θ))













.

Note that the columns of H(θ) are linearly independent, so ker(H(θ)) = 0. By applying

Fact 2.2 we know that ker(H(θ)TH(θ)) = 0, so the square matrix H(θ)TH(θ) is invertible.

Likewise, the matrix G(θ)GT (θ) is invertible.

Define the coordinate transformation ϕ : (θ, ρ) 7→ x by

x = h(θ) +G(θ)Tρ =: ϕ(θ, ρ), (4.6)

as shown in Figure 4.4. It is clear that ϕ(θ, 0) ∈ E on V1. Subsequently, we will see that

V ⊂ V1 so Property 1 of ϕ will be satisfied.
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To show that ϕ is a valid local diffeomorphism, we check the rank of ϕ. From (4.6)

we see that

∂ϕ

∂θ
= H(θ) +

∂G(θ)T

∂θ
ρ

∂ϕ

∂ρ
= G(θ)T ,

where ∂G(θ)T

∂θ
is a (n×k)-matrix valued function of θ. At any point on p on E this becomes

∂ϕ

∂θ
(θ, 0) = H(θ)

∂ϕ

∂ρ
(θ, 0) = G(θ)T .

From Fact 2.1 it follows that G(θ)H(θ) = 0, so the matrix

[

H(θ) G(θ)T
]

∈ R
n×n

is invertible. Since
[

H(θ) G(θ)T
]

is the Jacobian of ϕ(θ, ρ) at (θ, 0), we can apply the inverse function theorem and conclude

that at (θ, 0), ϕ is a local diffeomorphism on a neighbourhood V2 of (θ, 0). Without loss

of generality, assume V2 ⊂ V1.

We now derive expressions for θ̇ and ρ̇ in order to show that they have the required

form. As a first step we substitute x = ϕ(θ, ρ) into (4.1). Taking the derivative of (4.6)

with respect to time, we find the dynamics in transformed coordinates are

(

H(θ) +
∂G(θ)Tρ

∂θ

)

θ̇ +G(θ)T ρ̇ = f(h(θ) +G(θ)Tρ). (4.7)
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In order to isolate θ̇, we project both sides of (4.7) onto ϕ−1(E) by taking the inner

product with the columns of H(θ), obtaining

(

H(θ)TH(θ) +H(θ)T
∂G(θ)Tρ

∂θ

)

θ̇ = H(θ)Tf(h(θ) +G(θ)Tρ). (4.8)

Define the matrix

C(θ, ρ) := H(θ)TH(θ) +H(θ)T
∂G(θ)Tρ

∂θ
.

Note that G(θ)Tρ can be expanded to

G(θ)Tρ = ρ1∇g1(h(θ))T + . . .+ ρk∇gk(h(θ))T ,

where ρi are the components of ρ. It follows that

∂G(θ)Tρ

∂θ
= ρ1

∂

∂θ
(∇g1(h(θ))T + . . .+ ρk

∂

∂θ
∇gk(h(θ))T

When we evaluate ∂G(θ)T ρ
∂θ

at ρ = 0 we see that

∂G(θ)Tρ

∂θ

∣

∣

∣

∣

ρ=0

= 0.

It follows that rank(C(θp, 0)) = rank(H(θp)
TH(θp)) and so C(θp, 0) is invertible. From

continuity of C(θ, ρ), there exists a neighbourhood V of (θp, 0) where C(θ, ρ) is invertible.

Without loss of generality, assume V ⊂ V2. Define W := ψ−1(V). We will now show that

ϕ : V → W provides the required form of dynamics and order arguments specified in the

theorem statement.

On V we can rewrite (4.8) as

θ̇ = C(θ, ρ)−1H(θ)Tf(h(θ) +G(θ)Tρ). (4.9)
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The Taylor series expansion with respect to ρ of f(h(θ) +G(θ)Tρ) at a point (θ, 0) is

f(h(θ)) +
∂f

∂x
(h(θ))G(θ)Tρ + r(θ, ρ). (4.10)

The remainder function r is C∞, consists of higher order terms in ρ, and has the property

that

lim
ρ→0

r(θ, ρ)

‖ρ‖ = 0. (4.11)

From f(h(θ)) = 0 and (4.10), (4.9) becomes

θ̇ = B(θ, ρ)ρ + f̂1(θ, ρ) (4.12)

where

B(θ, ρ) := C(θ, ρ)−1H(θ)T
∂f

∂x
(h(θ))G(θ)T

and

f̂1(θ, ρ) := C(θ, ρ)−1H(θ)Tr(θ, ρ).

Note that f̂1, C ∈ C∞.

Let’s check that f̂1(θ, ρ) satisfies (4.4). The term H(θ) is independent of ρ. Addi-

tionally, we know that since C(θ, ρ) is invertible so ‖C(θ, 0)−1‖ 6= 0. It follows from the

order of r(θ, ρ), (4.11), that

lim
ρ→0

f̂1(θ, ρ)

‖ρ‖ = C(θ, 0)−1H(θ)T lim
ρ→0

r(θ, ρ)

‖ρ‖ = 0

as required for (4.4).

From the order requirement on r(θ, ρ) it follows immediately that r(θ, 0) = 0. Thus,

f̂1(θ, 0) = 0, as required.
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To calculate ρ̇ we multiply (4.7) by G(θ), similar to our calculation of θ̇, obtaining

G(θ)
∂G(θ)Tρ

∂θ
θ̇ +G(θ)G(θ)T ρ̇ = G(θ)f(h(θ) +G(θ)Tρ). (4.13)

Define D(θ) := (G(θ)G(θ)T )−1 and substitute θ̇ from (4.12), to simplify (4.13) to

ρ̇ = D(θ)G(θ)

(

−∂G(θ)T ρ

∂θ
(B(θ, ρ)ρ + f̂1(θ, ρ)) + f(h(θ) +G(θ)Tρ)

)

. (4.14)

Again from (4.10), (4.14) can be simplified to

ρ̇ = A(θ)ρ + f̂2(θ, ρ) (4.15)

where

A(θ) := D(θ)G(θ)
∂f

∂x
(h(θ))G(θ)T

and

f̂2(θ, ρ) := D(θ)G(θ)

(

r(θ, ρ) − ∂G(θ)Tρ

∂θ
(B(θ, ρ)ρ + f̂1(θ, ρ))

)

.

Note that f̂2(θ, 0) = 0 and f̂2(θ, ρ), A(θ) ∈ C∞. From (4.11),

lim
ρ→0

f̂2(θ, ρ)

‖ρ‖ = D(θ)G(θ) lim
ρ→0

1

‖ρ‖

(

r(θ, ρ) − ∂G(θ)Tρ

∂θ
(B(θ, ρ)ρ + f̂1(θ, ρ))

)

= 0

as required for (4.5). �

Note that the form obtained using this coordinate transformation transforms the

system so that the θ coordinates are tangent to the manifold and ρ coordinates are

normal to the manifold.

We call the equations (4.2)-(4.3) the canonical coordinates for the dynamics near

E . This canonical form exposes the dynamics off the submanifold (the ρ-dynamics) and

the dynamics on the submanifold (the θ-dynamics), analogous to what is done with
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subspaces with respect to linear dynamics. Our main stability result will follow from

conditions on the eigenvalues of the Jacobian linearization of the canonical equations

(4.2)-(4.3). Because of the order conditions given in (4.4)-(4.5), the Jacobian linearization

is obtained by truncating the terms f̂1(θ, ρ) and f̂2(θ, ρ) in (4.2)-(4.3) and evaluating

A and B at a point on E . Thus, the analysis method involves first performing the

nonlinear coordinate transformation ϕ to obtain the canonical form (4.2)-(4.3), followed

by a Jacobian linearization at an equilibrium point on E . It is easily shown that this is

equivalent to first performing a Jacobian linearization on the original dynamics and then

applying a linear coordinate transformation which is precisely Jϕ, the differential of ϕ.

That is to say, (Jϕ)−1 = Jϕ−1 and the diagram in Figure 4.5 commutes.

Remark 4.1: A global version of the previous results can be obtained for manifolds dif-

feomorphic to a generalized cylinder by applying the following facts. Using Lemma 2,

(p. 274) from [2], it can be shown that a manifold M of dimension n is diffeomorphic

to a generalized cylinder Sκ × R
n−κ if and only if there exist n pairwise commutative1

and linearly independent vector fields defined on M. By flowing along these vector fields

one can define a set of global curvilinear coordinates on M (see [33] Theorem 14 (p.

219)). These coordinates, denoted ψ, define an embedding of Sκ × R
n−κ onto M given

by h(θ) = ψ−1(θ). Using h(θ) defined over the entire manifold, one obtains a formula

for the coordinate transformation (4.6) that can be used at any point of the manifold and

this coordinate transformation is a local diffeomorphism for each point on the manifold.

4.2 Malkin’s Theorem

Now that we have transformed the system (4.1) into the canonical coordinates—the

normal and tangential basis—at a point on the manifold, we must analyze when the

1Two vector fields f and g are said to be pairwise commutative if their Lie bracket, or commutator,
is zero. For vector fields the Lie bracket of f and g at a point p is [f, g](p) = Jg(p)f(p) − Jf (p)g(p); see
[2] or [28] for more details on the Lie bracket.
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linearize linearize

Jf

f
ϕ−1

Jϕ−1

ϕ−1 ◦ f ◦ ϕ

Jϕ−1JfJϕ

Figure 4.5: Commutative diagram for linearizing the dynamics in the two different coor-
dinate systems.

manifold is both stable and a limit exists for the trajectories. The next theorem uses the

linearized dynamics when the equilibrium manifold has this specific form.

Consider a system with a decomposition of the form

θ̇ = f1(θ, ρ) (4.16)

ρ̇ = Aρ+ f2(θ, ρ), (4.17)

where θ ∈ R
n−k, ρ ∈ R

k, the matrix A is Hurwitz, and the functions f1, f2 ∈ C∞.

Additionally, f1(θ, 0) = 0 and f2(θ, 0) = 0. From these conditions it is clear that the set

{ (θ, ρ) | ρ = 0 } is an equilibrium manifold. Moreover, the dynamics are such that the

θ-coordinates are tangential to the equilibrium manifold, and ρ-coordinates are normal

to the equilibrium manifold.

The functions f1 and f2 are restricted in order such that

lim
ρ→0

f1(θ, ρ)

‖ρ‖ = b1(θ) (4.18)

lim
ρ→0

f2(θ, ρ)

‖ρ‖ = b2(θ), (4.19)

where b1, b2 ∈ C∞ and b2(0) = 0.

Note that the form in (4.16)-(4.17) is the same as that obtained from the transfor-
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c

(θ(0), ρ(0))

ρ

θ

V U

Figure 4.6: Sets associated with Malkin’s theorem, and a possible trajectory.

mation in Theorem 4.1 when A(θ) is both constant and Hurwitz and the B(θ, ρ)ρ term

has been incorporated into f1.

We also define the useful functions

g1(θ, ρ) :=











f1(θ,ρ)
‖ρ‖ if ρ 6= 0

b1(θ) if ρ = 0,

and

g2(θ, ρ) :=











f2(θ,ρ)
‖ρ‖ if ρ 6= 0

b2(θ) if ρ = 0.

Note from (4.18) and (4.19) that the functions g1(θ, ρ) and g2(θ, ρ) are continuous. In

particular, notice that g2(0, 0) = 0.

Theorem 4.2 (Malkin’s theorem, [24], p. 106): For the system (4.16)-(4.17), the point (0, 0)

is a stable equilibrium. Moreover, for every neighbourhood V of the origin there exists

a neighbourhood U ⊂ V of the origin such that for every (θ(0), ρ(0)) ∈ U there exists a
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point c ∈ R
n−k such that (c, 0) ∈ V and

lim
t→∞

(θ(t), ρ(t)) = (c, 0). (4.20)

The proof that follows for Malkin’s theorem is an adaptation of his original proof

from [24]. Malkin’s proof shows that ‖ρ‖ is exponentially bounded by performing a time

varying change of coordinates. In the following proof we show an exponential bound for

‖ρ‖ by an application of the comparison lemma.

Proof: Let V be an open neighbourhood of the origin. First, we show that on a neigh-

bourhood of the origin inside V here exists a positive semidefinite function that has a

negative definite Lie derivative. Since A is a Hurwitz matrix, there exists a positive defi-

nite matrix P such that ATP +PA = −I. Let V (θ, ρ) = ρTPρ be a candidate Lyapunov

function. Then along a solution of (4.16)-(4.17)

d

dt
V (θ(t), ρ(t)) = ρ̇(t)Pρ(t) + ρ̇(t)Pρ(t)

= ρ(t)(ATP + PA)ρ(t) + 2ρ(t)TPf2(θ(t), ρ(t))

= −‖ρ(t)‖2 + 2ρ(t)TPf2(θ(t), ρ(t)).

Define the function V̇ (θ, ρ) to be the Lie derivative:

V̇ (θ, ρ) := −‖ρ‖2 + 2ρTPf2(θ, ρ).

