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ScienceDirect
In rodents, recent studies indicate that levels of neuronal

excitability dictate which cell populations encode a memory for

a particular event (i.e. memory allocation), and whether

memories for multiple events become linked. In human

subjects, imaging methods now allow for detection of brain

responses to specific events, and therefore make it possible to

address whether analogous processes are engaged. Similar

to rodents, these studies reveal that neural engagement prior to

learning influences encoding in humans. Furthermore, they

provide evidence that events that share content, or occur close

together in time, become linked during learning or during later

‘offline’ processing (i.e. memory integration). These concepts

of memory allocation and memory integration provide a

common mechanistic framework for considering how

knowledge emerges in rodents and humans.
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Introduction
Richard Semon, the German evolutionary zoologist, intro-

duced two enduring terms to the memory literature:

‘engram’ and ‘ecphory’. An engram refers to the physical

changes in brain state that are induced by an event (i.e. the

memory trace). Once formed, an engram becomes dor-

mant but may be awakened by presentation of the original

(or similar) stimulus, in a process Semon defined as
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ecphory (i.e. memory retrieval) [1]. Following from

Semon, three strategies have been used to provide evi-

dence for the existence of engrams [2]. First, imaging and

electrophysiological approaches have been used to detect

persistent experience-dependent changes in neuronal

morphology and/or activation (e.g. [3]). Second, lesion

approaches have been used to ask whether removal of

neural tissue containing the engram results in memory

erasure (e.g. [4]). Third, stimulation approaches have been

used to ask whether ‘awakening’ latent engrams leads to

artificial memory expression in the absence of an external

retrieval cue or internal retrieval attempt (e.g. [5]).

Many years on, the basic strategies used to detect and

manipulate engrams remain the same, but technologies

have improved dramatically. Today optogenetic and

molecular approaches in mice allow active populations

of neurons to be tagged (e.g. during encoding), and then

later manipulated (e.g. activated or silenced during mem-

ory recall). The use of these tools has allowed modern-day

engram hunters to establish that (1) populations of neurons

engaged during encoding are reactivated during successful

memory retrieval; (2) inhibition of these tagged popula-

tions of neurons prevents successful retrieval; and

(3) activation of these populations of neurons results in

artificial memory expression (in the absence of external

retrieval cues) [2,6,7].

Against this backdrop, here we ask whether studies in

humans provide analogous evidence for the existence of

engrams. Recent advances in functional magnetic reso-

nance imaging (fMRI) analysis [8] have made it possible

to estimate the brain response evoked by specific events

[9] or individual memory elements [10,11�], allowing

engrams to be approximated in humans. In the first

section, we focus on a single memory, and consider

factors that influence how it is encoded, and how consoli-

dation alters its organization and quality over time. In the

second section, we consider how memories interact, and

specifically focus on factors influencing the storage and

transformation of complex memories integrated across

multiple experiences.

Memory for a single episode
Allocation

Most researchers have considered the time of percept as

the birth of a memory (e.g. [12]). However, recent studies

have highlighted that neural engagement prior to an

experience dictates how new information is encoded.

In rodents, experimental manipulation of intrinsic
www.sciencedirect.com
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Allocation, co-allocation and dis-allocation in rodents. (a) In the lateral amygdala before an event occurs, a subpopulation of principal neurons is

more excitable (light blue) than their neighbours (white). During event 1, this population of more excitable neurons becomes allocated to the

engram underlying event 1 (dark blue). These allocated neurons remain transiently more excited following encoding of event 1. If a second event

occurs within this window of excitability (<6 hours), then this same (or overlapping) population of neurons is allocated to the second event (dark

blue) (co-allocation). If a second event occurs beyond this time window (>6 hours), then a non-overlapping population of neurons is allocated to

the second event (green) (dis-allocation). (b) Following cue-induced recall of event 1, the allocated neurons are reactivated and remain transiently

more excitable (dark blue) than their neighbours (white). If a second event occurs within this window of excitability (<6 hours), then this same (or

overlapping) population of neurons is allocated to the second event (dark blue) (co-allocation). If a second event occurs beyond this time window

(>6 hours), then a non-overlapping population of neurons is allocated to the second event (green) (dis-allocation).
excitability of lateral amygdala principal neurons influ-

ences whether those cells become part of a fear memory

engram, with more excitable neurons ‘capturing’ the

memory trace [13] (Figure 1). Subsequent deletion [14]

or silencing [15��,16,17] of this population of neurons (and

not a random, equivalently-sized population of neurons)
www.sciencedirect.com 
prevents fear memory expression, indicating that these

cells formed an essential component of the fear memory

trace. This pattern is observed using a variety of methods

to alter excitability (including expression of potassium

channels, excitatory opsins and DREADDs), in other

brain regions (including the hippocampus [18��,19] and
Current Opinion in Behavioral Sciences 2017, 17:90–98
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cortex [20]), and across a variety of tasks (including

appetitively-motivated tasks [21]). Moreover, relative

excitability levels influence allocation under more natural

conditions (i.e. in situations where neuronal excitability is

not explicitly manipulated prior to learning [22]), indicat-

ing that spontaneous fluctuations in excitability dictate

how information is encoded.

