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Objective: An increasing number of human in vivo magnetic resonance imaging (MRI) studies have focused on
examining the structure and function of the subfields of the hippocampal formation (the dentate gyrus, CA fields
1−3, and the subiculum) and subregions of the parahippocampal gyrus (entorhinal, perirhinal, and
parahippocampal cortices). The ability to interpret the results of such studies and to relate them to each other
would be improved if a common standard existed for labeling hippocampal subfields and parahippocampal sub-
regions. Currently, research groups label different subsets of structures and use different rules, landmarks, and
cues to define their anatomical extents. This paper characterizes, both qualitatively and quantitatively, the vari-
ability in the existing manual segmentation protocols for labeling hippocampal and parahippocampal substruc-
tures in MRI, with the goal of guiding subsequent work on developing a harmonized substructure segmentation
protocol.
Method: MRI scans of a single healthy adult human subject were acquired both at 3 T and 7 T. Representatives
from 21 research groups applied their respective manual segmentation protocols to the MRI modalities of their
choice. The resulting set of 21 segmentations was analyzed in a common anatomical space to quantify similarity
and identify areas of agreement.
Results: The differences between the 21 protocols include the region within which segmentation is performed,
the set of anatomical labels used, and the extents of specific anatomical labels. The greatest overall disagreement
among the protocols is at the CA1/subiculum boundary, and disagreement across all structures is greatest in the

anterior portion of the hippocampal formation relative to the body and tail.
Conclusions: The combined examination of the 21 protocols in the same dataset suggests possible strategies to-
wards developing a harmonized subfield segmentation protocol and facilitates comparison between published
studies.
© 2015 Elsevier Inc. All rights reserved.
Introduction

The medial temporal lobe (MTL) is a complex brain region of
enormous interest in research on memory, aging, psychiatric disorders,
and neurodegenerative diseases.Within theMTL, the subfields of the hip-
pocampus (cornu Ammonis fields CA1−CA4, dentate gyrus, subiculum)
and the adjacent cortical subregions of the parahippocampal gyrus
(entorhinal cortex, perirhinal cortex, and parahippocampal cortex) are
understood to subserve different functions in the memory system
(Squire et al., 2004; Moscovitch et al., 2006; Bakker et al., 2008; Wolk
et al., 2011). Different psychiatric and neurological disorders are known
to affect hippocampal subfields and MTL cortical subregions differently,
selectively, and in a complex progression (Braak & Braak, 1995; Arnold
et al., 1995; Simić et al., 1997; de Lanerolle et al., 2003; West et al.,
2004; Lucassen et al., 2006; Small et al., 2011). The non-uniformity of
MTL involvement in normal brain function and in disease makes in vivo
interrogation of the structural and functional properties of hippocampal
subfields and parahippocampal subregions highly desirable. Recent ad-
vances in MRI technology have made it possible to visualize the hippo-
campal region with increasing detail, leading a growing number of
researchers to attempt to label and quantify small substructures using
in vivo MRI (Insausti et al., 1998; Small et al., 2000; Zeineh et al., 2001,
2003, 2012; Wang et al., 2003, 2006, 2010; Apostolova et al., 2006;
Kirwan et al., 2007; Mueller et al., 2007; Mueller & Weiner, 2009; Van
Leemput et al., 2009; Ekstrom et al., 2009; Fischl et al., 2009; Olsen et al,
2009, 2013; Malykhin et al., 2010; Kerchner et al., 2010, 2012; Preston
et al., 2010; Prudent et al., 2010; Yassa et al., 2010; La Joie et al., 2010,
2013; Hanseeuw et al., 2011; Henry et al., 2011; Bonnici et al., 2012;
Wisse et al., 2012; Pluta et al., 2012; Teicher et al., 2012; Libby et al.,
2012; Bender et al., 2013; Winterburn et al., 2013; Kirov et al., 2013;
Augustinack et al., 2013; Palombo et al., 2013; Pereira et al., 2013;
Duncan et al., 2014; Yushkevich et al., 2015).

However, the anatomy of the human MTL is complex and variable,
and the boundaries between different subfields have been described
in the neuroanatomy literature using cytoarchitectonic features that
require histological staining and microscopic resolution to visualize
(Lorente de Nó, 1934; Rosene & Van Hoesen, 1987; Gloor, 1997;
Insausti & Amaral, 2004; Duvernoy, 2005; Amaral & Lavenex, 2007;
van Strien et al., 2012). Even at that resolution, neuroanatomical refer-
ences do not always agree on the definition and boundaries of subfields.
Any protocol that attempts to label these substructures in MRI, regard-
less of resolution, has to employ some combination of image intensity
cues, known anatomical landmarks, and geometrical rules to define
boundaries between substructures. A substantial number of manual
segmentation protocols have been published in the last few years, and
up to now, no common set of rules has been adopted by the research
community. Indeed, different groups partition the MTL into different
subsets of substructures, with different rules used to define each sub-
structure, and different extents of the regionwithinwhich the substruc-
tures are labeled. For example, one protocol may combine all CA
subfields into a single label, draw the boundary between CA1 and
subiculum at the medial-most extent of the dentate gyrus, and exclude
the hippocampal head and tail from the segmentation. Another protocol
may group CA3 and the dentate gyrus into one label and draw the CA1/
subiculum boundary in a more lateral location, while also labeling the
full extent of the hippocampus. Such variability among protocols
makes comparisons between the results reported by different research
groups difficult.

In this paper, we take the first step towards quantitatively and qual-
itatively characterizing the differences between the hippocampal sub-
field and parahippocampal subregion segmentation protocols used in
the in vivo imaging community. We do so by having 21 research groups
apply their manual segmentation protocols to label the left MTL of the
same subject, whichmakes it possible for the segmentations to be com-
pared on a voxel by voxel basis. Since different groups have used differ-
ent MRI field strengths and different MRI contrast mechanisms to
develop their protocols, the single subject in this study was scanned
using three different MRI protocols (T1-weighted 3 T MRI, T2-
weighted 3 TMRI, and T2-weighted 7 TMRI), and participating research
groups chose the images that best fitted the MRI modality targeted by



3 Tesla T1-weighted MRI ( 1.0 × 1.0 × 1.0mm 3)

3 Tesla T2-weighted MRI ( 0.4 × 0.4 × 2.0mm 3)

7 Tesla T2-weighted MRI ( 0.4 × 0.4 × 1.0mm 3)
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their respective protocols. We report on the differences in label sets
used by the different protocols, provide voxel-wise maps of inter-
protocol agreement, and identify substructure boundaries where there
is most disagreement between protocols.