From the definition of g2(θ, ρ) we know that

‖f2(θ, ρ)‖ = ‖ρ‖ ‖g2(θ, ρ)‖. (4.21)

Since g2(θ, ρ) is continuous and g2(0, 0) = 0, for every γ > 0 it is possible to select a
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closed ball Br := {(θ, ρ) | ‖(θ, ρ)‖ ≤ r} such that

‖g2(θ, ρ)‖ ≤ γ, ∀(θ, ρ) ∈ Br. (4.22)

Without loss of generality, we assume Br ⊂ V. From (4.21) and (4.22), it follows that on

the open ball Br we have

‖f2(θ, ρ)‖ ≤ γ‖ρ‖, ∀(θ, ρ) ∈ Br.

Then the Lie derivative of V is bounded by

V̇ (θ, ρ) ≤ −‖ρ‖2 + 2γ‖P‖ ‖ρ‖2, ∀(θ, ρ) ∈ Br.

By selecting γ such that

γ ≤ 1

4‖P‖

then V̇ (θ, ρ) is a negative semidefinite function on Br.

Next, we show that on the ball Br, ρ(t) is exponentially bounded. From the Lipschitz

continuity of the vector field, we know that the solutions to (4.16)-(4.17) are continuous

functions of time, and we can conclude that if (θ(0), ρ(0)) ∈ Br then, for some interval

T = [0, t1), (θ(t), ρ(t)) ∈ Br, ∀t ∈ T .

Let λmin be the minimum eigenvalue of P and λmax be the maximum eigenvalue of

P . Th, that hold on Br,e following bounds, that hold on Br,, that hold on Br,

λmin‖ρ‖2 ≤ V (θ, ρ) ≤ λmax‖ρ‖2 (4.23)

V̇ (θ, ρ) ≤ − (1 − γ2‖P‖) ‖ρ‖2 ≤ −1

2
‖ρ‖2 (4.24)

allow us to apply the Comparison Lemma [20], as in Theorem 4.10 of [20]. First we note
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that on Br from (4.23) and (4.24)

V̇ (θ, ρ) ≤ − 1

2λmax
V (θ, ρ). (4.25)

We apply the Comparison Lemma to (4.25) to obtain

V (θ(t), ρ(t)) ≤ V (θ(0), ρ(0))e−2αt, (4.26)

where α := 1
4λmax

. It follows from (4.23) and (4.26) that

‖ρ(t)‖2 ≤ V (θ(0), ρ(0))

λmin
e−2αt

≤ λmax‖ρ(0)‖2

λmin
e−2αt.

Define a :=
√

λmax/λmin. Then

‖ρ(t)‖ ≤ a‖ρ(0)‖e−αt ≤ a‖ρ(0)‖, ∀t ∈ T. (4.27)

This inequality provides the exponential bound on the growth of ρ(t).

Now we will show that θ(t) is bounded. From the definition of g1(θ, ρ) we know that

‖f1(θ, ρ)‖ = ‖ρ‖ ‖g1(θ, ρ)‖.

Since g1 is continuous, its norm has a maximum m on the set Br. It follows that

‖f1(θ, ρ)‖ ≤ m‖ρ‖, ∀(θ, ρ) ∈ Br.

Thus from (4.27)

‖f1(θ(t), ρ(t))‖ ≤ ma‖ρ(0)‖e−αt, t ∈ T. (4.28)
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So we can bound the value of ‖θ(t)‖ by

‖θ(t)‖ ≤ ‖θ(0)‖ +

∫ t1

0

‖f1(θ, ρ)‖dτ from (4.16)

≤ ‖θ(0)‖ + a‖ρ(0)‖m
∫ t1

0

e−αtdτ from (4.28)

≤ ‖θ(0)‖ +
a‖ρ(0)‖m

α
.

For (θ(0), ρ(0)) ∈ Br, while (θ(t), ρ(t)) continues to remain in Br, the following inequality

holds

‖θ(t)‖ ≤ ‖θ(0)‖ +
a‖ρ(0)‖m

α
. (4.29)

Having bounded θ(t) and ρ(t) while they remain in Br, we now restrict θ(0) and ρ(0)

so that the trajectories remain in Br. First select a value r∗ > 0 such that

r∗ +
ar∗m

α
+ ar∗ < r. (4.30)

Let U := Br∗ and let (θ(0), ρ(0)) ∈ U . Then there exists an interval T = [0, t1) where

(θ(t), ρ(t)) is in Br. Towards a contradiction, assume that t1 < ∞ and at t1, (θ(t), ρ(t))

reaches the boundary of Br. Up until t1 the bounds (4.27) and (4.29) hold so it follows

that

‖(θ(t), ρ(t))‖ ≤ ‖θ(t)‖ + ‖ρ(t)‖ ≤ r∗ +
ar∗m

α
+ ar∗.

Then from (4.30) we have

‖(θ(t), ρ(t))‖ < r, ∀t ∈ T

a contradiction to the trajectory being on the boundary of Br at t = t1. So the solution

(θ(t), ρ(t)) remains in Br for t ∈ [0,∞).

From (4.27), we see that

lim
t→∞

ρ(t) = 0.
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The limit of θ(t) is

lim
t→∞

θ(t) = θ(0) +

∫ ∞

0

f1(θ(τ), ρ(τ))dτ.

This integral converges because from (4.28) the integrand is exponentially bounded, so

we can conclude that θ(t) converges to some c ∈ R
n−k. From the bound (4.30) we know

that (c, 0) ∈ Br. �

4.2.1 Center Manifold Theory

Malkin’s theorem is in fact a special case of center manifold theory. As seen in the proof

of Theorem 4.2, Malkin’s theorem provides a stability result using standard Lyapunov

theory arguments, without resorting to the more general theory of center manifolds.

Nevertheless, we include some background on center manifold theory to clarify the strong

relationships between the two approaches.

Consider a modification of the equations (4.16)-(4.17) as follows

θ̇ = Cθ + f1(θ, ρ) (4.31)

ρ̇ = Aρ+ f2(θ, ρ), (4.32)

where C has eigenvalues only on the imaginary axis, A is Hurwitz, f1(0, 0) = 0 and

f2(0, 0) = 0. The functions f1 and f2 are restricted in order such that Jf1(0, 0) = 0 and

Jf2(0, 0) = 0. Note that in (4.16) the linear term in θ in (4.31) is zero; i.e. C = 0.

From the conditions on (4.31) and (4.32) it is clear that the set { (θ, ρ) | ρ = 0 } is not

necessarily an equilibrium manifold.

An invariant manifold M is a center manifold of (4.31)-(4.32) if there exists an em-

bedding

M := {(θ, ρ) ∈ U | h(θ)}
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where h(θ) has the form

h(θ) = (θ, h2(θ)).

That is to say, M has the local form

M := { (θ, ρ) ∈ U | ρ = h2(θ) }

where U is a sufficiently small neighbourhood of the origin, h2(0) = 0, and Jh2
(0) = 0.

The conditions of A make M an invariant manifold close to the origin.

The following theorem from [37] shows that for (4.31)-(4.32) a center manifold always

exists.

Theorem 4.3 ([37], p. 195) : A centre manifold exists for (4.31)-(4.32) . Moreover, the

dynamics of (4.31)-(4.32) restricted to the center manifold are

ξ̇ = Cξ + f1(ξ, h2(ξ)) (4.33)

for a sufficiently small ξ ∈ R
n−k.

The stability of the system (4.31)-(4.32) can then be analyzed from the dynamics on

the centre manifold using the next theorem.

Theorem 4.4 ([37], p. 195) : If the origin is stable under (4.33), then the origin of (4.31)-

(4.32) is also stable. Moreover there exists a neighbourhood W of the origin such that if

(θ(0), ρ(0)) ∈ W then there is a solution ξ(t) of (4.33) such that

θ(t) = ξ(t) + f1(t)

ρ(t) = h2(ξ(t)) + f2(t),

where there exits ci > 0 such that ‖fi(t)‖ < c1e
−γt for some γ > 0.
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Malkin’s theorem can be proved using centre manifold theory as in [34]. In (4.16)-

(4.17) the center manifold can be explicitly found, and is in fact the θ-axis. From the

application of Theorem 4.4 we know that the θ-axis is attractive and the origin is stable.

4.3 Main Result

Now we combine the results of Theorem 4.1 and Theorem 4.2 to obtain a local stability

result for manifolds with a trivial normal bundle.

Theorem 4.5: Let E be a compact, (n − k)-dimensional equilibrium manifold of (4.1)

defined on the open set U ⊂ R
n by

E := { x ∈ U | g1(x) = · · · = gk(x) = 0 },

where gi : U → R is C∞, and the functions gi are independent. If, for all x0 ∈ E ,

Jf(x0) has all stable eigenvalues, except for (n− k) eigenvalues at zero, then E is locally

asymptotically stable under (4.1). Moreover, there exists a neighbourhood N ⊂ U of E

such that for each x(0) ∈ N there exists a point p ∈ E where

lim
t→∞

x(t) = p.

Proof: We begin by transforming the system (4.1) into the canonical coordinates, followed

by an application of Malkin’s theorem. Then we show that stability in the transformed

coordinates implies stability in the original coordinates.

Let x0 ∈ E . From Theorem 4.1, there exists a neighbourhood W0 of x0 and an open

set V0 ⊂ R
n−k × R

k, and a diffeomorphism ϕ : V0 → W0 such that dynamics (4.1) in

the new coordinates (θ, ρ) = ϕ−1(x) have the form (4.2)-(4.3). Define (θ0, 0) := ϕ−1(x0).

Without loss of generality, assume θ0 = 0.



Chapter 4. Stability of Equilibrium Manifolds 76

We now show the (θ, ρ) dynamics have the form required by Theorem 4.2. First we

take the Taylor series expansion of the term A(θ) from (4.3) about the point θ = 0. The

Taylor series of A(θ) at 0 has the form

A(θ) = A(0) +R(θ)

where

R(0) = 0.

Define A0 := A(0). Then the dynamics of the system are

θ̇ = B(θ, ρ)ρ+ f̂1(θ, ρ) =: f1(θ, ρ) (4.34)

ρ̇ = A0ρ +R(θ)ρ+ f̂2(θ, ρ) =: A0ρ+ f2(θ, ρ). (4.35)

Let’s check that the order requirements for Malkin’s theorem are met. It is immediate

from Theorem 4.1 that

B(θ, 0)0 + f̂1(θ, 0) = f1(θ, 0) = 0

and

R(θ)0 + f̂2(θ, 0) = f2(θ, 0) = 0.

So both terms satisfy the requirement to make ρ = 0 an equilibrium manifold. Note that

lim
ρ→0

f1(θ, ρ)

‖ρ‖ =: b1(θ)

and

lim
ρ→0

f2(θ, ρ)

‖ρ‖ =: b2(θ),

with b2(0) = 0. Thus the dynamics satisfy the order requirements of Theorem 4.2 at

(0, 0).
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Next we show that A0 is Hurwitz. If we linearize the (θ, ρ) dynamics from (4.34)-(4.35)

at the point (0, 0) = ϕ−1(x0) on E we obtain







δ̇θ

δ̇ρ






= Jϕ−1◦f◦ϕ(0, 0)







δθ

δρ






=







0 B(0, 0)

0 A0













δθ

δρ






.

The eigenvalues of Jϕ−1fϕ(0, 0) include (n−k) zero eigenvalues as well as the eigenvalues

of A0. Since the transformation ϕ to (θ, ρ)-coordinate system is a local diffeomorphism,

Jϕfϕ−1 = Jϕ−1JfJϕ. So we can conclude that Jϕ is the similarity transformation between

Jϕ−1fϕ(0, 0) and Jf(x0). Thus the matrices Jϕ−1fϕ(0, 0) and Jf(x0) have the same eigen-

values. The matrix Jϕ−1fϕ(0, 0) is block triangular, with n−k zero eigenvalues in the first

n−k rows. So the eigenvalues in the remaining block A0 are the remaining eigenvalues of

Jf(x0). From the assumption on the eigenvalues on Jf(x0) we know that A0 is Hurwitz.

From Theorem 4.2 we know that there exists a neighbourhood U0 of (0, 0) such that

(θ(0), ρ(0)) ∈ U0 ⇒ (∀t > 0) (θ(t), ρ(t)) ∈ V0. (4.36)

So the point (0, 0) is stable. Additionally from Theorem 4.2, there exists c ∈ R
n−k, such

that (c, 0) ∈ V0 and (θ(t), ρ(t)) → (c, 0). That is to say, ρ→ 0.

Now, let x0 ∈ E and let ϕx0
be the coordinate transformation at x0. Recall from

Theorem 4.1, (4.6), that

x = h(θ) +G(θ)Tρ := ϕx0
(θ, ρ)

where h(θ) ∈ E . From the compactness of E , we know that there exists a ε-neighbourhood

Nε of E , [13], where each point p ∈ Nε will have a unique closest point in E . Since the

coordinate ρ measures the distance along the directions orthogonal to E then on W0∩Nε

dist(x, E) = ‖G(θ)Tρ‖.
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Define ρ(x) = ρ. It follows from the compactness of E and since G(θ) is a continuous

function of θ, that there exist constants c2 > c1 > 0 such that for all x ∈ Nε

c1‖ρ(x)‖ ≤ dist(x, E) ≤ c2‖ρ(x)‖. (4.37)

Then given an ǫ > 0, (4.36) implies that there exists a δǫ(x0) > 0 such that

‖ρ(x(0))‖ < δǫ(x0) =⇒ ‖ρ(x(t))‖ < ǫ ∀t ≥ 0 and lim
t→∞

‖ρ(x(t))‖ = 0. (4.38)

Select

δǫ := c1 min
x∈E

δǫ/c2(x).