In humans, neural engagement prior to learning similarly

influences encoding. The majority of this work has been

carried out at the trial-general level, showing that an

optimal brain state may be engaged in preparation for

encoding (e.g. with pre-stimulus medial temporal lobe

[MTL] activation or theta oscillations predicting later

memory [23–25]). Preparatory states may also impact

memory formation on a longer timescale. One study

showed that enhanced hippocampal–neocortical connec-

tivity during pre-encoding sleep was associated with

superior learning approximately 30 min later [26]. A pos-

sible account for this collection of findings is that the

neural networks later used to encode the information via

LTP are potentiated pre-encoding, perhaps through

dopamine or norepinephrine release [27]. However,

because these analyses are carried out by averaging across

multiple trials in an experiment, inferences cannot be

made about neuronal allocation for individual memories;

thus, how this research relates to the rodent work isolating

specific memory engrams remains to be seen.

Offline processing

Once a memory has been encoded, the hippocampus is

thought to drive reinstatement of declarative memories

in neocortical regions during offline periods [28,29].

Signs of early phase consolidation can be detected in

humans immediately following learning: After encoding,

enhanced hippocampal connectivity during both periods

of passive rest [30–32] and unrelated tasks [33] predict

later memory. The hippocampal activation patterns

evoked during rest are similar to those elicited during

the original encoding experience, suggesting reinstate-

ment of encoded information during post-learning peri-

ods [34] — perhaps analogous to replay phenomena in

rodents. Several reports have linked increased post-

encoding processing to better memory after a long delay

(e.g. 24 hours) [30,33,35], suggesting that processes

engaged in the immediate post-encoding period of

(awake) rest support mnemonic durability [28]. Many

learning repetitions may also speed the formation of

stable neocortical representations [36], perhaps perform-

ing a function similar to that of offline reactivations.

The bulk of memory consolidation occurs over longer

periods of time, spanning months to years in adult

humans (perhaps occurring more quickly in children

[37]) and naturally including periods of sleep. A host of

recent work has highlighted the importance of slow-wave

sleep (SWS) in stabilizing declarative memory traces
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(beginning in infancy [38]), with more SWS-related sig-

natures predicting better memory outcomes [39]. One

series of studies shows that reactivating memories during

SWS — but not during awake rest [40] (but see [41]) or

rapid eye movement (REM) sleep [42] — specifically

strengthens those memories that were reactivated, as

probed by a subsequent memory test [43]. Sleep may

also serve to unbind event memories from the specific

context in which they were experienced, with sleep

leading to enhanced transfer of learned information to

a new spatial context in rodents [44] (but see [45]). This

decontextualizing function of sleep may, in part, account

for the oft-observed phenomenon in humans that (recol-

lection-based) memory for experiential details decays

faster than (familiarity-based) memory for general gist

[46,47], leading to semanticization of memories over

time [48�].

In addition to a qualitative change in the kind of infor-

mation recalled, memory consolidation is associated with

changes in memory organization. Memories for new

events may initially engage hippocampus, but, with time,

become increasingly dependent on neocortical circuits

[49]. Recent studies in rodents suggest that neurons in

the prefrontal cortex (PFC) are allocated at the time of

initial learning, even though they do not functionally

contribute to memory expression until days or weeks

later [50,51].

Similarly, human fMRI studies have also shown that dif-

ferent neural networks are engaged for retrieval of recent

versus remote memories. While retrieval of recently

encoded information engages primarily MTL regions,

more remote memories additionally activate neocortical

regions such as ventromedial PFC [39] and anterior tem-

poral lobe [52,53]. Investigations specifically differentiat-

ing between anterior and posterior hippocampus further

suggest that while posterior hippocampal response

declines relatively rapidly (as quickly as 48 hours [54]),

engagement of anterior hippocampus is more stable [52]

(although perhaps differing across subfields within ante-

rior hippocampus [55]). Collectively, these findings may

be accounted for by recent proposals [56,57] that anterior

and posterior hippocampus store gist-based and detail

memories, respectively, with the amount of detail retrieval

and posterior hippocampal involvement concomitantly

decreasing, on average, as memories become more remote

(however, retrieval of detailed, remote memories may still

require hippocampus [58]).