This work follows in the footsteps of an analogous investigation
of whole hippocampus segmentation protocols carried out by the
EADC-ADNI work group (Boccardi et al., 2011), with several important
distinctions. In the EADC-ADNI effort, the hippocampus was labeled as
a single structure; the segmentations were performed centrally by a
single rater and subsequently checked and certified by the protocols'
authors; and the comparisons were carried out at a qualitative level.
In contrast, the present study addresses a more complex neuroanatom-
ical problemwith a large number of substructures, and performs quan-
titative comparisons on manual segmentations provided by the
protocol developers themselves in different MRI modalities. Moreover,
whereas the EADC-ADNI effort performed their comparison using 12
representative protocols from a much larger number of available whole-
hippocampus MRI segmentation protocols, our study is able to include
most of the published protocols for hippocampal/parahippocampal sub-
field segmentation in MRI. This broad inclusion is made possible by the
smaller size of the subfield neuroimaging research community, but also
by our decision not to restrict the comparison to a single MRI field
strength or modality.

The EADC-ADNI work group successfully used the protocol compar-
ison in (Boccardi et al., 2011) as the first step towards reconciling differ-
ences among those protocols, which in turn led to the development of a
highly reliable harmonized whole hippocampus segmentation protocol
(Boccardi et al., 2013, 2014; Bocchetta et al., 2014). Inspired by the suc-
cess of the EADC-ADNI effort, we similarly envision the quantitative
characterization of the differences and commonalities across the 21
protocols in this study becoming the first step towards developing a
unified, harmonized subfield segmentation protocol.
Fig. 1. Coronal/oblique coronal (left) and sagittal (right) slices through the left hippocam-
pus in the three different MRI scans used in this study. The blue crosshair points to the
same anatomical location in all three images. Note that the T2-weighted 3T and 7T scans
are acquired in an oblique coronal plane roughly orthogonal to the hippocampal main
axis, whereas the T1-weighted scan is acquired roughly orthogonal to the AC-PC line.
Thus, away from the blue crosshair, the anatomy seen in the coronal T1-weighted scan
is not the same as in the T2-weighted scans.

1 We use abbreviation “HarP” to refer to the Harmonized Protocol for Manual Hippo-
campal Segmentation developed for the global hippocampal segmentation by the EADC
(European Alzheimer's Disease Consortium)-ADNI (Alzheimer's Disease Neuroimaging
Initiative) working group.
Materials and methods

Magnetic resonance imaging

MRI scans from one 36 year old male right-handed subject with no
history of neurologic or psychiatric disease were analyzed in this
study. Scans were acquired as part of an MRI technology development
protocol at the University of Pennsylvania. Informed consent was ob-
tained in accordance with the University of Pennsylvania Institutional
Review Board (IRB).

The subject was first scanned on the Siemens Trio 3 Tesla MRI scan-
ner using a 32 channel head receiver array. The protocol included a T1-
weighted MPRAGE scan with TR/TE/TI = 1900/2.89/900 ms, 9° flip
angle, 1.0 × 1.0 × 1.0 mm3 isotropic resolution, and acquisition time
4:26 min. It also included a T2-weighted turbo spin echo (TSE) scan
with TR/TE = 7200/76 ms, echo train length 15, 15.2 ms echo spacing,
150° flip angle, 75% phase oversampling, 0.4 mm 0.4 mm in-plane
resolution, 30 interleaved slices with 2.0 mm thickness (no gap), and
acquisition time 6:29 min. The T2-weighted scan was acquired with
oblique coronal orientation, with slicing direction approximately
aligned with the main axes of the left and right hippocampi. The same
subject was scanned four months later on a Siemens 7 Tesla whole-
body MRI scanner with a 32-channel head coil. A T2-weighted scan
was acquired using a Siemens 3D TSE “work in progress” sequence
(Grinstead et al., 2010). The parameters of this sequence are TR/TE =
3000/388 ms, 6.16 ms echo spacing, variable flip angle, no phase
oversampling, 0.4 mm × 0.4 mm in-plane resolution, 224 slices with
1.0 mm thickness and no gap, NEX = 4, total acquisition time
29:36 min. Like the 3 Tesla T2-weighted scan, the orientation of the 7T
scan followed the hippocampal main axis. The three MRI scans are
visualized in Fig. 1. In what follows, we refer to these scans as 3T–T1,
3T–T2, and 7T–T2, respectively.
Images were anonymized and the 3 Tesla T1-weighted scan was
skull-stripped usingBET2 software (Smith, 2002) to remove identifiable
features. Images were distributed to the 21 participating research
groups in the NIFTI format.

Participating research protocols

Twenty-one protocolswere compared in this study. For each protocol,
the Supplementary data includes a page-long summary with figures and
citations. Table 1 provides a short listing of the research groups, with the
names of the primary authors of each protocol, theMRImodality towhich
their protocol was applied, the extent to which the MTL was segmented,
and the type of clinical or research population to which the protocol was
targeted. The abbreviations in Table 1, primarily based on the authors' ini-
tials, are used throughout this paper.1



Table 1
A listing of 21 protocols compared in this study. Subfield protocols are abbreviated by the initials of the authors/contributors, with the exception of HarP, which denotes the Harmonized
Protocol forManual Hippocampal Segmentation developed for the global hippocampal segmentation by the EADC-ADNIworking group. For each protocol, the table shows theMRI scan to
which it was applied, specifieswhether the protocol labels the entire anterior–posterior extent of the hippocampus (AP extent) or just the hippocampal body, and lists the cortical regions
that are included. The last column describes the clinical populations in which the protocol has been applied.