This minimum exists because E is compact and δǫ(x) is continuous. Then from (4.37)

and (4.36) and using the compactness of E , we obtain

dist(x(0), E) < δǫ

=⇒‖ρ(x(0))‖ ≤ 1

c1
c1 min

x0∈E
δǫ/c2(x0) from (4.37)

=⇒ ‖ρ(x(t))‖ ≤ ǫ

c2
, ∀t ≥ 0 from (4.38)

=⇒ dist(x(t), E) ≤ ǫ ∀t ≥ 0 from (4.37) .

Thus, E is stable. Additionally, we know that

lim
t→∞

dist(x(t), E) = 0,

so E is asymptotically stable. Finally, define p = ϕ(c, 0), with limt→∞ x(t) = p. �

Remark 4.2: It is clear from the conditions of Theorem 4.2 that the set ρ = 0 is locally

isolated from any other sets of equilibria. The dynamics in the two coordinate systems
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are related by a diffeomorphism. So we know that equilibria in the original coordinate

system are mapped to equilibria in the (θ, ρ)-coordinates, [37]. Additionally, since ϕ is a

diffeomorphism we know that isolated points in the (ρ, θ) coordinates cannot correspond

to the same point in the x-coordinates.

Theorem 4.5 provides sufficient conditions for when an equilibrium manifold is not

only stable, but also that local trajectories converge to points on the manifold. This

result will be key in our study of the multi-robot system.

Comment 4.1: It is possible to prove Theorem 4.5 using center manifold theory directly.

Without loss of generality, assume 0 ∈ E . Then rewrite the dynamics near 0 ∈ E as

ẋ = Jf (0)x+ (f(x) − Jf(0)x).

From the eigenvalue assumption in Theorem 4.5, there exists a matrix M that puts Jf(0)

into block diagonal form where the first block is an n− k × n− k block of zeros. Define

(θ, ρ) = Mx. Then the θ, ρ dynamics have the form

θ̇ = f1(θ, ρ)

ρ̇ = Aρ+ f2(θ, ρ),

where f1(0, 0) = 0 and f2(0, 0) = 0 and Jf1(0, 0) = 0 and Jf2(0, 0) = 0. From the

eigenvalue assumption in Theorem 4.5, A is Hurwitz.

It follows directly that M(E) is a center manifold for the transformed system. Thus,

there exist a function h(θ) such that in a neighbourhood U of (θ0, ρ0)

M(E) ∩ U = { (θ, ρ) | ρ = h(θ) }.

Since M(E) is an equilibrium manifold, we know that f1(θ, h(θ)) ≡ 0 on U . It follows
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that

ξ̇ = 0,

and thus ξ(t) = ξ(0). From Theorem 4.4, the solution for (θ, ρ) is then

θ(t) = ξ(0) + f1(t)

ρ(t) = h2(ξ(0)) + f2(t),

where there exits ci > 0 such that ‖fi(t)‖ < c1e
−γt for some γ > 0. The result of Theorem

4.5 then follows directly. ⊳

4.4 Alternate Proof Techniques

As discussed at the beginning of the chapter, LaSalle’s Theorem can be used to prove

stability of a set. Let’s review LaSalle’s Theorem from [20].

Theorem 4.6 LaSalle ([20], p. 128 ) : Let U be a compact set that is positively invariant

with respect to (4.1). Define V : U → R to be a continuously differentiable function

where LfV ≤ 0 on U . Let M be the largest invariant set in { x ∈ U | LfV (x) = 0 }. If

x(0) ∈ U , then x(t) → M as t→ ∞.

In order to apply LaSalle’s Theorem, the equilibrium manifold of interest must be con-

tained in an invariant set with no other equilibria—at every equilibrium point LfV (x) = 0

so we will be unable to conclude which equilibrium set the trajectories converged to. Thus

the equilibrium set of interest must be isolated from other equilibria. For gradient sys-

tems, we can use the following technique to show that an equilibrium manifold is isolated.

Since the particular control we are studying in the multi-robot problem results in the

gradient system (3.7), equilibrium manifolds of gradient systems are of particular interest

for this work.
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Equilibrium manifolds of gradient systems are a special case of the dynamics in (4.1)

where V : R
n → R and

ẋ = −∇V (x)T . (4.39)

Assume that for all x such that V (x) = 0, it also holds that ∇V (x) = 0. This implies the

zero level set is a set of equilibria. For a gradient system we are interested in studying

the stability of this zero level set of equilibria. As a preliminary step we wish to know if

this set is isolated from all the other equilibria in the system. By applying the following

inequality we can show that in most cases it is isolated.

We consider a set S1 to be isolated from S2 if the distance between the two sets has

a positive lower bound.

From [23] (Theorem 17, see also [1] for an English version) we know

Lemma 4.1:( Lojawiewicz’s inequality) Let V : R
n → R be a real analytic function on a

neighbourhood of a point z in R
n. Then there are constants c > 0 and p ∈ [0, 1) and a

neighbourhood U of z such that

‖∇V (x)‖ ≥ c|V (x) − V (z)|p, ∀x ∈ U .

Now we further assume that V : R
n → R is a real analytic non-negative-valued

function. Assume that for all x such that V (x) = 0 it also holds that ∇V (x) = 0. In [1]

such a non-negative-valued function is considered. By using Lemma 4.1, [1] shows that

an isolated local minimum is asymptotically stable. In an extension of the techniques of

[1], Lemma 4.1 can be used to show that a compact equilibrium set is isolated.

Theorem 4.7: If S := V −1(0) is a compact set, then S is isolated from all other equilibria

of the system (4.39).

Proof: The conditions of Lemma 4.1 hold at each point in S. So it is possible to find a

neighbourhood Uz of each point z ∈ S. The neighbourhoods {Uz} form an open cover of
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S. From the compactness of S it is possible to select a finite set of points z1, . . . , zn such

that the sets Uzi cover S, i.e.,

S ⊂
n

⋃

i=1

Uzi .

Define

U :=

n
⋃

i=1

Uzi .

For each Ui, from Lemma 4.1 we know that there exist ci and pi such that for each point

x ∈ Ui that

‖∇V (x)‖ ≥ ci|V (x) − 0|pi.

From the continuity of V we know that the set { x | |V (x)| < 1 } is an open neighbourhood

of S. It follows that U∗ = U ∩ { x | |V (x)| < 1 } is also an open neighbourhood of S.

Let c be the minimum over all the ci and p be the maximum of all the pi; then

‖∇V (x)‖ ≥ c|V (x)|p, ∀x ∈ U∗.

On the set U∗, ∇V (x) = 0 if and only if V (x) = 0. So we can conclude there is no other

equilibrium to (4.39) in U∗ except S.

Select an open bounded subset V ⊂ U such that S ⊂ V. Define ∂V to be the boundary

of V. The set ∂V is compact. Let δ be the minimum distance between S and ∂V. A

minimum exists because both sets are compact. This minimum must be greater than

zero. To see this, assume, towards a contradiction, that δ = 0. Then there exists a point

p ∈ S that is also in ∂V. Thus, p /∈ V, a contradiction to S ∈ V.

It follows that

(∀x) dist(x,S) < δ ⇒ x ∈ U .

Thus, the equilibrium set S is isolated from all other equilibria by a distance δ. �
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LaSalle’s theorem then shows that the set V −1(0) is stable, by using V (x) as a Lya-

punov function and Lemma 4.7 to show that V −1(0) is isolated.

This method has the benefit of not requiring an eigenvalue analysis. However, as we

saw from Examples 4.1 and 4.2 the LaSalle technique does not give any information on

the behaviour of the trajectories as the distance to the manifold goes to zero. In order

to gain a result like that of Theorem 4.5 one must analyze the normal and tangential

dynamics of the system.



Chapter 5

Main Results

We now return to the multi-robot formation problem. In this chapter we analyze some

properties of control (3.7) and then show that the equilibrium set of interest is locally

asymptotically stable.

Let’s start by reviewing the problem formulation. Given an undirected graph G and

a vector d ∈ R
|V |, our goal is to construct a global potential function that defines a

distributed gradient control that uses only the relative measurements permitted by the

sensor graph such that any z such that fG(z) = d is stable. In particular, we are interested

in a solution where the sensor graph and the formation graph are the same.

Note that the vector d cannot be selected arbitrarily from R
|V |. It must be selected

such that the set f−1
G (d) is non-empty. Even for minimally rigid graphs it is possible to

select a value for d that cannot be achieved. For instance, consider the complete graph

K3. If we let d = (1, 1, 9), then the control goal is to stabilize to a triangle with side

lengths of 1,1 and 3. However, no such triangle exists.

84
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5.1 Summary of Equations

Let’s review the control laws we derived in Chapter 3. The robot model for our problem

is

ż = u. (5.1)

The control is derived from a potential function based on the error vector, e. The

error vectors are calculated from Ĥ = H ⊗ I2, where H is the incidence matrix of the

graph G, i.e.

e = Ĥz.

Then the potential function is defined using the function of vector norms v : R
2m → R

m:

v(e) = (||e1||2, . . . , ||em||2).

It follows that

Jv(e) = 2













eT1 . . . 0

...
. . .

...

0 . . . eTm













. (5.2)

For convenience we define

g(z) := v(e) = v(Ĥz). (5.3)

The function g(z) ≡ fG(z). From the form of g, it follows directly that g is invariant

under rigid-body motion, i.e.,

g(z) = g(R∗(z + 1 ⊗ w)) (5.4)

where w ∈ R
2, R ∈ R

2×2 is a rotation matrix and R∗ = In ⊗R.
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With these definitions, the potential function is

φ(z) =
1

2
‖g(z) − d)‖2. (5.5)

Note that the potential function is derived from the formation graph via the incidence

matrix.

The control input is the gradient of φ, that is,

u = −∇φ(z)T .

The control and the robot dynamics are combined to derive the closed loop system

with the following equations of motion,

ż = − (Jg(z))
T (g(z) − d)

= −ĤTJv(Ĥz)
T (v(Ĥz) − d) . (5.6)

5.2 Properties of the Control

To start the analysis of (5.6) we consider some interesting properties of the control. Using

Ĥz = e in (5.6) gives

−[∇φ(z)]T = −ĤT (Jv(e))
T (v(e) − d). (5.7)

Now we investigate the behaviour of the center of mass z̄.

Lemma 5.1: Let z = 1
n

∑n
i=1 zi be the center of mass of the robots. Then ż = 0.

Proof: We can rewrite z as

z =
1

n
(1 ⊗ I2)T z.
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If we differentiate, we obtain

ż =
1

n
(1 ⊗ I2)

T ż

= −1

n
(1 ⊗ I2)

T ĤTJv(Ĥz)
T (g(z) − d).

Recall that, from the structure of Ĥ, Ĥ(1 ⊗ I2) = 0, and thus ż = 0. �

The control in (5.6) has the interesting property that it is independent of the system

of global coordinates.

Lemma 5.2: The function [∇φ(z)] in (5.6) satisfies

∇φ(z + 1 ⊗ w) = ∇φ(z),

where w ∈ R
2, and also satisfies

∇φ(z)R∗T = ∇φ(R∗z),

where R∗ = In ⊗ R, and R ∈ R
2×2 is a rotation matrix, i.e. RTR = I2.

Proof: Equation (5.5) shows the function ∇φ(z) is a function of g(z) and thus from (5.3)

also a function of v(Ĥz). Recall from (5.3) and (5.5)

φ(z) =
1

2
‖v(Ĥz) − d)‖2.

So to show that

[∇φ(z + 1 ⊗ w)] = [∇φ(z)],

it suffices to show that

Ĥ(z + 1 ⊗ w) = Ĥz.
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This follows directly from H1 = 0.

Next we show that R∗∇φ(z) = ∇φ(R∗z). From the chain rule we obtain

φ(R∗z) = φ(z)

∇φ(R∗z)R∗ = ∇φ(z)

∇φ(R∗z) = ∇φ(z)R∗T .

�

Note that if z = 0 then the action of R∗ is to rotate the formation about its centroid

in the plane. If z 6= 0 then the action of R∗ can be viewed as a combination of a rotation

of the formation about its centroid and a translation. From Lemma 5.2 we can conclude

that the behaviour of the robots is independent of the global system of coordinates used.

To see this explicitly, let ξi be the position of robot i in the plane using a different global

coordinate system. Then ξi = Rzi + w, and ξ = R∗z + 1 ⊗ w, where w ∈ R
2. If we look

at the dynamics of ξ we find that

ξ̇ = R∗ż

= −R∗∇φ(z)T

= −∇φ(R∗z)T

= −∇φ(R∗z + 1 ⊗ w)T

= −∇φ(ξ)T .