Integrating memories of multiple episodes
Individual memories rarely persist unchanged for a

lifetime. Rather, we will later encounter new, related

information that will trigger retrieval and modifica-

tion — through updating, deletion (see however [59]),

or distortion — of an existing memory. This idea is

echoed across the literature in a number of phenomena,
www.sciencedirect.com
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including reconsolidation [60], memory integration [61],

and retrieval-mediated learning [62]. Here, we focus on

memory integration, in which memories for separate but

related experiences become linked (Figure 2).
Figure 2
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Box 2 The role of goals and awareness

Box 1 Memory schema

A phenomenon closely related memory integration is the

incorporation of new information into strong pre-existing knowledge

structures, such as memory schema or semantic networks. In

contrast to simple list-learning or associative learning tasks — which

engage MTL regions to support new memory formation and

updating, schema-based paradigms relying on pre-experimental

knowledge or associative structures created across many learning

repetitions [48�,94,95] may depend primarily on neocortical

structures [96,97], especially medial PFC [98,99]. Such studies

highlight the possibility that new information can be directly

incorporated into existing knowledge stored across neocortex [100].

Recent work has shown that under these circumstances, novel

information can rapidly become behaviourally [101] and neurally

[102,103] indistinguishable from prior knowledge. For example,

under certain learning conditions (e.g. so-called ‘fast mapping’),

integration of new words into the lexicon occurs almost immediately

and persists into the next day [101]. Neural markers of consolidation

emerge sooner when information can be linked to an existing

schema [48�,94,95] suggesting that its consolidation may also be

speeded, perhaps due to having a ‘head start’ in its transfer to

neocortex.
particular neurons engaged prior to event onset preferen-

tially become a part of the engram? If so, this would be

one mechanism by which memories for events that occur

in immediate succession become linked, or integrated:

Neurons active during an experience 1 would remain

active during a closely following experience 2, yielding

similar engrams for the two events [63,64]. Behaviourally,

it is known that words learned close together within a list

(i.e. in a similar temporal context) are often recalled

together [65], consistent with the notion that back-to-

back events may recruit overlapping neuronal popula-

tions. This idea has been tested in the human brain by

comparing the fMRI responses evoked by specific encod-

ing events: Recent studies have used trial-level analytic

approaches [8] to show that hippocampal activation pat-

terns are similar for items experienced adjacent in time

[10] and support behavioural judgments of temporal

closeness [66]. Taken together, these results are consis-

tent with rodent work suggesting that excitability levels

in the moments prior to encoding impact engram forma-

tion. (Note, however, that this question is practically

quite difficult to ask directly in humans.)

It may also be advantageous at times to link memories for

events experienced on different occasions that share, for

instance, similar content. When a new episode is related

to a prior experience, there are (at least) two possibilities

for how the new information can be encoded: the old

memory may be modified and linked to the new infor-

mation through its allocation to overlapping neural popu-

lations (hereafter, integration); or, the new information

may be encoded in a distinct trace (separation).a Integra-

tion and separation of related memories have been

observed in anterior and posterior hippocampus, respec-

tively [11�,69] (but see [70]). Mechanistically, integration

occurs when previously stored memories are reactivated

as new, related information is being encoded via hippo-

campal-medial prefrontal [61] theta oscillations [71], with

MPFC guiding reinstatement of relevant memories [72]

and driving mismatch computations [73]. Following

retrieval, there is a time-limited window during which

memories can be modified [74]. Mismatch between new

events and prior memories triggers integration, with the

resulting trace supporting a host of novel behaviours [61].
a Although we focus here on integration, separation or differentiation

of related, ‘confusable’ memories is another critically important function

of the hippocampus. In particular, recent fMRI work suggests that

neural differentiation supports behaviour on tasks requiring individua-

tion of specific memories (i.e., when discrimination demands are high

[67,68]). Whether such separation signatures stem primarily from pos-

terior hippocampal response, as would be predicted in the framework we

describe here, remains unknown. Future work explicitly distinguishing

anterior from posterior hippocampus and/or adopting a searchlight

approach is needed to further elucidate the relationship between neural

coding strategies and different levels of behavioural differentiation or

abstraction.
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From a theoretical perspective, reactivation of related

memories is a necessary (but not sufficient [70,75]) con-

dition of integration. Experimentally manipulating reac-

tivation during, or just prior to, learning — such as by

ordering experiences in a specific way (blocked versus

intermixed [11�]) or by introducing a reminder cue

[76,77] — influences both neural coding and behaviour,

with integration preferentially observed during reactiva-

tion [78]. Reactivation and integration may also be more

likely in the context of strong pre-existing knowledge

(e.g. schema; Box 1) or when experimental conditions

favor an intentional integration strategy (Box 2).