Protocol Authors Field strength Weighting AP extent Cortical areas Populations targeted/studied

AIV Augustinack, Iglesias, Van Leemput 7T T2 Full YA, OA, AD
CLW Carr, LaRocque, Wagner 3T T2 Full EC/PRC/PHC YA
DBR Daugherty, Bender, Raz 3T T2 Body EC YA, OA
EH Ekstrom, Hassan 3T T2 Full EC/PRC/PHC YA, TBI
HarP EADC-ADNI Working Group 3T T1 Full* OA, AD
JC La Joie, Chetelat 3T T2 Full YA, OA, AD
KB Kerchner, Bernstein 7T T2 Body EC OA, AD
LR Libby, Ranganath 3T T2 Full EC/PRC/PHC YA
M Mueller 3T T2 Body EC OA, AD, FTD, PTSD, E, VD, MDD
MH Malykhin, Huang 7T T2 Full OA, AD, PD, MDD
OAP Olsen, Amaral, Palombo 3T T2 Full EC/PRC/PHC YA, DA
PS Pruessner, Schoemaker 7T T2 Full YA, OA
PDY Pluta, Ding, Yushkevich 3T T1 Full EC/PRC OA, AD, FTD
PZ Parekh, Zeineh 7T T2 Full EC/PRC/PHC YA**
SB Suthana, Burggren 3T T2 Full EC/PRC/PHC OA
SP Schlichting, Preston 3T T2 Full EC/PRC/PHC YA
SY Stark, Yassa 3T T1 Full YA, OA, AD
TD Tompary, Davachi 3T T2 Full EC/PRC/PHC YA
WC Winterburn, Chakravarty 3T T2 Full YA***
WG Wisse, Geerlings 7T T2 Full EC OA, AD, MDD
WTS Wang, Turowski, Singh 3T T1 Full OA, AD

*: Whole hippocampus protocol
YA Healthy young adults
OA Healthy older adults
**: The Zeineh et al. protocol was developed in young adults but has been applied in a range of populations
AD Alzheimer's disease (includes MCI)
MDD Major depressive disorder
PTSD Post-traumatic stress disorder
DA Developmental amnesia
TBI Traumatic brain injury
***: The WC protocol was developed in young adults but applied to OA, AD using automatic method MAGeT-Brain
PD Parkinson's disease
FTD Frontotemporal dementia
E Epilepsy
VD Vascular dementia
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Table 2 summarizes the genesis of the different subfield segmenta-
tions protocols, in terms of the anatomical atlases and studies that they
cite. The most commonly cited source, by far, is the Duvernoy's Atlas of
the hippocampus (Duvernoy, 1998, 2005), with many protocols also cit-
ing the chapter on the hippocampal formation by Insausti & Amaral
(2012, 2004); Amaral & Insausti (1990) in Human Nervous System by
Paxinos and Mai, and some citing the Mai et al. (2008) atlas. Protocols
that include cortical MTL areas frequently cite Insausti et al. (1998), as
well as Pruessner et al. (2002). Some of the less frequently cited anatom-
ical studies include (Rosene & Van Hoesen, 1987; Watson et al., 1992;
Harding et al., 1998; Goncharova et al., 2001). Some of the protocols in
this comparison derive from the authors' earlier work that has influenced
several other participants: several studies cite as their sources earlier pa-
pers by Mueller et al. (2007), Mueller & Weiner (2009), Zeineh et al.
(2000, 2001, 2003), Pruessner et al. (2000, 2002), Olsen et al. (2009,
2013), Malykhin et al. (2007, 2010), and Winterburn et al. (2013).

The participating groups cover different spheres of interest. Roughly
half of the participating groups are primarily interested in the involve-
ment of MTL substructures in memory, and develop their protocols for
use in functional MRI studies in healthy adults. The groups in this cate-
gory tend to work with 3 Tesla scans, and their protocols are typically
composed of fewer substructures, since the size of the smallest structure
that can be studied is constrained by the limits of functionalMRI resolu-
tion. Several of the protocols in this category have common origins in
(Zeineh et al., 2000, 2003; Ekstrom et al., 2009). Other groups in this
study are focused on the morphometric analysis of MTL substructures
with the objectives to more accurately characterize the effects of aging
and disease on the MTL, and to derive more effective biomarkers for
detecting early-stage disease and disease progression, particularly in
the case of Alzheimer's disease. These groups perform segmentation in
both 3T and 7T MRI, and their protocols are more likely to include
smaller structures.

Notably, one of the participating research groups (HarP protocol)
is not involved in subfield/substructure segmentation. This group
(Frisoni & Jack, 2011; Boccardi et al., 2011, 2013, 2014) represents the
EADC-ADNI effort to harmonize the MRI segmentation protocol for the
whole hippocampus. In our study, this group applied the HarP protocol
to the 3T–T1 scan, allowing the subfield segmentations produced by the
other groups to be examined in the context of an existing harmonized
whole hippocampus segmentation protocol. The differences and simi-
larities between the harmonization approach taken by the EADC-ADNI
working group and the planned subfield harmonization effort are
discussed in Towards a harmonized subfield segmentation protocol.

Segmentation

Each participating group applied its segmentation protocol to the
left MTL in the study subject. In order to allow each group to utilize
the protocol most similar to their prior or current work, the groups
were free to choose the MRI modality (3T–T1, 3T–T2 or 7T–T2) in
which to perform the segmentation. In most cases, groups chose the
modality most similar to that which has been used in their recent
work. Groupswere also free to choose the software in which to perform
segmentation (provided that their final segmentation was submitted in
the formof amulti-label 3D image volume) and the set of anatomical la-
bels to include in the segmentation.