So the dynamics in the new coordinate system are the same as in the old.
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5.2.1 Collinear Dynamics

An interesting feature of the system (5.6) is the existence of an invariant collinear set.

We define the collinear set C to be the set

C := {z ∈ R
2N | (∃w ∈ R

2)(∀i) (zi − z) ∈ span(w)}.

The set C is not a differential manifold.

Lemma 5.3: The set C is an invariant set.

Proof: The velocity of robot i has the form

żi =
N

∑

j=1

aij(zj − zi).

Note that aij are functions of z. When z ∈ C this can be rewritten as

żi =

N
∑

j=1

aij(cjw − ciw),

where ci, cj ∈ R. Thus, żi ∈ span(w). From Lemma 5.1 we know that z is stationary. So

it follows that zi(t) − z ∈ span(w). Thus, the set C is an invariant set. �

This confirms the observations we made in Section 3.1 when simulating the robots

starting in a collinear position. Since C is an invariant set, and the function φ(z) has a

lower bound, we know that there exist some equilibria in C. Simulations show that these

equilibria are attractive for initial conditions in C. An example simulation is in Section

3.1.
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5.3 Equilibria

We are interested in studying the equilibria of (5.6). From the structure of (5.6) it is

immediately apparent that there are equilibria when g(z) = d. Let the set E1 be defined

by

E1 := {z | g(z) − d = 0 } ≡ {z | φ(z) = 0 }.

The set E1 represents the desired formations as specified by the formation graph.

Unfortunately, these are not the only equilibria for the system (5.6). There is also a

larger set of equilibria

E2 := {z | Jv(Ĥz)T (g(z) − d) = 0 }.

Note that E1 ⊂ E2. The matrix

Jv(Ĥz)
T = 2













e1 . . . 0

...
. . .

...

0 . . . em













has a nontrivial kernel if and only if for some i ∈ { 1, . . . , m }, ei = 0. So for a point z

to be an equilibrium in E2, each ||ei||2 = di or ||ei||2 = 0. That is to say each the edge

has the correct length as specified by the formation graph or the edge is zero.

Finally we consider the complete set of equilibria for (5.6)

E = {z | ∇φ(z) = 0 } .

Notice E1 ⊂ E2 ⊂ E. Simulation has shown that, in general, E2 6= E. These extra

equilibria are not unexpected: the matrix ĤT ∈ R
2N×2m where m > N . Thus, ĤT has a

nontrivial kernel. In particular, the set E includes equilibria where the robots’ positions

are collinear.
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1

2

3

(a) in E1

1 2,3

(b) in E2 \ E1

1,2,3

(c) in E2 \ E1 (d) in E \ E2

Figure 5.1: Possible equilibria when the target formation is an equilateral triangle. The
figures show the formations in R

2, whereas the sets E1, E2 and E are in R
2n.
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To gain a better understanding of these sets let’s return to the triangle example.

Example 5.1: Let’s consider the example of a triangle with

g(z) =













||z1 − z2||2

||z2 − z3||2

||z3 − z1||2













and d =













1

1

1













.

In this case the set E1 is all the points z where z1, z2, z3 form an equilateral triangle

with sides of unit length as in Figure 5.1(a). The set E2 contains two additional distinct

formations: z1 = z2 = z3 and when zi = zj and the third robot zk is positioned such

that ||zi− zk||2 = 1. These two configurations are illustrated in Figure 5.1(c) and 5.1(b).

Finally, the set E contains collinear equilibria as illustrated in Figure 5.1(d).

Note that the set E1 contains only points where the three agents are in an equilateral

triangle. If we look at the other formations in E \ E1 it is clear that E1 and E \ E1 are

separated by some finite distance. ⊳

5.3.1 Summary of Equilibria Sets

The equilibria are subdivided into three sets:

E1 := {z | g(z) − d = 0 } ≡ {z | φ(z) = 0 }

E2 := {z | Jv(Hz)T (g(z) − d) = 0 }

E := {z | ∇φ(z) = 0 }.

By definition E1 ⊂ E2 ⊂ E. The equilibria in E1 are the desired ones.
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5.3.2 Components of E1

Before we study stability of the equilibrium set E1, we examine some of its properties.

In particular, we are interested in classifying E1 as a topological object. If we are able

to show that the set E1 is a manifold with a trivial normal bundle we will be able to

transform the coordinate system into a set of canonical coordinates (θ, ρ) using Theorem

4.1.

From Section 2.3.2 we know that E1 has a finite number of topological components.

We now turn our attention to classifying the components of E1 under the following

assumption.

Assumption 5.1: At every point p ∈ E1 the framework (G, p) is infinitesimally rigid.

Let’s now study the implications of Assumption 5.1.

Theorem 5.1: If Assumption 5.1 holds, then E1 is a three dimensional embedded submani-

fold of R
2N . Moreover, on each connected component of E1 there exist 2N−3 components

of g that are independent on the connected component.

If there are 2N − 3 edges in the graph, then the theorem follows immediately from

Corollary 2.1. However, if there are more than 2N −3 edges in the graph, then a slightly

more subtle argument is needed. The argument depends on the following fact.

Lemma 5.4: Suppose that for all p ∈ g−1(d), the framework (G, p) is infinitesimally rigid.

Then the set S ⊂ g−1(d) is a topologically connected component of g−1(d) if and only if

for each p, p′ ∈ g−1(d), p and p′ are related by a combination of rotations and translations

of R
2, and moreover, S is maximal with respect to rotations and translations.

We say that a manifold M is maximal with respect to a group of functions if, given a

point p ∈ M, every point q ∈ M is related to p by a function in the group and also every

point generated by a function in the group acting on p is in M.
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The proof of this fact follows from the fact that the level sets of the complete graph

corresponding toG are generated by isometries, [3]. If the points in p are not collinear—as

they must be for G to be infinitesimally rigid—then it follows directly that any reflection

in the plane of p will not be in the same component as p.

Given p ∈ R
2N let Mp denote the maximal set of points related by a combination of

rotations and translations to p. Now we prove Theorem 5.1.

Proof: Fix p ∈ g−1(d) and suppose, without loss of generality, that ĝ := (g1, . . . , g2N−3),

the first 2N − 3 components of g, satisfy rank Jĝ(p) = 2N − 3. Let Ĝ denote the

reduced graph with edges corresponding to ĝ. Consider Mp. Let q inR
2N . A simple

calculation shows that Jĝ(q) and Jĝ(p) are related by an invertible matrix when q ∈ Mp.

So rank Jĝ(q) = 2N − 3 for all q ∈ Mp. From Fact 5.4 we know that Mp is also a

connected component of g−1(d). So the required independent components of g exist.

From the rank of Jĝ(q) we know that (Ĝ, q) is infinitesimally rigid, and therefore

rigid, for all q ∈ Mp. This implies there exists an open neighborhood Uq of q such that

Mp ∩ Uq = ĝ−1(ĝ(p)) ∩ Uq. Let U := ∪q∈Mp
Uq, a 2N -dimensional manifold, be an open

cover of Mp. Then Mp∩U = ĝ−1(ĝ(p))∩U . Thus, we have that ĝ : U → R
2N−3 has rank

2N−3 for all q ∈ Mp. By Corollary 2.1, we obtain that Mp is a 3-dimensional embedded

submanifold of U ⊂ R
2N . Thus, each connected component of g−1(d) is an embedded

submanifold. It follows directly that g−1(d) is a 3-dimensional embedded submanifold

also. �

On first reading the infinitesimal rigidity condition in Assumption 5.1 seems difficult

to check, since E1 is not compact. However, to check Assumption 5.1 only a finite number

of calculations must be made. From (5.4) it is clear that the Jacobian of g(z) has constant

rank on components of E1. So we must check the rank of the rigidity matrix at only

one point on each component of E1, or on one possible embedding, in order to apply

Theorem 5.1.
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From Lemma 2.2 we know that level sets of real algebraic varieties, like E1, have

only a finite number of components. So to check that Assumption 5.1 holds only a finite

number of tests must be made.

5.4 Existence of Solutions

In order to study the existence of solutions to (5.6) we first perform a linear change

of coordinates in order to separate the center of mass dynamics from the dynamics of

the rest of the system. Let P be an orthonormal matrix where the first two rows are

1
n
1T ⊗ I2. Recall that for an orthonormal matrix P , P−1 = P T . We now consider the

transformation

z̃ =







z

ž






= Pz,

where z̄ is the centroid of z, as discussed in Lemma 5.1. Define

H̃ = ĤP−1. (5.8)

From the definition of H̃ it is clear that H̃z̃ = Ĥz. We now solve for the z̃ dynamics,

obtaining

˙̃z = P ż

= −PĤT
(

Jv(Ĥz)
)T

(g(z) − d)

= −H̃T
(

Jv(H̃z̃)
)T

(v(H̃z̃) − d). (5.9)

So, ˙̃z = −[∇φ̃(z̃)]T where φ̃(z̃) = 1
2
‖v(H̃z̃) − d‖2.

Next we consider an interesting property of H̃ . Note that since the first two columns

of P−1 are in ker(Ĥ), H̃ has the form

[

0 Ȟ

]

.

From Property 2.1 of H we know that ker(H) is one dimensional, thus Ker(Ĥ) is
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two dimensional. Then by using the dimension of Ker(Ĥ), the invertibility of P and the

block form of H̃, we know that Ker(Ȟ) = 0.

We now expand H̃z̃:

H̃z̃ =

[

0 Ȟ

]







z

ž







= Ȟž. (5.10)

So the z̃ dynamics from (5.9) can be rewritten using (5.8) and (5.10) as







ż

˙̌z






= −







0

ȞT







(

Jv(Ȟž)
)T

(v(Ȟž) − d). (5.11)

If we define φ̌(ž) := 1
2
‖v(Ȟž) − d‖2 then ˙̌z = −(∇φ̌(ž))T , and so ž is a gradient system.

We now define the equilibrium sets for the ž system

Ě1 = { ž ∈ R
2N−2 | v(Ȟž) = d },

and

Ě = { ž ∈ R
2N−2 | ∇φ̌(ž) = 0 }.

Lemma 5.5: The set Ě1 is compact.

Proof: The set C = { e ∈ R
m | v(e) = d } is a compact set because it is m copies of S1.

The set Ě1 = { ž | Ȟž ∈ C }. Since ker(Ȟ) = 0, it follows that Ě1 is also a compact set.

�

The compactness of this set will be key in our application of Theorem (4.5).

Now let’s study the existence of solutions in the (z̄, ž) coordinates. The z̄ dynamics

and the ž dynamics are decoupled, so we can analyze existence of solutions independently.

From Lemma 5.1 we know that ˙̄z is zero. So solutions exist for all time.
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Now let’s study the dynamics of ž. We know that the dynamics of ž are a gradient

system with the potential function φ̌(ž) and that φ̌(ž) is a radially unbounded function.

Let’s study the level sets of φ̌(ž). Define the sublevel set

Ua := { ž ∈ R
2N−2 | φ̌(ž) ≤ a}.

We can use Lyapunov techniques to study the behaviour of this set. Define the

Lyapunov function to be V (ž) := φ(ž). We denote −L∇φ̌V (ž) to be Lie derivative of

−∇φ̌(ž)T . For the ž system the Lie derivative is −L∇φ̌V (ž) = −‖∇φ̌(ž)‖2, a negative

semidefinite function. So the set Ua is invariant for any a > 0. On the set Ua, the function

∇φ̌(ž) is Lipschitz continuous. So we can conclude that a solution ž(t) exists for all time

for initial conditions starting in Ua.

5.5 Linearized Dynamics

In order to study the stability of the equilibrium manifold E1, we will consider the

linearized z-dynamics.

Define

M(e) := Jv(e)
TJv(e) = 4













e1e
T
1 . . . 0

...
. . .

...

0 . . . eme
T
m













(5.12)

and

K(e) := 2













I2(||e1|| − d1) . . . 0

...
. . .

...

0 . . . I2(||em|| − dm)













.

Lemma 5.6: Let f denote the vector field for the z dynamics, i.e., from (5.6)

ż = f(z) = −ĤTJv(Ĥz)
T (v(Ĥz) − d).
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Then

Jf(z) = −ĤT (K(e) +M(e))Ĥ.

where e = Ĥz.

Proof: By applying the chain rule to (5.6), we obtain

Jf (z) = − ∂

∂z
ĤT

(

Jv(Ĥz)
)T

(g(z) − d)

= −ĤT ∂

∂z

(

Jv(Ĥz)
)T

(g(z) − d).

The remaining derivative can be calculated in two stages by recalling that g(z) = v(Ĥz) =

v(e):

∂

∂z

(

Jv(Ĥz)
)T

(g(z) − d) =
∂

∂e
(Jv(e))

T (v(e) − d)
∂

∂z
Ĥz. (5.13)

From (5.2) we obtain

(Jv(e))
T (v(e) − d) = 2













e1(||e1|| − d1) . . . 0

...
. . .

...

0 . . . em(||em|| − dm)













.

Note that

∂

∂ei
2ei(||ei|| − di) = 2(||ei|| − di)I2 + 4eie

T
i .