One factor that may impact integration is the temporal

proximity at which the related events are experienced,

with more proximal experiences being more likely allo-

cated to overlapping neuronal populations. As discussed

above, memories for two back-to-back experiences may

have similar neural representations due to natural fluctua-

tions in excitability. However, a similar outcome may also

occur on a slightly longer timescale, in which temporally
A number of studies highlight that cognitive factors such as the

participant’s goals [75] and awareness of the task structure [104]

can influence the likelihood of integration. One experiment [75]

manipulated participants’ goals on a trial-by-trial basis while they

were learning new information related to previously stored memories.

Integration and retrieval goal states were neurally distinct,

demonstrating that retrieval does not always lead to integration; the

ultimate result of retrieval can be modulated by intentional strategy.

Awareness of the task structure may also promote integration

mechanisms [104], perhaps by boosting the likelihood of reactivation

[61] or encouraging an explicit integration strategy [75]. However,

several studies have shown that awareness is not necessary for

integration to occur [105–108].

www.sciencedirect.com
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separate (but related) experiences are integrated to the

benefit of flexible behaviours. Rodent work has directly

demonstrated that co-allocation is more likely for events

closer together in time: experiences within hours (but not

days) of each other are encoded by overlapping popula-

tions of neurons and show behavioural evidence of link-

age [15��,18��]. Furthermore, memory retrieval appears to

open up another opportunity for memory linking in

rodents: When a second event (experience 2) closely

follows retrieval for a previous event (experience 1) co-

allocation is more likely [15��], and this may represent a

mechanism for relating experiences by content.

Converging findings have been reported in humans, with

greater neural and behavioural evidence for integration

when related memories are encoded on the same versus

different days [79��] and when initial memories are

spontaneously reactivated during a rest period prior to

learning [80]. Similar content (e.g. blocks of faces) pre-

ceding two otherwise unrelated events can also promote

integration; behaviourally, doing so makes the events

more likely to later be recalled together, especially when,

according to a pattern classifier [81], the preceding con-

tent (i.e. face information) ‘lingers’ in the neural repre-

sentations of both events ([82]; see also [83]). These

findings suggest that a number of complex factors, includ-

ing temporal proximity and content overlap, influence

how the brain combines across multiple events to provide

structure to memory allocation in neural — and thus,

psychological — space.

Offline processing and knowledge generation

Much like memories for individual events, offline proces-

sing of integrated memories begins in the moments just

after learning. Integration-specific enhancements in

hippocampal–MPFC connectivity have been observed

during awake rest immediately following encoding

[84,85]. On a longer timescale, consolidation is thought

to promote the extraction of regularities across multiple

related memories [54] to be ultimately be stored in medial

PFC [53,86]. Such extended consolidation periods allow

rodents to form more general (or Gestalt) memories that

average multiple instances [87] and depend on partial

forgetting of details [88].

The specific sleep-based mechanisms that promote reg-

ularity extraction remain a topic of active research, with

studies alternately implicating REM [89–91] and non-

REM [92,93] sleep in integration. For instance, one study

related sleep spindles during SWS to both better memory

and less hippocampal response specifically for informa-

tion related to existing memories [93]; spindles during

post-learning naps may also support the generalization of

learned words to novel category exemplars as early as in

infancy [92]. On the other hand, a number of studies have

shown that REM predicts post-sleep integration behav-

iour, including a superior ability to make decisions
www.sciencedirect.com 
spanning related associations [89] and better memory

for schema-congruent content [90].

While the specific sleep-based mechanisms are as yet

unclear, sleep undoubtedly plays a critical role in the

transformation of integrated memories. Regularity extrac-

tion over sleep may give rise to the increasingly gist-like

quality of integrated memories over time, with idiosyn-

crasies removed to highlight generalizations across related

episodes. On a larger scale, this mechanism may serve as

the basis of general knowledge formation, with the gist-

like nature and earlier reliance on neocortical structures

making integrated memories more robust to forgetting.

Conclusions
In this review, we have considered how information is

encoded and integrated in the brain. We review evidence

that analogous processes are engaged in rodents and

humans, and, in doing so, develop a common mechanistic

framework for considering how knowledge emerges in

rodents and humans.
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