Table 2
Summary of the sources cited by the 20 subfield segmentation protocols. The table gives the primary citation for each published subfield segmentation protocol (protocols for which this
field is blank are currently unpublished). Additionally, for each protocol, the table showswhich sourceswere cited by the authors as contributing to the protocol development. The value of
1 in a table cell indicates that the paper in the corresponding columnwas cited by the protocol in the corresponding row. The “HarP” protocol (Boccardi et al., 2014), which is not listed in
this table, used 6 anatomical references to define anatomical landmarks and 12whole-hippocampus segmentation protocols served as the starting point for protocol harmonization. Please
see Supplemental data for the descriptions of each protocol, including citations.
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M Mueller et al., 2007

MH Malykhin et al., 2010
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PZ Zeineh et al, 2012

SB Zeineh et al, 2001

SP Preston et al., 2010

SY Kirwan et al., 2007

TD Duncan et al., 2014

WC Winterburn et al., 2013
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WTS Wang et al., 2003

7 1 1 16 1 7 1 2 2 2 4 3 4 3 1 2 1 2 3 15Total:

Table 3
Abbreviations and descriptions of a common set of anatomical labels used by the 21 par-
ticipating groups. This set was compiled using a survey and provided to the groups before
the actual segmentation began. Each group used only a subset of the labels in the common
set (shown in Table 4). Some of the labels in this set (listed in gray)were not actually used
in any of the submitted segmentations.
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Before segmentation began, a common set of 39 anatomical labels
(Table 3) was compiled by conducting a survey. This label set is the
union of the sets of labels used by the 21 different protocols, and
thus includes many overlapping labels. For example, when labeling
the CA, some protocols assign a single label CA123 (short for
CA1 + CA2 + CA3), others separately label CA1 and CA23, while yet
others label CA1, CA2 and CA3 separately. The common label set con-
tains all the labels used by all the groups, including CA1, CA2, CA3,
CA23, CA123, and other combinations. Not all of the labels collected in
the initial survey were used in the segmentations submitted by the 21
groups. Labels that were not used appear in gray in Table 3. Further-
more, one label (HATA) was used that was not in the initial label set.
Table 4 showswhich labels were utilized bywhich protocols in the sub-
mitted segmentations.

Since the focus of this paper is on comparing a large number of pro-
tocols between groups, rather than establishing reliability of individual
protocols, each group was asked to perform segmentation just once.
However, for many protocols inter-rater and intra-rater reliability has
been previously reported in the literature (see Table 2 for the primary
citation for each published protocol).

Analysis

In order to compare segmentations performed in different MRI
scans, the 3T−T1 and 3T–T2 scans were linearly registered to the 7T–
T2 scan. Registration was performed in multiple stages in order to
obtain the best possible alignment.

1 The 3T–T1 scan was registered to the 7T–T2 scan using the registra-
tion tool FSL/FLIRT (Jenkinson et al., 2002). Registration was first



Table 4
Anatomical labels utilizedby eachprotocol in the segmentation submitted for this study. Thedescriptions of the labels are inTable 3. Note that some groupsmay use additional labelswhen
segmenting different subjects or images obtained using differentMRI sequences. For instance, the HarP protocol also includes a label for intra-hippocampal CSF, but no intra-hippocampal
CSF was present in the subject segmented in this study.
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EH 3T T2
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M 3T T2

OAP 3T T2

PDY 3T T2
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SP 3T T2

TD 3T T2
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performed over thewhole brain, and then repeated for a region of in-
terest around the left hippocampus. FLIRT was run with the mutual
information metric and 9° of freedom. Visual inspection indicated
good registration between the 3T–T1 and 7T–T2 scans.

2 The 3T–T2 scan was registered to the 3T–T1 scan using FLIRT using
whole image extent. The scans were initially aligned well because
there was little subject motion between the two scans. Then, the
transform from Step 1 was composed with the transform between
the 3T–T1 and 3T–T2 scans to transform the 3T–T2 image into the
space of the 7T–T2 image.

3 Visual inspection revealed some mismatch between features in the
MTL region in the 7T–T2 and 3T–T2 scans after alignment. Some of
the apparent misalignment is likely explained by the partial volume
effects occurring in the anisotropic 3T–T2 scan, but some of the mis-
match is due to registration error. To correct for this mismatch, a set
of eight landmarks was extracted in each image, and an affine trans-
formation that minimizes the sum of squared distances between
landmark pairs was computed. This transform was composed of the
transform from Step 2 to yield the final transformation from the 3T–
T2 image to the 7T–T2 image.

A common space for the analysis was defined by supersampling the
7T–T2 image linearly by the factor of two in each dimension (i.e., to
0.2 × 0.2 × 0.5mm3 resolution) and transforming each of the multi-label
segmentations into this space. To reduce aliasing that would result from
applying nearest neighbor interpolation to multi-label segmentations,
segmentations performed in the 3T–T1 and 3T–T2 images were
resampled as follows: (1) a binary imagewas generated for each anatom-
ical label, as well as for the background label; (2) these binary images
were smoothed with a Gaussian kernel with standard deviation of
0.2 × 0.2 × 0.5mm3; (3) the smoothed binary images were resampled
into the common anatomical space using linear interpolation; (4) each
voxel in the common anatomical space was assigned the label corre-
sponding to the resampled smoothed binary imagewith highest intensity
value.

Voxel-wise quantitative maps
Once all segmentations were transformed into a common space, we

generated four types of voxel-wise maps that capture segmentation
similarity. To describe these maps, we will use the notation Li

x to de-
scribe the segmentation label assigned to voxel x by segmentation pro-
tocol i, after transformation to the common space. Let n denote the
number of protocols. For purposes of generality, let F denote the set
of all foreground labels (labels 1–40) and let B denote the set of back-
ground labels (label 0).

Inclusion frequency (IF)map. The value of the inclusion frequencymap at
voxel x is given as the fraction of segmentation protocols that assign a
foreground label to x:

IF xð Þ ¼ i∈ 1;…;nf g : Lxi∈F� ��� ��
n

:

Edge frequency (EF) map. The value of the edge frequencymap at x is the
fraction of segmentations inwhich x lies at a boundary between two dif-
ferent labels. Specifically, if N xð Þ denotes the set of voxels that share a
face with x, then EF is defined as

EF xð Þ ¼ i∈ 1;…;nf g : ∃y∈N xð Þ s:t: Lxi≠Lyi
� ��� ��

n
:
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Possible agreement (PA)map. The purpose of thismap is tomeasure how
often pairs of segmentation protocols “agree” at each voxel. However,
since different segmentation protocols in this study utilize different
sets of labels, how to define agreement is not obvious. In particular,
Li
x ≠ Lj

x does not necessarily imply that protocols i and j disagree at
voxel x (e.g., if Lix is CA1 and Lj

x is CA12).
Instead, we introduce the concept of possible agreement between

protocols. Protocols i and j are said to possibly agree at voxel x if the
anatomical labels Lix and Lj

x are not mutually exclusive, i.e., may possibly
refer to the same anatomical region. If Lix is CA1 and Lj

x is CA12, then i and
j are in possible agreement. But if, instead, Lix is CA1 and Lj

x is CA23, then i
and j are not in possible agreement. We use the symbol ≈ to denote
possible agreement between labels.