Then from the definitions of M(e) and K(e) it follows that

∂

∂e
(Jv(e))

T (v(e) − d) = K(e) +M(e). (5.14)

Combining (5.13) and (5.14) we obtain

Jf(z) = −ĤT (K(e) +M(e))Ĥ.
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�

Theorem 5.2: The matrix Jf(z) evaluated at a point on E1 has three zero eigenvalues; the

rest are real and negative.

Proof: Let z0 ∈ E1 and define e0 = Ĥz0. It follows that K(e0) = 0. Then Jf(z0) =

−ĤTM(e0)Ĥ . From (5.12), it follows that

Jf(z0) = −ĤTM(e0)Ĥ (5.15)

= −ĤTJv(e0)
TJv(e0)Ĥ (5.16)

= −Jg(z0)TJg(z0). (5.17)

So the matrix Jf(z0) is symmetric and thus has real eigenvalues. From the structure of

(5.15) we know that Ker(Jf(z0)) = Ker(Jg(z0)). The function g(z) is the rigidity function

for the graph and Jg(z) is the rigidity matrix. From Assumption 5.1 we know that the

rank of the rigidity matrix is 2N −3 at all points on E1. So dim(ker Jg(z0)) = 3 and thus

Jf(z0) has three zero eigenvalues. Moreover, the structure of Jf(z0) implies that it is a

negative semidefinite matrix, so the non-zero eigenvalues are negative. �

The existence of the three zero eigenvalues of the Jacobian evaluated at a point on E1

prevents us from drawing any conclusions about stability from the linearization. However,

it is intuitively obvious that the linearization at a point on a manifold of equilibria must

have at least as many zero eigenvalues as the dimension of the manifold. The set E1 is a

three dimensional manifold, and the linearization about any point on E1 has three zero

eigenvalues.

It is clear that at each point on E1 the conditions of the Malkin theorem (Theorem

4.2) hold. We use the fact that Ě1 is a compact manifold to prove stability of the set E1.
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Theorem 5.3 (Main Result): The set E1 is asymptotically stable. Moreover, there exists a

neighborhood U of E1 such that for each z(0) ∈ U there exists a point p ∈ E1 where

lim
t→∞

z(t) = p.

Proof: To prove E1 is stable we study the (z̄, ž) dynamics. First perform the linear

transformation P to separate the system into (z̄, ž) components. The z̄ dynamics are

stationary, so we study only the reduced ž system. From Lemma 5.5 we know that Ě1 is

a compact set. To show Ě1 is stable we show that each component of Ě1 is stable. Let

S be an arbitrary topologically connected component of Ě1. Furthermore, let ž0 ∈ S.

From Theorem 5.1 we know that S has 2N − 3 globally defining functions.

In order to apply Theorem 4.5 it only remains to show that the Jacobian of the ž

dynamics meets the eigenvalues requirement.

Define f̌

˙̌z = −∇φ̌(ž)T .

Now we show that Jf̌(ž0) has one zero eigenvalue and the remaining eigenvalues are

stable. If we linearize the (z, ž) dynamics at a point (z0, ž0) = Pz0 on E1 we obtain







δ̇z

˙δž






=







0 0

0 Jf̌ (ž0)













δz

δž






.

Since the transformation P is invertible it is clear that the matrices PJfP
−1 and Jf(z0)

have the same eigenvalues. The matrix PJfP
−1 is block triangular, with two zero eigen-

values in the first two rows. So the eigenvalues in the remaining block Jf̌ are the remaining

eigenvalues of Jf(z0). From Theorem 5.2 we know these eigenvalues are all stable except

for one zero eigenvalue.

Since Jf̌ has one zero eigenvalue and the remaining are stable, the conditions of The-

orem 4.5 apply. It follows that S is asymptotically stable. The set U := P−1(R2×N ). �
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Corollary 5.1: Let z be a point on E1. There exists an open ball B centered at z such that

if z(0) ∈ B, then z(t) converges to a nearby equilibrium formation.

This corollary follows directly from Theorem 5.3.

In summary, we see that by using an infinitesimally rigid graph to define a gradient

control the formation is locally stable. For (5.6), the infinitesimally rigidity of the under-

lying graph was key in proving that both that the target set is an embedded submanifold

of the state space and that the linearized dynamics has the required form to apply Theo-

rem (4.5). The local stability of the formation implies that if the robots experience small

perturbations away from an equilibrium formation they will converge back to another

nearby point in the target set.

Comment 5.1: In the introduction, we noted that [29] was closest in spirit to the work of

this thesis. However, there are some significant differences.

• Both works use graphs to define formations. The graphs in [29] are globally rigid.

The graphs in our work are infinitesimally rigid.

• This work uses a single integrator model. In [29] a double integrator model is used.

• In [29], velocities are used as a control input. Thus the control does not use only

local measurements.

• [29] has no topological analysis of the equilibrium set. In particular, [29] does not

note that the equilibrium set is not compact.

• [29] uses a LaSalle argument to prove stability. Since the equilibrium set is not

compact, this is an unusual use of LaSalle. Additionally, the LaSalle argument does

not give any information about the behaviour of the trajectories as they approach

the equilibrium set. In particular, it is unknown if under the control in [29] the

trajectories have a limit on the equilibrium set.
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We noted that the proof in [29] has some problems. Essentially, [29] assumes that

the dynamics on the equilibrium manifold can be quotiented out and the formation

equilibrium is topologically equivalent to a point. We have seen in our analysis of the

formation problem that the situation is not so simple.

Although our work is close in spirit to [29], the previous discussion shows that there

are in fact significant differences between the two works.

However, let’s consider if it is possible to quotient out the dynamics on the equilibrium

manifold. Let’s again consider the equation

ẋ = f(x) (5.18)

where x ∈ R
n and E is an (n− k)-dimensional manifold of equilibrium solutions.

Quotienting out the dynamics on the manifold is equivalent to asking if there exists

a diffeomorphism ϕ : R
n → R

n−k × R
k such that

θ̇ = f1(θ, ρ)

ρ̇ = f2(ρ),

where (θ, ρ) = ϕ(x), ∂f1
∂θ

= 0 and

E = { x ∈ R
n | x = ϕ−1(θ, 0) }.

If such a normal form exists then the stability of the equilibrium set becomes a study of

the stability of ρ = 0.

There are several difficulties in this analysis. The change of coordinates must be global

on the manifold E . For the formation problem, the equilibrium manifold is topologically

equivalent to a generalized cylinder, so this requirement is unlikely to be a problem.

It is not known if such a diffeomorphism exists for the formation problem, and it may
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be computationally difficult to show ∂f1
∂θ

= 0. Clearly, to quotient out the manifold E

requires some additional analysis. ⊳



Chapter 6

Applications

6.1 Regular Polygon Formations

An application of the formation stabilization control developed in the previous chapters

is to stabilize the robots to a regular polygon. A regular polygon is a useful formation

because robots in this configuration can be used to form a large aperture antenna array.

For sensor network applications, such an antenna can be used to transmit information

back to a base location.

In order to stabilize the robots to a regular polygon we must first design a graph that

is infinitesimally rigid. We could use the procedure outlined in Section 2.3.3 to build this

graph, but there are other possible graphs. In particular, we are interested in graphs

that result in cyclically homogeneous controls. Cyclical homogeneity is a special type of

symmetry. We consider a control to be cyclically homogeneous if when the indices 1 to

N of the robots undergo a cyclic permutation, the control laws are permuted by the same

permutation. An example of cyclically homogeneous control laws is cyclic pursuit:

u1 = z2 − z1, u2 = z3 − z2, . . . , uN = z1 − zN .

(This control law achieves rendezvous, not a polygon formation.)

104
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z1
z2

z3

z4
z5

z6

e1

e2

e7

Figure 6.1: The graph G∗
6.

Cyclically homogeneous control laws are identical for each robot except that a known

indexing of the robots is required. Cyclically homogeneous controls are desirable because

an identical controller on each robot makes implementation easier.

For our two dimensional agents the cyclic homogeneity property can be stated pre-

cisely in the following way: we define the 2N × 2N fundamental permutation matrix P ∗

whose first block row is
[

0 I2 0 0 . . . 0

]

,

where I ∈ R
2×2. Then for a closed-loop system of the form

ẋ = f(x)

if it has the interesting symmetry

f(P ∗z) = P ∗f(z),

we say that f has the property of cyclic homogeneity.

Let’s consider the graph where vertex i is connected to vertices i + 1, i + 2, i − 1

and i − 2. We will refer to such a graph as G∗
N , where N is the number of vertices. In

contexts where the number of vertices is implied we will drop the subscript. The graph
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G∗
6 is shown in Figure 6.1. By definition, the graph G∗

N has 2N edges. We order the

edges in the graph so that the expanded incidence matrix Ĥ = H ⊗ I2 is

Ĥ :=







I2N − P ∗

I2N − (P ∗)2






.

By definition it is clear that Ĥ ∈ R
4N×2N . Note that

Ĥ =







I2N

I2N + P ∗






(I2N − P ∗)

thus if e = Ĥz then
[

I2N + P ∗ −I2N
]

e = 0.

Thus the components of e have a special form with ei+N = ei + ei+1 for i = 1, . . . , N .

Let

d∗ :=







c1

c∗1






,

where
√
c ∈ R is the side length of the regular polygon and

c∗ := 2c

(

1 − cos

(

nπ − 2π

n

))

.

We assume that c 6= 0. If p is a point where the robots form a regular polygon, then

fG∗(p) = d∗. By construction, we can see that the set f−1
G∗ (d∗) is non-empty. The following

lemma discusses the relationship between the robots being in a regular polygon formation

and f−1
G∗ (d∗).

Lemma 6.1: The robots located at p ∈ R
2N form a regular polygon if and and only if

p ∈ f−1
G∗ (d∗).

Proof: By construction, if the robots form a regular polygon at p than fG∗(p) = d∗.
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The sufficient condition is true if (G∗, p) is a globally rigid framework. Techniques

from graph theory can be used to show that the framework (G∗, p) is globally rigid. How-

ever, it can also be shown using some simple geometry. By the definition of ei, ei+1 and

ei+N we see that ei+N = ei + ei+1, for i = 1, . . . , N . So the three edges form a triangle.

The goal that ‖ei‖2 = ‖ei+1‖2 = c and ‖ei+N‖2 = c∗ uniquely constrains the side lengths

of the triangle. Thus the angle between each ei and ei+1 is prescribed. Since the side

lengths and interior angles of the polygon are all defined, there is only one possible em-

bedding of the graph G∗ that satisfies the edge lengths d∗, and (G∗, p) is globally rigid. �

Lemma 6.1 shows that the regular polygon formation is the only formation in the set

E1 as defined in Section 5.3.1. Thus ei and ei+1, i = 1, . . . , N , are related by a rotation

of ±2π/N . Note that if e2 is e1 rotated by 2π/N then all other N − 1 edge vectors are

related by the same rotation. Likewise if e2 is e1 rotated by −2π/N . These two possible

rotations correspond to the two possible embeddings of the globally rigid graph. The

formations in these two cases are reflections of one another. Now we must now check the

rank of the rigidity matrix on E1 to check the conditions of Theorem 5.3.

Lemma 6.2: Let p ∈ R
2N be a point in f−1

G∗ (d∗). Then the framework (G∗, p) is infinitesi-

mally rigid.

Proof: The rigidity matrix is JfG∗
(p) = Jv(e)Ĥ , with e = Ĥp. The graph G∗ is connected,

so from Property 2.1 of H we know that dim(Ker(Ĥ)) = 2. The strategy of the proof is

to show that Im(Ĥ) ∩ Ker(Jv(e)) = 1, from which it follows that

dim(ker Jf∗
G

(p)) = dim(Ker(Ĥ)) + Im(Ĥ) ∩ Ker(Jv(e)) = 31.

We now consider the dimension of Im(Ĥ) ∩ Ker(Jv(e)).

1That is to say that given a set S and a matrix C that dim(C−1(S)) = dim(kerC) + dim(ImC ∩ S),
[39]
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Assume ξ ∈ Im(Ĥ) where ξ = (ξ1, . . . , ξ2N) and each ξi ∈ R
2. Since ξ ∈ Im(Ĥ), we

know that ξi+N = ξi + ξi+1 for i = 1, . . . , N . We now consider the restrictions on ξ so

that it is in Ker(Jv(e)).

Assume Jv(e)ξ = 0. First we note from (5.2) that eT1 ξ1 = 0. This gives ξ1 one degree

of freedom.

Next consider the restrictions on ξ2. We see that eT2 ξ2 = 0 and eTN+1ξN+1 = eTN+1(ξ1 +

ξ2) = 0. This can be rewritten as







eT2

eTN+1






ξ2 =







0

−eTN+1ξ1






=







eT1

−eTN+1






ξ1 (6.1)

The matrix






eT2

eTN+1







is non-singular because e2 and eN+1 are not collinear; ξ2 is then uniquely determined

from ξ1. Solving, we see that ξ2 = Rξ1, where R is the rotation by ±2π/N radians such

that ei+1 = Rei, for i = 1, . . . , N . Let’s check to see that ξ2 does in fact satisfy (6.1).

