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Abstract

By defining conditional probabilities as primitives, Rényi (1955) provides
a framework for understanding scenarios that challenge classical proba-
bility theory, such as conditioning on events with zero prior probability.
The paper proposes a notion of equivalence among such conditional prob-
ability systems (CPSs) and shows its appealing properties (e.g., existence
of a canonical form). Additionally, we demonstrate an application of the
equivalence concept by continuing the work started in Brandenburger et al.
(2023) to show that, at some fundamental level, lexicographic probability
systems (LPSs) and finitary CPSs are merely different ways of encoding
the same probabilistic information.
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1 Introduction

We begin by reproducing the definition of conditional probability systems in
Rényi (1955). In this paper, we fix a measurable space ⟨X,X ⟩, where X is a
nonempty set of states and X is a σ-algebra on X. Elements of X are called
events. The set of all σ-additive probability measures on ⟨X,X ⟩ is denoted by
Π.

Definition 1.1. Let π : X → Π be a partial function. We denote its domain by
D(π) and adopt the convention of writing π(A | B) for π(B)(A). We say that π
is a conditional probability system (or simply CPS) on ⟨X,X ⟩ if

π(C | C) = 1 (1)

for all C ∈ D(π); and

π(A | B)π(B | C) = π(A | C) (2)

for all A,B,C ∈ X such that B,C ∈ D(π) and A ⊆ B ⊆ C. The set of all
conditional probability systems on ⟨X,X ⟩ is denoted by Σ. Elements of the
domain D(π) are called conditioning events (or simply conditions) of π. The
set of all π ∈ Σ such that D(π) = B is denoted by ΣB. We also adopt the
abbreviation D(π) :=

⋃
D(π).1

What we might call—for lack of a better word—the “classical” approach to con-
ditional probability takes the prior belief as its primitive and defines conditional
probability as a formula of prior probabilities. Rényi’s approach to conditional
probability takes conditional probabilities as the primitives and imposes con-
sistency with the classical formula among those primitives as an axiom. While
there are many interesting technical consequences of this approach, it has proven
to be an extremely fruitful one in applied epistemology. CPSs have facilitated
the modeling of agents’ reasoning about events that have zero prior probability,
which has resulted in what are now standard refinements of the ubiquitous Nash
equilibrium solution concept (e.g., Myerson 1986). Since then, game theorists
have provided epistemic foundations for important non-equilibrium concepts in
game theory by representing beliefs about beliefs using CPSs (e.g., Battigalli
1996; Battigalli and Siniscalchi 2002; Catonini and De Vito 2024).
Rényi’s approach also allows the expression of the distinction between “updates”
and “revision” as Gärdenfors (1988) defined them. One might argue that the
prior-based classical approach only allows for revisions since Bayesian updating
reflects “a change of in knowledge about a static world but not for recording
changes in an evolving world” (Kern-Isberner 2001, p. 393) because it simply
rescales posterior beliefs after knowledge received rules out some states of the
world. By taking conditional probabilities as primitives and allowing arbitrary

1 The only requirement imposed on D(π) by Definition 1.1 is that ∅ /∈ D(π). See Rényi
(1955).
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limitations on the events that one can condition on, it is possible to model
conditional beliefs that would be irreconcilable with the classical approach.

Example 1.1 (Contextuality in quantum mechanics). Let X = {↑, ↓}3, where
(x1, x2, x3) ∈ X represents three properties of an electron. It is sometimes the
case that it is impossible to measure the second and third coordinates together.
Furthermore, the measurement of the first coordinate may depend on whether one
measures it together with the second or third coordinate. One can define a CPS
π that reflects such contextuality by limiting the collection D(π) of conditioning
events:

π({(↑, x2, ↑), (↑, x2, ↓)} | {↑, ↓} × {x2} × {↑, ↓}) = 1
π({(↑, ↑, x3), (↑, ↓, x3)} | {↑, ↓} × {↑, ↓} × {x3}) = 0

On the other hand, even if a CPS does not explicitly define a conditional proba-
bility, it may be inferred using the classical approach.