Let Pn be the set of all segmentation pairs (i, j) such that i ≠ j. Then
the possible agreement map is then defined as

PA xð Þ ¼
i; jð Þ∈Pn : Lxi≈Lxj ; Lxi ; L

x
j∈F

n o���
���

i; jð Þ∈Pn : Lxi ; L
x
j∈F

n o���
���

: ð1Þ
Large values of PA indicate that among all protocols that assigned a
non-background label to a voxel, most are not necessarily in disagree-
ment with each other.2

Boundary dispersion (BD) maps. This last type of map reveals the vari-
ability in the location of specific anatomical boundaries between proto-
cols. We consider several boundaries that are traced in a large number
of segmentation protocols (e.g, the CA1/SUB boundary or the ERC/PRC
boundary). Let k denote a particular boundary and let Bk be the set
of all pairs of non-background labels (lp, lq) such that lp and lq may ap-
pear on the two sides of the boundary k. For example if k refers to the
CA1/SUB boundary, then Bk includes pairs (CA1,SUB), (CA12,SUB),
(CA,SUB) and so on. The k-th boundary dispersion map is then
defined as

BDk xð Þ ¼
i∈ 1…n½ � : ∃y∈N xð Þ s:t: Lxi ; L

y
j

� �
∈Bk

n o���
���

n
:

One limitation of the BD maps is that the boundaries in which a
non-background label is adjacent to the background label are not
considered. Thus, if a protocol only traces SUB but does not trace
EC, then the protocol will not contribute to the BD map for the
SUB/EC boundary, even if the medial boundary of the SUB corre-
sponds to the SUB/EC boundary.

Summary quantitative measurements

In addition to the voxel-wisemaps, we generate summary quantita-
tive measures of segmentation agreement. These measures help deter-
mine the sets of labels and regions of the hippocampal formation
where there is greatest disagreement between protocols.

Label-wise possible agreement
Related to the possible agreement (PA)map above, thismeasure de-

scribes the overall degree of agreement between protocols for a specific
anatomical label. Given that a voxel x has been assigned the label l by
one rater, another rater may (a) assign a compatible foreground label
to that voxel (i.e., a foreground label that is in possible agreement
with l); (b) assign an incompatible foreground label to that voxel; or
(c) assign a background label to that voxel. For each label l, we estimate
2 Note that the situationwhen oneprotocol assigns a foreground label to a voxel and an-
other labels the voxel as background does not contribute to the value of PA at that voxel.
This is to allowmeaningful comparisons between protocols that label different extents of
the anatomy (protocols that only label the hippocampal body vs. protocols that label the
whole length of the hippocampus or protocols that only label the hippocampus vs. proto-
cols that also label parahippocampal structures).
the probability of these three outcomes, denoted Pcompat(l), Pincomp(l),
and Pbackgr(l), empirically. We estimate Pcompat(l) as follows:

Pcompat lð Þ ¼
X

x
i; jð Þ∈Pn : Lxi≈Lxj ; Lxi ¼ l; Lxj∈F

n o���
���

X
x

i; jð Þ∈Pn : Lxi ¼ l; Lxj∈F
n o���

���
ð2Þ

and the other two probabilities are estimated similarly.

Region-wise possible agreement (RWPA)
In addition to reporting possible agreement on a per-label basis, we

measure overall possible agreement in the head, body and tail of the
hippocampus. Slices in the 7T–T2 image are designated as head, body
and tail. The boundary between head and body is placed at the most
posterior slice in which the uncus is visible. The boundary between
the body and tail is placed at the most anterior slice where the wing
of the ambient cistern is visible. The extents of the hippocampus proper
define themost anterior slice of the head region and themost posterior
slice of the tail region. LetRdesignate a region (head, body or tail). Then
the region-wise possible agreement is measured as

RWPA Rð Þ ¼
X

x∈R i; jð Þ∈Pn : Lxi≈Lxj ; Lxi ; L
x
j∈F

n o���
���

X
x∈R i; jð Þ∈Pn : Lxi ; L

x
j∈F

n o���
���

: ð3Þ

Since the head/tail/body partition pertains to the hippocampal
formation, MTL cortical labels (ERC, PHC, PRC) are excluded from the
foreground label set when computing RWPA.

Average boundary dispersion (ABD)
This measurement reduces the boundary dispersion (BD)maps to

a single measure for each kind of subfield boundary (e.g., CA1/CA2,
CA1/SUB). For each kind of boundary, the measurement captures the
average surface-to-surface distance between all pairs of segmentations
of that boundary. To account for differences in the anterior–posterior
extent of the segmentations, distance is computed within the slab of
slices in which both segmentations that are compared trace the given
boundary. For instance, if the CA1/CA2 boundary is drawn in slices
40–70 in protocol A and in slices 45–90 in protocol B, then the distance
is computed in the slab spanning slices 45–70. The ABDmeasure is com-
puted by obtaining the Danielsson distance transform (Danielsson,
1980) from the given boundary in segmentation A in this slab, and inte-
grating over the given boundary in segmentation B, then averaging
across all pairs of segmentations (A,B).

Results

Qualitative Comparison

Figs. 2–3 show the 21 segmentations resampled into the common
image space at oblique coronal slices through the hippocampal head
and body.3 Each group's segmentation is superimposed on the MRI mo-
dality used by that group. Additionally, Fig. 4 shows the3D renderings of
the 21 segmentations in the common space. Thefiguresmake it possible
to compare segmentation protocols side by side visually. They reveal
significant variability in the protocols currently used in the field.