Substituting ξ2 into the top row we see that

eT2 ξ2 = eT1R
TRξ1 = 0

as required. If we substitute into the second row we obtain

eTN+1(ξ1 + ξ2) = (e1 +Re1)T (ξ1 + ξ2)

= (e1 +Re1)T (ξ1 +Rξ1)

= eT1 (2I +R +RT )ξ1
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the matrix R +RT = ωI for some ω ∈ R so

eTN+1(ξ1 + ξ2) = 0.

If we continue this process inductively we see that ξi is uniquely determined by ξi−1, for

i = 2, . . . , N with ξi = Rξi−1. Combining all expressions for ξi we see that

ξ = (w,Rw,R2w, . . . , RN−1w, (I +R)w,R(I +R)w, . . .RN−1(I +R)w),

where w ∈ Ker(eT1 ).

It only remains to show that ξ ∈ Im(Ĥ) as assumed. The vector ξ is in Im(Ĥ) if

(1T ⊗ I2)ξ = 0. To check that this is true we expand to see

(1T ⊗ I2)ξ = (I +R +R2 + . . .+RN−1 + (I +R) +R(I +R) + · · · +RN−1(I +R))ξ1.

Since ξ1 is a non zero vector, we must show that

(I +R +R2 + . . .+RN−1 + (I +R) +R(I +R) + · · · +RN−1(I +R)) = 0. (6.2)

Note that

(I −R)(I +R +R2 + . . .+RN−1) = I +R +R2 + . . .+RN−1 −R −R2 − . . .− RN

= I −RN .

If we factor the left side of (6.2), we obtain

(I − R)−1(I − RN) + (I − R)−1(I − RN)(IR).

The matrix RN is the rotation by 2π, so RN = I. It follows that ξ ∈ Im(Ĥ). Thus the
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Figure 6.2: Six robots converging to a regular polygon.

dimension of Im(Ĥ) ∩ Ker(Jv(Ĥz)) is one. �

From Lemma 6.2 we see that the graph G∗ forms an infinitesimally rigid framework

at regular points. Thus the control developed in Chapter 3 can be used to stabilize a

regular polygon with the graph G∗.

Figure 6.2 shows six robots converging to a regular polygon using this control. Figure

6.3 shows six robots converging into one of the collinear equilibria in the set C. In

simulation, only initial conditions in the set C have been found to converge to collinear

equilibria.

6.2 Formations using Directed Graphs

A drawback to the control designed in Chapter 5 is that it relies on two-way communi-

cation. If robot i’s control uses the position of robot j, then robot j’s uses the position
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Figure 6.3: Six robots converging to one of the collinear equilibria. Note that there are
two sets of robots that are coincident.

of robot i. This makes implementation difficult when using cameras with a limited field

of view. When using this type of camera, a control based on a directed graph is easier

to implement. Controls based on directed graphs are currently an area of active research

in the field of formation control; see [16]. A key development in this theory is the idea

of a directed formation graph being persistent. Persistence characterizes directed graphs

that produce formations that maintain their shape [17], analogous to the use of rigidity

in undirected graphs.

In this section we outline a procedure for how directed graphs can be constructed to

stabilize formations.

6.2.1 Rigidity and Persistence

Before we design controls based on directed graphs, we will consider how to define rigidity

in the context of directed graphs as well as discuss persistence. Persistence combines two



Chapter 6. Applications 112

z1

e1

e2

e3

z2

z3

z4

Figure 6.4: A directed graph that is not constraint consistent. Note that this graph is
not rigid

ideas: rigidity and constraint consistency. Constraint consistency formalizes achievability

of the control goal. In order to define persistence we first define rigidity for directed

graphs. Let G be a directed graph. We define a framework for a directed graph to be

(G, p), where p ∈ R
2|V |. We denote by fG(p) the rigidity function, as in Section 2.3.1.

Definition 6.1: A framework (G, p) is rigid if there exists a neighbourhood of U of p such

that f−1
G (fG(p)) ∩ U = f−1

K (fK(p)) ∩ U .

From Definition 6.1, a directed framework is rigid if the corresponding undirected frame-

work is rigid. Similarly, we define a directed framework (G, p) to be infinitesimally rigid

if rank JfG(p) = 2N − 3.

However, when using a directed graph to maintain a formation it is not enough to

have the graph be rigid. There can be situations where some inter-robot distances are

correct but it is impossible to satisfy the remaining distance constraints. Figure 6.4

shows such a situation when the framework is not rigid. If vertex z2 moves such that

the length of e1 changes, while all the other vertices remain in the same position, then

there is no location where the lengths of e1, e2 and e3 can all be maintained. If such

a situation cannot happen, we describe the graph as constraint consistent. The precise

definition of constraint consistence from [16] is complex and beyond what is needed for

the implementation proposed in this work. Instead, we will use the following sufficient
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z1

z4

z3 z2

(a) Example of a persistent framework.

z1

z4

z3 z2

(b) Example of a non-persistent but rigid
framework.

Figure 6.5: Two different rigid frameworks with four nodes.

condition.

Definition 6.2 ( [16] ) : A framework (G, p) is constraint consistent if each vertex has two

or fewer outgoing edges.

Finally, persistence is defined in [16] as a framework that is both rigid and constraint

consistent. A graph is minimally persistent if it is minimally rigid and constraint consis-

tent.

Figure 6.5 shows why constraint consistence is needed in addition to rigidity when

considering directed formations. Both graphs in Figure 6.5 are rigid: Figure 6.5(a) is

also constraint consistent and thus persistent, whereas Figure 6.5(b) is not. If vertex 4

moves while still maintaining the distance to vertex 1 it is no longer possible for vertex

3 to maintain the lengths of its three outgoing edges.

The following useful theorem characterizes minimal persistence.

Theorem 6.1 ( Theorem 4, [16] ) : A rigid graph is minimally persistent if and only if

1. There are three vertices that have one outgoing edge, and the remaining vertices

have two outgoing edges.

2. There is one vertex that has no outgoing edges, one vertex that has one outgoing

edge, and the remaining vertices have two outgoing edges.
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Figure 6.6: Graph created by recursively adding vertices in order. The edges are created
in the order e1, e2, . . . , e7. In particular note that there are 7 directed edges, which equal
2 × 5 − 3.

6.2.2 Constructing a Persistent Graph

To construct the directed graph we use a modification of the Henneburg insertion tech-

nique described in Section 2.3.3. Let p be the location of the vertices in the plane. Again,

we number all the vertices. The first step in adding the edges is to add a directed edge

from vertex 2 to vertex 1. All remaining vertices are connected to the graph in numerical

order by creating two edges leaving the newly connected node whose destination is two

distinct vertices that are already in the connected graph structure. Figure 6.6 shows a

graph created using this procedure. Note that directed graphs formed by a sequence of

Henneburg insertions are persistent and satisfy case 2 in Theorem 6.1.

Now we develop the control law for each robot. Instead of having a global potential

function, as in (5.5), we have a potential function for each robot. Let φi(z) be the

potential function for robot i and the control goal be fG(z(t)) → d. If we again define

e := Ĥz, then in the target formation dj = ‖ej‖2.

In Figure 6.6 robot 1 has no outgoing edges. We define φ1(z) := 0. Robot 2 has only

one outgoing edge, e1. We define robot 2’s potential function to be φ2(z) := 1
2
(‖e1‖2−d1)2.

By construction, all other robots have two outgoing edges. Define the outgoing edges for
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Figure 6.7: An embedding of a directed graph triangle graph.

robot i to be ej and ek. By construction, we know that j < i and k < i. Then for robot

i, where i 6= 1 and i 6= 2, the potential function is

φi(z) :=
1

2
(‖ej‖2 − dj)

2 +
1

2
(‖ek‖2 − dk)

2.

The control for each robot is then

ui = − ∂

∂zi
φi(z)

T . (6.3)

From (5.1) it follows that

żi = − ∂

∂zi
φi(z)

T .

Define the closed-loop system to be ż =: F (z).

Let’s consider stabilizing an equilateral triangle using a directed graph and the indi-

vidual potential functions developed above.
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Example 6.1: We construct a triangular graph with three edges:

e1 = z1 − z2

e2 = z1 − z3

e3 = z2 − z3

and d = (1, 1, 1), as shown in Figure 6.7. Then the control law is

ż1 = 0

ż2 = −2(‖e1‖2 − 1)e1

ż3 = −2(‖e2‖2 − 1)e2 − 2(‖e3‖2 − 1)e3.

The Jacobian of F evaluated at a point p such that fG(p) = d is

JF (p) = 4













0 0 0

e1e
T
1 −e1eT1 0

e2e
T
2 e3e

T
3 −e2eT2 − e3e

T
3













.

The matrix JF (p) is block lower triangular, so we can analyze the eigenvalues of the

blocks on the diagonal to study the eigenvalues of JF (p). The first two rows are zero: the

first 2 × 2 block on the main diagonal has two zero eigenvalues. The second 2 × 2 block

−e1eT1 is a negative semidefinite matrix with rank 1, and so has one zero eigenvalue and

one strictly real negative eigenvalue. The third 2 × 2 block, −e2eT2 − e3e
T
3 , is the sum of

two negative semidefinite matrices, and thus is also a negative semidefinite matrix. If e2

and e3 are linearly independent, as they are in the triangle problem, then the third block

has rank 2 and thus has two negative real eigenvalues. Thus we see that JF (p) has three

zero eigenvalues and three real negative eigenvalues.

If we check the rigidity matrix of the corresponding undirected graph we see that this
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Figure 6.8: Simulation of three robots stabilizing to an equilateral triangle using a control
derived from a directed graph. Note that one of the robots remains stationary.

graph is infinitesimally rigid. If we define E1 as in Section 5.3.1, the condition for E1 to

be an embedded submanifold holds. Thus we can apply the coordinate transformation

in Theorem 4.1 and apply Malkin’s theorem as in Theorem 5.3 to conclude that E1 is a

locally stable manifold. Figure 6.8 shows a simulation using this control law. ⊳

Lemma 6.3: The Jacobian of the control law (6.3), JF (z), at a point p ∈ f−1
G (d) is block

lower triangular.

Proof: From the definition of φ1(z) we see that ż1 = 0. So the first two rows of JF (p) are

zero.

From the definition of φ2(z) we see that

ż2 = −2(‖e1‖2 − d1)e1.

Differentiating we see that the next two rows of JF (p) are

4

[

e1e
T
1 −e1eT1 0 . . . 0

]

.

Note that the block −e1eT1 is on the main diagonal.
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When we linearize żi we see there are three non-zero 2 × 2 blocks: eje
T
j , eke

T
k , and

along the main diagonal −ejeTj −ekeTk . The blocks eje
T
j and eke

T
k are both below the main

diagonal because j < i and k < i. Thus JF (p) has a block lower triangular structure. �

Theorem 6.2: The matrix JF (p), where p ∈ f−1
G (d), has three zero eigenvalues and the

rest are real and negative if for each i > 2 the edges ek and ej leaving vertex i are not

collinear.

Proof: From Lemma 6.3 we know that the matrix JF (p) is block lower triangular. The

first two rows of JF (p) are zero. Thus the first 2 × 2 block on the main diagonal has

two zero eigenvalues. The second 2 × 2 block is −e1eT1 , a negative semidefinite matrix

with rank 1, and so has one zero eigenvalue and one negative real eigenvalue. Each sub-

sequent 2 × 2 block on the main diagonal has the form −ejeTj − eke
T
k and is the sum of

two negative semidefinite matrices, and thus is also a negative semidefinite matrix. By

the non-collinearity assumption ej and ek are linearly independent so the third block has

rank 2 and thus has two negative real eigenvalues. Thus we see that JF (p) has three zero

eigenvalues and the rest are real and negative eigenvalues. �

Note that instead of an infinitesimally rigid condition on the graph as in Theorem 5.2,

we instead have a non-collinearity condition on the edges leaving a graph. One might

wonder if the non-collinearity condition is implied by the infinitesimal rigidity condition.

However, Figure 6.9 provides a counterexample, showing a graph may be infinitesimally

rigid and have one vertex with two collinear edges leaving it.

Theorem 6.3: Let G be a directed graph constructed using a sequence of Henneburg in-

sertions. If G is infinitesimally rigid and no vertex has collinear outgoing edges for each

point p such that fG(p) = d, then, under the control (6.3), E1 is locally asymptotically

stable.
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z2 = (0, 2)

z1 = (0, 0) z3 = (1, 0) z4 = (2, 0)

Figure 6.9: A directed graph that is infinitesimally rigid, but has a vertex (z4) with two
parallel outgoing edges.

Moreover, there exists a neighborhood U of E1 such that for each z(0) ∈ U there exists

a point p ∈ E1 where

lim
t→∞

z(t) = p.

Proof: The proof largely follows from the results of Chapter 5.

First we separate the stationary z1 dynamics from the rest of the system. Define

P2 =



























I2 0 0 . . . 0

−I2 I2 0 . . . 0

−I2 0 I2 . . . 0

...
...

. . . . . .
...

−I2 0 . . . . . . I2



























.

Further define

(z1, ψ) = P2z.

Thus ψ = (z2 − z1, . . . , zN − z1). Note that if ei = zj − z1 then ei = ψj and if ei = zj − zk
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then ei = ψj −ψi. So it is possible to find a matrix M such that e = Mψ. Further define

E := { ψ ∈ R
2N−2 | v(e) = v(Mψ) = d}.