The variability in theprotocols is also evident fromFig. 5,whichplots
the total volume of each segmentation (all labels combined) against the
anterior–posterior extent of the segmentation and the number of
segmentation labels.4 There is a ‘central’ cluster of segmentations with
6–8 labels and 90 to 110 mm of extent and limited range of volumes
3 The Supplementary data includes similar visualization for thewhole length of the hip-
pocampal formation.

4 Amore detailed plot of the volumes of the substructures produced by each protocol is
included in the Supplementary data.



1: CA (CA1)
2: SUB
3: PHG
4: Uncal sulcus
5: SUB in uncinate gyrus
6: Amygdala (accessory basal nucleus)
7: Amygdala (cortical nucleus)
8: Temporal horn
9: Tail of caudate nucleus

Fig. 2. Comparison of the 21 segmentation protocols in a coronal slice (hippocampal head). Each segmentation is superimposed on its corresponding modality, realigned to the
common space defined by the 7T–T2 scan. The top right corner of the figure shows the closest corresponding diagram of the coronal cross-section of the hippocampus from the
(Duvernoy, 2005, p. 136) atlas.
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that accounts for almost half of the protocols, while other protocols
form a triangle in the scatter plot, with M and DBR having the smallest
extent and volume, AIV protocol having the most labels, and the HarP
protocol having the fewest labels, followed by JC, SY, and MH protocols.
Voxel inclusion and edge frequency

The inclusion frequency (IF), edge frequency (EF), possible agree-
ment (PA) and specific boundary dispersion (BDk) maps are plotted in
Figs. 6–7. These maps are also provided in NIFTI format as part of the
supplementary data.

The edge frequency map has a very well-defined structure that sug-
gests that there are many anatomical boundaries on whichmost proto-
cols agree. For instance, the outer boundary of the hippocampus proper
is very sharp in the edge frequencymap, suggesting that most protocols
are in agreement on that boundary (and also suggesting that the regis-
tration between the modalities was accurate: had there been a signifi-
cant registration error, we would expect the edge map to have
appearance of ghosting due to 3T–T2 and 7T–T2 boundaries lining up
differently). Similarly inside thehippocampusproper, the edge frequen-
cy map shows a bright curve following the inferior and lateral bound-
aries of the dentate gyrus — suggesting that almost all protocols are in
strong agreement about that boundary. The boundaries between the
extrahippocampal cortical gray matter and adjacent white matter and
cerebrospinal fluid also appear very consistent on the edge frequency
map.
Maps and measures of possible agreement

The possible agreement (PA) map plots areas of disagreement
between protocols. However, as defined in Eq. (1), the PA map reflects
relative disagreement (e.g., 50% of all pairs of protocols that labeled
the voxel disagreed) and does not differentiate between voxels where,
say, 20 out of 40 pairs of protocols disagreed, and voxels where 2 out
of 4 pairs disagreed. In addition to plotting the possible agreement
map in its raw form, Figs. 6–7 use a more informative visualization
that combines the possible agreement and inclusion frequency maps
using color. In this combined PA/IF plot, the value of possible agreement
at a voxel is represented using the hue scale (blue to green to red) and
the value of inclusion frequency is represented by the brightness scale.
Thus, voxels that many pairs of raters label and agree on appear as
bright blue; voxels that many pairs of raters label and disagree on
appear as bright red; voxels labeled by just a few raters appear dark
blue or dark red, depending on whether those pairs of raters tend to
agree or disagree.

The pattern of the combined PA/IF map is highly non-uniform. The
bright blue regions (agreement bymany pairs of raters) are concentrat-
ed in the central core of the hippocampal formation (dentate gyrus) and
the lateral-inferior aspect of the hippocampus proper CA1. The bright
yellow and red regions include the regions of transition between the
dentate gyrus and CA, particularly in the anterior hippocampus, the
medial-inferior aspect of the hippocampus (CA1/subiculum transition)
and to a lesser extent, the lateral-superior aspect of the hippocampus
(CA1/CA2 and CA2/CA3 transitions). The extrahippocampal cortical



Fig. 106 B

1: CA (CA1-CA4)
2: DG
3: SUB
4: Margo denticulatus

6: Fimbria
7: Lateral geniculate body
8: Choroid plexuses and temporal horn
9: Caudate nucleus

Fig. 3. Comparison of the 21 segmentation protocols in a coronal slice (hippocampal body). The top right corner of thefigure shows the closest corresponding diagramof the coronal cross-
section of the hippocampus from the Duvernoy (2005, p. 148) atlas.
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structures appear darker in the inclusion frequency/possible agreement
map because these structures are included by fewer protocols. An area
of greatest disagreement is at the transition between the entorhinal
and perirhinal cortices and the parahippocampal cortex, as well as
both ends of the entorhinal cortex.

The related summary measures of possible agreement provide com-
plementary information. Fig. 8 plots the empirical estimates of the prob-
abilities Pcompat(l) and Pincomp(l) for different anatomical labels. Large
values of Pcompat(l) relative to Pincomp(l) indicate greater agreement
across protocols for a particular label. Not surprisingly, labels that com-
bine several anatomical structures (e.g., CA23 + DG:H) have greater
agreement than single-structure labels. Subiculum is one of the struc-
tures with the lowest agreement. Both Pcompat(l) and Pincomp(l) are low
for the parahippocampal gyrus labels because these structures are
assigned the background label by many protocols.

The analysis of region-wise possible agreement (RWPA) yielded
RWPA = 0.740 for the hippocampal head, 0.806 for the hippocampal
body and 0.840 for the hippocampal tail. This indicates that the head
is the area of greatest disagreement among protocols, andwill likely re-
quire the greatest effort for protocol harmonization.
Boundary dispersion

The boundary dispersion maps (BDk) in Figs. 6–7 visualize the dis-
persion in the placement of eight specific boundaries. For certain
boundaries, specifically CA/DG and SUB/EC, the dispersion is not very
large, indicating that the majority of the protocols are in general
agreement. For other boundaries, most notably the CA1/SUB boundary,
the dispersion is more striking. Indeed, the placement of the CA1/SUB
boundary spans the entire width of the hippocampal formation along
the lateral-medial dimension. Overall, the dispersion for all boundaries
is greater in the anterior hippocampus than in the body and tail,
which is not surprising given the more complex folding anatomy of
the anterior region. The uncal region is a place of particularly large
dispersion.