Note that E1 = R
2 × E . Additionally, we see that E is compact and each component is

diffeomorphic to S1. Define ψ̇ = Fψ(ψ) to be the closed loop ψ dynamics.

To prove E1 is stable we study these ψ dynamics. Thus from the structure of F (z)

it is clear that E is stable if and only if E1 is stable. To show E is stable we show that

each component of E is stable. Let S be an arbitrary topologically connected component

of E . Furthermore, let ψ0 ∈ S. From Theorem 5.1 we know that S has 2N − 3 globally

defining functions.

In order to apply Theorem 4.5 it remains to show only that the Jacobian of the ψ

dynamics meet the eigenvalue requirement.

Now we show that JFψ(ψ) has one zero eigenvalue and the remaining eigenvalues are

stable. If we linearize the (z1, ψ) dynamics at a point (z1, ψ0) = P2z0 on E1 we obtain







˙δz1

˙δψ






=







0 0

0 JFψ(ψ)













δz1

δψ






.

Since the transformation P2 is invertible it is clear that the matrices P2JFP
−1
2 and JF (z0)

have the same eigenvalues. The matrix P2JFP
−1
2 is block diagonal, with two zero eigen-

values in the first block. So the eigenvalues in the remaining block, JFψ(ψ), are the

remaining eigenvalues of JF (z0). From Theorem 6.2 we know these eigenvalues are all

stable except for one zero eigenvalue.

Since JFψ has one zero eigenvalue and the remaining are stable, the conditions of

Theorem 4.5 apply. It follows that S is asymptotically stable. Finally, the set U :=

P−1
2 (R2 ×N ). �
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Theorem 6.3 shows that the results of Chapter 5 can be extended in the special case

of directed graphs constructed using Henneburg insertions.

6.2.3 General Directed Graphs

If an arbitrary directed graph is used to derive the potential functions for each robot the

analysis of the linearized dynamics is not so simple. However, if the linearized dynamics

have three zero eigenvalues and the rest have negative real parts it is possible to locally

apply the results of Chapter 5, most notably we can apply Theorem 4.2 to conclude that

the formation is stable.

The following example has linearized dynamics that are not upper triangular, but by

checking the eigenvalues numerically we can see that the results of Chapter 5 apply.

Example 6.2: Consider the framework shown in Figure 6.10. Let the location of the

vertices be p. If we check the rigidity matrix of the undirected graph we see that the

graph is infinitesimally rigid, thus E1 is an embedded submanifold.

If we linearize we see that for z ∈ E1

JF (z) = 4



















0 0 0 0

e1e
T
1 −e1eT1 − e2e

T
2 e2e

T
2 0

e3e
T
3 0 −e2eT2 − e4e

T
4 e4e

T
4

0 e5e
T
5 0 −e5eT5



















.

Note that JF (z) is not block lower triangular, nor is there any way to permute the indices

to make the matrix block lower triangular. The graph in Figure 6.10 could not have been

created using the Henneburg insertion method. (Reference [17] discusses other operations

that can produce such a directed graph.)

If we evaluate the eigenvalues of JF (z) numerically we see that there are three zero

eigenvalues and the rest are real and stable. Thus the conditions to apply Malkin’s
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Figure 6.10: An embedding of a directed graph. Due to the arrangement of the edges
leaving vertex 3 this graph could not have been created using the Henneburg insertion
procedure.

theorem do hold and the formation is stable. ⊳

The previous example shows that the procedure in Section 6.2.2 to construct a directed

graph to stabilize formations is sufficient but not necessary for stability.

Conversely, there are some directed graphs where we cannot apply the results of

Chapter 4.

Example 6.3: Consider the framework shown in Figure 6.11. Let the location of the

vertices be p. If we check the rank of the rigidity matrix of the graph we see that the

graph is infinitesimally rigid, thus E1 is an embedded submanifold.
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If we linearize at a point z ∈ E1 we see that

JF (z) = 4
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.

If we evaluate the eigenvalues numerically at p we see that there are 4 zero eigenvalues

and the rest are real and stable. Thus the conditions to apply Malkin’s theorem do not

hold as there are more zero eigenvalues than the dimension of the equilibrium manifold

and we can make no conclusion about the stability of this formation using this analysis

technique. ⊳

Due to the four zero eigenvalues, no stability conclusion can be drawn for this control

using the linearized results. However if we again consider the placement of the robots

at p, we can construct a new directed graph with the edges shown in Figure 6.12. If we

check the rank of the rigidity matrix of the graph we see that the graph is infinitesimally

rigid, thus E1 is an embedded submanifold. By linearizing at a point z on the equilibrium

manifold E1,

JF (z) = 4
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Figure 6.11: An embedding of a directed graph for six robots.



Chapter 6. Applications 125

z2 = (0, 0)

z3 = (1, 1)

z6 = (3, 0)

z1 = (0, 2)

e1

e2

e3

z4 = (3, 3)

z5 = (2, 2)

e4

e5

e6

e7

e8

e9

Figure 6.12: An embedding of a directed graph for six robots.
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Figure 6.13: Simulation of three robots stabilizing to an equilibrium in C. Note that one
of the robots remains stationary and that robots 2 and 3 have the same final position.

we see that there are three zero eigenvalues and the rest have negative real parts from

Theorem 6.2. Thus we can conclude that this formation is stable.

As in the undirected graph case, the set C defined in Section 5.2.1 is invariant. The

simulation in Figure 6.13 of Example 6.1 where the three robots are initially collinear

shows that the robots converge to a collinear equilibrium.

6.2.4 Conclusions on Directed Graphs

The stability results obtained for directed graphs are limited. However, in the event

that a specific application requires the use of a directed graph it is possible using the

technique outlined in Section 6.2.2 to build a graph that will be stable around the desired

formation.



Chapter 7

Experiments

7.1 Experimental Model

The model in (5.6) is idealized and cannot represent a physical system. Let’s implement

the control from (5.6) to see how well it performs on real robots.

The results of Chapter 5 apply to a kinematic point model. As derived in the be-

ginning of Chapter 3, it is possible to feedback linearize a kinematic unicycle model to

obtain a point model. This feedback linearization will be the basis for our experiments.

As a preliminary step let’s simulate the control (5.6) when the robots are feedback

linearized kinematic unicycles. Recall that the kinematic unicycle has the following

dynamical model

ẋ = u1 cos θ

ẏ = u1 sin θ

θ̇ = u2,

where (u1, u2) is the control input.

127
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When we feedback linearize the unicycle about the outputs

ξx = x + l cos θ

ξy = y + l sin θ

then the ξ := (ξx, ξy) dynamics are a kinematic point with ξ̇ = v. Define ξi to be output

for robot i. Then using the ξi dynamics for robot i as zi we have that the control inputs

to the unicycle are

ui = A(θi)
−1vi,

where

A(θ) =







cos θ −l sin θ

sin θ l cos θ






.

Note that in the unicycle formation problem we now have additional parameter l, the

distance we used to feedback linearize the robots.

Let’s perform some simulations of the feedback linearized system with various values

of l to stabilized the robots to the equilateral triangle formation with unit side length.

As a first step, let’s choose l to be 0.01, two orders of magnitude smaller than the side

length. Such a simulation is shown in Figures 7.1 and 7.2.

Next let’s increase l to 0.1, one order of magnitude smaller than the side length of

the triangle. A simulation of this case is shown in Figures 7.3 and 7.4.

Now let’s selected l to be 0.5, half the side length of the triangle. A simulation for

this case is shown in Figures 7.5 and 7.6. While the ξ for each robot forms an equilateral

triangle, the actually positions of the robots are clearly not in an equilateral triangle.

The performance in this case is not very satisfactory if we are trying to position the

unicycles.

Finally, let’s select l to be the same as the side length of the triangle, as shown in

Figure 7.7. Again, the performance is not very satisfactory.
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Figure 7.1: Simulation of three unicycle robots where the target formation is an equilat-
eral triangle with unit length and l = 0.01. The trajectories of the unicycle robots in the
plane are plotted with a solid line. The trajectories of the feedback linearized points ξ
are plotted with a dotted line. In this simulation because l is small relative to the side
lengths of the formation the two trajectories are almost coincident and appear in this
figure as one line. Figure 7.2 shows the control signals for this simulation.
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Figure 7.2: Control signals for the simulation shown in Figure 7.1 where the goal for-
mation is a equilateral triangle with unit length and l = 0.01. Figure 7.2(a) shows the
control inputs u1, the forward velocities of the robots. Figure 7.2(b) shows u2, the angular
velocities for each robot.
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Figure 7.3: Simulation of three unicycle robots where the target formation is a equilateral
triangle with unit length and l = 0.1. The trajectories of the unicycle robots in the plane
are plotted with a solid line. The trajectories of the feedback linearized points ξ are
plotted with a dotted line. Figure 7.4 shows the control signals for this simulation.
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Figure 7.4: Control signals for the simulation shown in Figure 7.3 where the goal for-
mation is a equilateral triangle with unit length and l = 0.1. Figure 7.4(a) shows the
control inputs u1, the forward velocities of the robots. Figure 7.4(b) shows u2, the angular
velocities for each robot.
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Figure 7.5: Simulation of three unicycle robots where the target formation is a equilateral
triangle with unit length and l = 0.5. The trajectories of the unicycle robots in the plane
are plotted with a solid line. The trajectories of the feedback linearized points ξ are
plotted with a dotted line. Figure 7.6 shows the control signals for this simulation.
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Figure 7.6: Control signals for the simulation shown in Figure 7.5 where the goal forma-
tion is a equilateral triangle with unit length and l = 0.5. Figure 7.6(a)shows the control
inputs u1, the forward velocities of the robots. Figure 7.6(b) shows u2, the angular
velocities for each robot.
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Figure 7.7: Simulation of three unicycle robots where the target formation is a equilateral
triangle with unit length and l = 1. The trajectories of the unicycle robots in the plane
are plotted with a solid line. The trajectories of the feedback linearized points ξ are
plotted with a dotted line. Figure 7.6 shows the control signals for this simulation.
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Figure 7.8: Enlargement of the trajectory of the upper robot in Figure 7.3 showing that
the trajectory of the robot forms a cusp. The dotted line shows the trajectory of ξ for
this particular robot.

In our experiment we will select l to be approximately an order of magnitude less

than the smallest side of the figure. Although using a relatively small l value results in

more accurate positioning of the robots, there is a trade off: the control signals can be

very large when the unicycle makes tight turns. This phenomenon is especially obvious

close to t = 0. If the unicycle’s initial heading is not close to the direction of ξ’s initial

velocity, the unicycle will make a very tight turn when l is very small, resulting in a large

initial angular velocity. This is the case in Figure 7.2 close to t = 0.

Additionally, these simulations show that the feedback linearization can result in the

unicycle’s trajectory having a cusp, as in Figure 7.8. This behaviour is a result of the

feedback linearization. Although the behaviour of the robots is less ideal than when

controlling the kinematic point, the simulations show that for a sufficiently small l, it is

feasible to stabilize unicycles to a formation with the control from (5.6).
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7.2 Experimental Set-Up

The mobile robot testbed used for our experiments consists of a collection of two wheeled

vehicles, a bluetooth wireless server and a central supervisory computer connected to a

camera. The testbed is reconfigurable and the system has been used to experimentally

validate several multivehicle control designs. Although the experiment is run by a central

computer, it is possible to simulate autonomous controls by using only local information

in the computation of the control.

The central computer is needed to implement the control algorithm because the robots

have limited processing and sensing capabilities. Each wheel on the robot is equipped

with only an encoder that measures the distance the robot has traveled and so can-

not measure any information about the other robots. The information from the wheel

encoders is transmitted back to the computer via bluetooth wireless. So the central

computer receives information about the robot position from two sources: the overhead

camera and the wheel encoders. This information is combined using a sensor fusion

algorithm. Specific details of the sensor fusion can be found in [27].

The overhead camera identifies each robot by its distinctive ‘hat’, as shown in Figure

7.9. The bright coloured circle is used to identify the robot and locate its position and

the black stripe is used to determine its heading.

The robot inputs are calculated on the computer based on the position measurements

obtained from the camera and the wheel encoders. The inputs are then transmitted to

the robots via the bluetooth server using wireless communications. Further discussion of

the communication protocol can be found in [27].

The robots have a separate gearbox and motor for each of the two wheels. The two

motors mean that the wheels can be controlled independently. The central computer

sends target velocities to each robot for each of its wheels, and an onboard proportional-

integral-derivative controller (PID controller) and pulse width modulation (PWM) are

used to control each motor to achieve the target wheel velocity based on information
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Figure 7.9: Robot used in the experiment. The distinctive top is used to identify the robot
and the black stripe is used to determine the robot’s heading by the central computer’s
vision algorithm.
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Figure 7.10: The feedback loop for the multivehicle experiment. Figure is from [27].

from the wheel encoders. The parameters for the PID controller can be adjusted at the

start of the experiment via the central computer. For all the experiments that follow the

following PID controller parameters were used: Kp = 0.2, Ki = 5, Kd = 0. The feedback

loop for the experiment is shown in Figure 7.10.