Fig. 9 summarizes these maps by giving the average boundary dis-
persion (ABDk) for each of the boundaries. Indeed, average boundary
dispersion is greatest for the CA1/SUB boundary (2.00 mm), followed
by the EC/PRC (1.49 mm), CA2/CA3 (1.43) and CA1/CA2 (1.34 mm)
boundaries. Not surprisingly, dispersion is lowest for the boundaries as-
sociated with strong visual cues: the CA/DG boundary (0.86 mm),
which is traced along the hypointense band associated with the CA-
SRLM and, for the protocols that label CA-SRLM separately, the CA-
SRLM/CA-SP boundary (0.42 mm).
Discussion

This is the first study to directly examine agreement between a large
number of hippocampal subfield and parahippocampal cortical subre-
gion segmentation protocols in a common image dataset. The study re-
veals significant variability among the protocols currently used in the
field in terms ofwhat labels are used, where the boundaries between la-
bels are placed, and what extent of the hippocampal region is labeled.
Nonetheless, by quantifying this variability and identifying regions of



Fig. 4. Comparison of the 21 segmentation protocols rendered in three dimensions.
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greatest disagreement between protocols, this paper offers strongmoti-
vation for protocol harmonization and takes an important first step in
that direction. An additional contribution of this paper, particularly the
the side-by-side visualization of the different protocols in a common
anatomical space (Figs. 2,3), is that it can facilitate comparisons be-
tween published results obtained using the 21 protocols evaluated in
this study.

The quantitative agreement maps in Figs. 6–7 reveal that agreement
and disagreement between protocols are not uniform through the hippo-
campal region. There is very goodoverall agreement along the boundaries
defined byMRI contrast, such as the boundaries between hippocampal or
cortical gray matter and the adjacent white matter and cerebrospinal
fluid. The boundary between the CA and the dentate gyrus is also largely
consistent, although less so in the anterior hippocampus and in the por-
tion of the boundary corresponding to CA3. The consistency is almost cer-
tainly due to the fact that the SRLM layers separatingmuch of CA from the
dentate gyrus appear hypointense in the T2-weighted MRI and thus pro-
vide a strong intensity cue for drawing this boundary. The boundary be-
tween the subiculum and the entorhinal cortex is also quite consistent.
While there is no apparentMRI contrast between the subicular and ento-
rhinal gray matter, the overall shape of the structures provides a strong
geometrical cue. The boundary between the entorhinal and perirhinal
cortices, while less consistent than the EC/SUB boundary, tends to
be well localized across protocols, with dispersion relatively small
compared to the size of these cortices.
The CA1/subiculumborder emerged as the area of greatest disagree-
ment among the protocols. The position at which this boundary is
drawn in different protocols spans the entire range between the most
medial andmost lateral extent of the dentate gyrus. The CA1/subiculum
boundary is difficult to determine even histologically, as the transition
between these two structures is based on a widening of the subiculum
and less densely packed appearance of the subicular pyramidal neurons
compared to CA1. In MRI, the CA1 and subiculum have seemingly iden-
tical contrast, and protocols must instead rely on heuristic geometrical
rules, which differ substantially across protocols. Furthermore,
the subiculum label used bymost protocols (with the notable exception
of AIV) combines several architectonically distinct substructures
(parasubiculum, presubiculum, subiculum proper), and this may be
contributing to the variability of the subiculum/CA1 boundary.

The EC/PRC boundary emerges as the second most disagreed upon
boundary. Again, this boundary is characterized by a lack of MRI
contrast. Furthermore, the boundary is geometrically complex, with
Insausti et al. (1998) describing the PRC as wrapping around the poste-
rior of the EC, an anatomical feature that is difficult to incorporate into
segmentation protocols, particularly when labeling MRI scans with
thick slices.

The results also highlight the non-uniformity of agreement between
protocols along the anterior–posterior axis, with the anterior hippo-
campus (head) being the area of greatest disagreement. This is not sur-
prising as the manner in which the hippocampus rolls is much more



Fig. 5. A scatter plot of the size and complexity of the segmentations submitted by the 21
participating groups. Each group's segmentation is represented by a circle with area pro-
portional to the combined volume of all labels in the segmentation. The groups that only
performed segmentation in the hippocampal body are italicized. The groups that include
MTL cortical regions are in bold font. The color represents the MRI modality.
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complex in the head than in the body and tail. In the body, the axis
around which the hippocampus rolls roughly aligns with the imaging
plane, while in the anterior the hippocampus does not roll along a
straight axis, which makes segmentation more challenging. It is some-
what surprising that agreement among protocols is higher in the tail
of the hippocampus than in the body, but this is most likely explained
by the fact that fewer protocols distinguish between different subfields
in the tail than in the body; many protocols tend to assign a single label
to all of the voxels in the tail.

Towards a harmonized subfield segmentation protocol

The success of the EADC-ADNI effort to develop a reliable harmo-
nized whole-hippocampus segmentation protocol (Boccardi et al.,
2011, 2013, 2014; Bocchetta et al., 2014) suggests that it should also
be feasible for the hippocampal/parahippocampal subfield community
to develop a unified, harmonized segmentation protocol. The EADC-
ADNI effort began by quantitatively comparing existing protocols
(Boccardi et al., 2011), then defined a set of three-dimensional regions
that would serve as building blocks for a harmonized protocol
(Boccardi et al., 2013), and employed a Delphi procedure to collect
and integrate feedback from the developers of different existing seg-
mentation protocols and other experts (Boccardi et al., 2014). The spe-
cific procedures for defining rules and obtaining consensus in the
context of subfield segmentation will have to be quite different from
the EADC-ADNI effort. For instance, the subfield community has to
cope with the multiplicity of anatomical labels and greater overall
complexity of the segmentation problem relative to whole hippocam-
pus segmentation, which, most likely, makes the building block
approach unfeasible. The subfield harmonization effort must also ac-
count for the heterogeneity of the imaging modalities used by the
existing field of protocols. Furthermore, at present the subfield imaging
community lacks the centralized organization of the EADC-ADNI effort
and would thus need to adopt a more decentralized approach to
harmonization.