The robots are very light, compared to the power of the motors, so a kinematic model

closely describes the robot behaviour.

7.3 Sources of Error

There are several significant sources of error in the experiments. The first is the delays

in the system shown in Figure 7.10. There is a considerable delay between the data

collected from the overhead camera and when the position of the robots is available to
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Figure 7.11: The top of the robot, as seen by the overhead camera. Figure is from [27].

calculate the control. This delay is approximately 180ms. The delay in transmitting the

signals to the robots is 37ms. The delay in receiving information from the robot encoders

is 178ms, [27]. The control loop runs every 200ms. So there is approximately a 400ms

delay in the system.

The error in the position measurements of the robots from the camera is approxi-

mately 1 cm. Another significant source of error is the accuracy of the heading measure-

ment for the camera. The camera has limited resolution, as shown see Figure 7.11, and

the error in the heading measurement is ±8◦ [27]. This error is significant and creates

an additionally uncertainty of ±2cm in the location of the point ξi for robot i.

7.4 Implementation

The primary difficulty in implementing the control from Chapter 5 is that the control

inputs are not bounded. If the robots are far from their target positions, or if the robot

must make a very sharp turn, then the target wheel velocities may be very large. The

physical limits of the motors that drive the robot wheels mean that the control cannot
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achieve arbitrarily large values.

The control is designed for a robot with a unicycle model. The robots used in the

experiment have two wheels. However, a two wheeled robot with independently controlled

wheels can be made to behave like a unicycle. The target velocities for the two wheels

are then calculated from the two unicycle control inputs u1 and u2. Define ur and ul to

be the target velocities for the left and right wheels. Then

ul = u1 +
1

2
ρu2

and

ur = u1 −
1

2
ρu2,

where ρ is the distance between the two wheels of the robot. With these individual wheel

controls, the forward velocity for the two wheeled vehicle is u1 and the angular velocity

is u2, mimicking the unicycle model.

7.5 Experiment: Using the output values

Let’s experiment using the control law derived from the minimally rigid graph with four

vertices:
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.

This control was simulated in Section 3.1. In this set of experiments we will calculate

the control vi based on the ξi positions of the other robots and then use the matrix A(θ)

to calculate ui.



Chapter 7. Experiments 142

Figure 7.12 shows the positions of the robots in the experiment and distances between

them. It is clear from Figure 7.12(b) that the behaviour of the system is not the same

as our simulations at the beginning of this chapter. In particular, the robots have a

steady state oscillation. If we analyze the oscillatory portion using the Fourier transform

we see that the frequency is 0.56 Hz. The period is 1.8s, a little more that four times

the maximum delay of 400ms. Let’s perform some more simulations to gain a better

understanding of what is happening in the experiment. In particular, we will simulate a

delay with the goal of recreating an oscillation with a period of four times the delay.

First let’s simulate the unicycle model for the same initial conditions at the experiment

shown in Figure 7.12. The value of 0.12m was selected for l. This is approximately one

order of magnitude smaller than the side length of the formation. Additionally, the radius

of the robot is 0.12m. So the point ξi corresponds to the tip of the black line shown in

Figure 7.9 for robot i. The unicycle model simulation is shown in Figure 7.14. Note

that the distances decrease much faster in the simulation than in the experiment. This

is because we have limited the maximum velocity of the robots.

Figure 7.15 shows a unicycle simulation where the forward velocity of the unicycles

has been limited at 0.1m/s, as in the experiment shown in Figure 7.12. This simulation

looks more like the robot experiment. In the simulation the distance between the points

ξi decreases linearly, similar to experimental observations in Figure 7.12(b). Note that

both the experiment and the simulation converge to the target d values at similar times.

However, the simulation does not have the oscillatory behaviour.

Let’s try simulating a unicycle system with a delay. For a delay of 0.5s the system goes

unstable with the same initial conditions of the experiment. Figure 7.16 shows a unicycle

simulation with a delay of 0.2s that starts much closer to the equilibrium formation. This

oscillation has a considerably larger amplitude than the one observed in the experiment.

Figure 7.17 shows a simulation with a delay of 0.5s and where the maximum velocity

has been limited to 0.1m/s. This simulation closely resembles that of the experiment in
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Figure 7.12: Experiment to form a square of side length 1m, and l = 0.12m. The
velocity is limited at 0.1m/s. In Figure 7.12(a), the trajectories of the unicycle robots in
the plane are plotted with a solid line. The trajectories of the feedback linearized points
ξ are plotted with a dotted line.
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Figure 7.13: Distances between the feedback linearized points ξ for the experiment shown
in Figure 7.12.
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Figure 7.14: Simulation to form a square of side length 1m, and l = 0.12m. The velocity
is limited at 0.1m/s and there is a delay of 0.5s.
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Figure 7.15: Simulation to form a square of side length 1m, and l = 0.12m. The velocity
is limited at 0.1m/s.
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Figure 7.16: Simulation to form a square of side length 1m, and l = 0.12m. The control
inputs are delayed by 0.5s.
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7.12. In particular, there is a limit cycle. The period of the limit cycle is 2s; four times

the delay. The experimental data is noisier than the simulation, but this discrepancy can

possible be accounted for by the error in measuring the robots states.

In order to analyze this oscillation analytically, let’s consider a simple case of one

robot trying to position itself a distance
√
d from a fixed beacon at the origin. Define

φ(z) :=
1

2
(‖z‖2 − d)2

as a the potential function for the single robot system. Then the resulting gradient

system has the dynamics

ż = −(‖z‖2 − d)z.

The system can be transformed into a single variable system by letting x be the distance

from the origin to the robot. Then in these new coordinates the dynamics are

ẋ = −(x2 − d)x.

If we linearize at x2 = d we see the linear dynamics are

˙δx = −2dδx

Let’s consider the linear system with a delay of τ . Then

˙δx = −2d2δx(t− τ) (7.1)

If we simulate this system we see that it does oscillate around the equilibrium, as shown

in Figure 7.18.

The block diagram model for the system (7.1) is shown in Figure 7.19. If we study

the Nyquist plot of 8e−sτ

s
we see that when d = 1 the system becomes unstable when
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Figure 7.17: Simulation to form a square of side length 1m, and l = 0.12m. The velocity
is limited at 0.1m/s and there is a delay of 0.5s.
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Figure 7.18: Simulation of the linear system in (7.1) with a delay of τ = 0.78.

τ = π
4
≈ 0.79. The Nyquist plot when τ = 0.79 is shown in Figure 7.20. So we can see

that the delay that makes the linear system unstable is on the same order of magnitude

as the delay in the robot system. In fact, when we simulated the experimental system

with various delays we found that delays less than 0.79 would make the nonlinear system

unstable if it was initialized too far from the equilibrium. However, this was not observed

experimentally. Our hypothesis is that by limiting the maximum velocity of the robots

the system stays stable for larger delays.

Now let’s consider the experiments shown in Figures 7.21 and 7.22. The initial con-

ditions for the two experiments are quite similar—but their behaviours are significantly

different. In Figure 7.22 the robots converge to the target square formation. In Figure

7.21 the robots do not converge to a square and two robots have a collision. Both these

formations are in the equilibrium set E1. There are two distinct formations in the target

equilibrium set because the formation was specified with a graph that is not globally
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Figure 7.20: Nyquist plot of (7.1) with τ = 0.79.
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Figure 7.21: Experiment to form a square of side length 1m, and l = 0.12m. The velocity
is limited at 0.1m/s. The trajectories of the unicycle robots in the plane are plotted with
a solid line. The trajectories of the feedback linearized points ξ are plotted with a dotted
line. In this experiment the robots do not converge to a square formation, but instead
converge to a triangle formation—one of the other equilibria in E1.

rigid. In fact, the graph specifying the target formation is minimally rigid and could

have been generated using the Henneburg insertion technique outlined in Section 2.3.3.

This experiment shows the limitations of using a minimally rigid graph to design the

control.

7.6 Experiment: Using robot position values

The experiment in the previous section required the use of the points ξi. In order for the

robots to know the location of these points, they must either know the heading of the

robots, or they must track a beacon located a distance l in front of the robot. Both these

solutions present implementation difficulties. It is difficult to gain information about the
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Figure 7.22: Experiment to form a square of side length 1m, and l = 0.12m. The velocity
is limited at 0.1m/s. The trajectories of the unicycle robots in the plane are plotted with
a solid line. The trajectories of the feedback linearized points ξ are plotted with a dotted
line. The initial conditions of this experiment are very similar to those in Figure 7.21,
however in this experiment the robots converge to a square formation.
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Figure 7.23: Experiment to form a square of side length 1m, and l = 0.12. The velocity
is limited at 0.1m/s. In Figure 7.23(a), the trajectories of the unicycle robots in the
plane are plotted with a solid line. The trajectories of the feedback linearized points ξ
are plotted with a dotted line.
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relative headings of the robots, so in general θi cannot be used in practice. In order to

implement the beacon approach, the robots would have to be modified to have beacons

attached to them. For some application this might not be feasible.

In the experiment shown in Figure 7.24, each robot calculates its control based on its

ξi position and the zj positions of the other robots. For experiments where l = 0.12m,

like the experiments in the previous section, using zi instead of ξi is equivalent to ξi

having an additional error of 0.12m in its position. Due to this additional error, the ξ

points do not reach their target separations, as demonstrated in Figure 7.25. However,

the inter-robot distances is are similar to the experiments in the previous section.

7.7 Conclusions

The experimental behaviour of the controlled system (5.6) on the unicycle system had

some unexpected results. In particular, a limit cycle was observed as the robots reached

the target formation. Simulations showed that such a limit cycle occurs in systems where

the maximum velocity of the robots is limited and the robots control is calculated based

on delayed information. These sources of error were not modeled in our original analysis.

However, the robots still converged to the target formation, showing that the control is

robust to delays in the robot positions.

Additionally, experiments showed that using a combination of the robot’s own ξi

position and the x and y positions of the other robot still resulted in convergence to the

target formation. This is an important observation because in a physical implementation

of this control it might not be possible to obtain exact information on the ξ position of

the robots. The experiments suggest that this control is suitable for implementation is

some formation applications.
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Figure 7.24: Experiment to form a square of side length 1m, and l = 0.12. The velocity
is limited at 0.1m/s. In Figure 7.24(a), the trajectories of the unicycle robots in the
plane are plotted with a solid line. The trajectories of the feedback linearized points ξ
are plotted with a dotted line.
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Figure 7.25: Distances between the feedback linearized points ξ for the experiment shown
in Figure 7.24.



Chapter 8

Conclusions

This thesis studies the formation stabilization problem for multi-robot systems. In Chap-

ter 3 we propose a control to solve the formation problem for nearly arbitrary formations,

and in Chapter 5 we prove that the control in fact makes the target formation stable and

that solutions exist for all time. In particular, we use the strong relationship between the

stability of the target formation and the stability of equilibrium manifolds. The stability

of equilibrium manifolds was studied in Chapter 4.

In Chapter 6 we extend the results of Chapter 5 to design a scalable control for the

regular polygon problem as well as show how the results of Chapters 4 and 5 can be

extended for a certain class of directed graphs.

Finally, experimental results validating the theory are presented in Chapter 7. The

experimental equipment had several sources of error that are not modeled in our analysis.

However, the robots still converged to the target formation, showing that the control is

robust to delays and uncertainty in the robot positions.

The main results and contributions of this thesis are as follows:

• A gradient control to stabilize any infinitesimally rigid formation.

• The target formation was shown to be an embedded submanifold of the state space,

which simplified the analysis of the formation stabilization problem.

158
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• A rigorous treatment of stability of a manifold of equilibra was presented. The was

based on [14] and [24], but there is some originality in the details and style.

• Design of a novel control to stabilize robots to a regular polygon formation.

• Design of a novel control to stabilize robots to a formation based on a directed

graph.

• Experimental validation of the undirected formation control on a multi-vehicle sys-

tem. These experiments show that the formation control is robust to significant

delays in the experimental system.

8.1 Future Work

The results of this thesis could be extended in the following areas:

• If the control is implemented using cameras as sensors, uneven terrain could cause

the robots to lose sight on one another. Making the control robust in these situa-

tions would be a particularly useful extension of this work.

• The formation control of the unicycles could be implemented by having the unicy-

cle’s trajectory track the path of steepest descent of the potential function instead

of using the feedback linearization technique to control the unicycle.

• Necessary conditions for non-collinear equilibria in E \ E1 could be investigated.

• The control could be modified so that the robots converge to a moving formation.

Possibilities for extending the control in this way include assigning a leader that

tracks a trajectory or by adding an additional term in the potential function. Using

a leader would be a particularly suitable technique for the formation control based

on a directed graph developed in Section 6.2.
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• The results of Section 6.2 show that using individual potential functions results

in a considerably more complicated control than the one obtained using a global

potential function. In particular, further study is needed to understand why some

infinitesimally persistent directed graphs result in closed loop systems with a Jaco-

bian with four zero eigenvalues at the target formation. In particular, the possible

relationship between these additional eigenvalues and cycles in the underlying di-

rected graph warrants investigation.
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