The initial exchange of ideas towards developing a harmonized
subfield protocol has taken place among the authors of this paper
and others under the auspices of the Hippocampal Subfield Group
(HSG, hippocampalsubfields.com). Following a series of three interna-
tional meetings, HS3 developed a white paper for subfield protocol
harmonization (http://www.hippocampalsubfields.com/whitepaper).
It envisions an initial collaborative effort between imaging scientists
and neuroanatomists to define a set of common rules for drawing spe-
cific substructure boundaries. For boundaries where MRI intensity
cues are unavailable or ambiguous, the rules will be heuristic in nature,
and a combination of in vivo MRI images acquired with different proto-
cols and in different populations, together with a collection of postmor-
tem histological images, will be used to ensure that the heuristics are
both as reliable and as anatomically correct as possible. This initial
effort to define rules will be followed by a phase in which the rules
will be refined based on community feedback and then combined and
incorporated into application-specific segmentation protocols, such as
a fMRI-specific protocol or a 7T structural protocol. Lastly, an effort to
establish the inter/intra-rater reliability of these protocols will take
place.

If successful, this harmonization effort will produce a subfield seg-
mentation protocol that can be applied reliably and consistently across
different research laboratories, differentMRI scanners, and different clin-
ical and biomedical applications. The involvement of the large sector of
the subfield imaging research community in developing the harmonized
protocolwould help ensure that the resulting protocolwill be adopted by
this community. Likewise, since this effort includes all of the groupswho
have developed automated tools for subfield segmentation (Van
Leemput et al., 2009; Yushkevich et al., 2015; Pipitone et al., 2014), the
harmonized protocol will be incorporated into these tools, particularly
those made available to the larger research community. The adoption
of a common protocol by a large number of labs doing subfield research,
either through its use in manual segmentation or through automatic
tools, will have a significant impact both on basic and clinical research.
Basic MRI research on memory and other aspects of cognition that in-
volve the hippocampal region will benefit when different research
groups begin to use the same “language” to describe substructures, espe-
cially if this language can be directly and unambiguously translated to
the one used in the neuroanatomical and neurophysiological literature.
Clinical research that seeks to use substructure volumetric and morpho-
metric measurements as biomarkers for the detection of disease and
monitoring the response of the brain to disease and treatment will also
benefit from a common protocol. When papers that describe the effects
of different disorders on the hippocampal region adopt a common set
of anatomical definitions and measurements, it will become possible
for researchers and clinicians to use these measurements for differential
diagnosis, something that is exceedingly difficult given the current state
of the field, where findings in one disease, say vascular dementia, are de-
scribed using a different set of measures than findings in a related dis-
ease, say Alzheimer's.

Limitations

Our priority in designing the study was to include as many subfield
segmentation protocols as possible, while also minimizing the differ-
ences between the versions of the protocols that the groups used in
our comparison and the versions that they use in their own day-to-
day work. These design choices allowed us to include the vast majority
of the protocols currently used in the subfield imaging field in our
comparison, but they also led to some limitations. For instance, the de-
cision to let each group use its own subset of anatomical labels made it
possible formost groups to apply their protocols to the common dataset
with minimal modifications. However, this design choice limited the
degree to which the protocols could be compared quantitatively and
forced us to adopt “fuzzy” measurements such as possible agreement
(PA). Similarly, the decision to have each participating group segment
only one hippocampal region just once minimized the amount of
segmentation effort required from each group. However, with data

http://www.hippocampalsubfields.com/whitepaper


Fig. 6. Groupwise comparison of the 21 segmentation protocols using inclusion frequency (IF), edge frequency (EF), possible agreement (PA), combined PA/IF, and specific boundary dis-
persion (BD) maps in a coronal slice through the hippocampal head (same slice as in Fig. 2). Please see text for details.
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from only one subject, we are unable to account for anatomical
variability, and with only one segmentation per group, we cannot ac-
count for repeat measurement errors that necessarily are associated
withmanual segmentation.We note, however, that the typical reported
range of intra-rater reliability in the subfield literature is 0.80–0.95, as
measured by intra-class correlation coefficient (Shrout & Fleiss, 1979),
or 0.75–0.90, when measured in terms of Dice coefficient (Dice, 1945).
The differences between protocols observed in this paper are on
a much greater scale than the typical range of repeat measurement
errors, and are certainly due to differences in the underlying anatomical
rules.

Conclusions

This study has for the first time compared a large number of protocols
for the segmentationof hippocampal subfields andparahippocampal sub-
regions in a common MRI dataset. The comparison demonstrates the
challenges facing future efforts towards protocol harmonization. Existing
protocols vary in the sets of labels used, the rules used to define subfield
boundaries, the anterior–posterior extents of the segmentation, the
sources and the purposes of the protocols. These differences limit the ex-
tent towhich protocols can be compared quantitatively. Nevertheless, the
analysis presented above identifies major areas of disagreement and
helps direct subsequent harmonization efforts. Initial steps towards har-
monization are being taken by many of the authors of this paper as part
of the Hippocampal Subfields Segmentation Summit (HS3) series of
meetings (hippocampalsubfields.com). The authors invite other re-
searchers to join them in this open effort.
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Fig. 7. Groupwise comparison of the 21 segmentation protocols using inclusion frequency (IF), edge frequency (EF), possible agreement (PA), combined PA/IF, and specific boundary dis-
persion (BD) maps in a coronal slice through the hippocampal body (same slice as in Fig. 2).
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Fig. 9.Average boundary dispersion (ABD) for eight specific subfield boundaries, measured as the average surface distance between all pairs of segmentations of that boundary (Summary
quantitative measurements). Larger values of ABD indicate greater disagreement in the placement of the boundary across the 21 protocols.
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