Example 1.2. Let X = {1, 2, 3} and D(π) = {X}. Define π as follows.

π({1} | X) = π({2} | X) = 1/3

One may infer that π({1} | {1, 2}) should be 1/2 even if it is not explicitly
defined.

This leads to a question of what is the “correct” notion of equivalence between
conditional probability systems. In section 2, we develop—and prove some virtues
of—one useful notion of equivalence, which admits the existence of a canonical
form for each CPS.
In section 3, we apply this notion of equivalence to finish an exercise partially
completed in Brandenburger et al. (2023) by demonstrating that lexicographic
probability systems (LPSs, see Blume et al. 1991) and finitary CPSs are different
ways of encoding the same information. LPSs, like CPSs, have also been applied
to foundations of game theory, most notably to solving epistemic puzzles relating
to admissibility (e.g., Brandenburger et al. 2008; Dekel et al. 2016; Lee 2016;
Keisler and Lee 2023; Catonini and De Vito 2024). Brandenburger et al. (2023)
illustrate the relationship between two important epistemic operators in game
theory (strong belief and assumption) through the use of conversion mappings
between CPSs and LPSs. However, because these maps are not bijective and only
partially specified in the LPS–to-CPS direction, a gap was left in the argument
that they encode the same information. While the gap does not hinder their
main goal of identifying the relationship between strong belief and assumption,
we nevertheless believe that it is of independent interest. Section 4 concludes
with a discussion of a potential extension.
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2 Equivalence

In this paper, we adopt the following conventions so that the nature of each
object can be identified to some extent by the typeface of the symbol that is
used to represent it.

states (lower case): a, b, c, d . . .

sets of states (upper case): A,B,C,D . . .

sets of sets of states (calligraphic): A ,B,C ,D . . .

beliefs (Greek lower case): ξ, π, λ, ξ, . . .

sets of beliefs (Greek upper case): Σ,Π,Λ,Ξ, . . .

Definition 2.1. Let A ∈ X and π ∈ Σ. We say that A is null under π (or
π-null) if A ⊆ D(π) and π(A | C) = 0 for all C ∈ D(π). The set of all π-null
events is denoted by N (π).

Notice that A cannot be π-null if there is some part of A that does not meet
any condition of π, i.e., if there is some event B ⊆ A such that B ∩ C = ∅ for
all C ∈ D(π). To put it another way, events that do not meet any condition of
π cannot be π-null and, furthermore, events that contain such events cannot be
π-null either. In the preference-based approach of Savage (1972) to subjective
probability, an event A is defined to be null to the decision maker if he is
indifferent between all choices when A occurs.
Our definition is congruent with the spirit of Savage’s approach. Suppose that
Ann, an equity analyst, models various scenarios but not all. We might represent
the content of her research as follows: A scenario is some subset of the states of
the world. A model of a scenario assigns probabilities conditional on the true
state being in the scenario. Thus, the content of her research is some CPS π
such that each condition C is a scenario and π(C) is a model of that scenario.
The conditional expected value of an investment is its valuation in the financial
model that corresponds to the condition.
Suppose that, in each model, the valuation of a portfolio is unaffected by changes
only to its returns in states of the world with central bank interest rate hikes, i.e.,
rate hikes are Savage-null according to each model. Should Ann tell her clients
that rate hikes are irrelevant to portfolio returns? Perhaps the first instinct is to
say yes, but consider the case that none of her scenarios include the possibility
of rate hikes. Then the irrelevance of rate hikes in any specific model is not
a conclusion of Ann’s analysis but rather just an assumption of the model. In
other words, Ann’s report π tells us that rates hikes are Savage-null conditional
on rate hikes being Savage-null.
This is materially different from saying that she considered scenarios that do
include the possibility of rate hikes and concluded that rate hikes are impossible.
Ann’s clients may read her report and find it satisfactory if they already believe
that rate hikes are impossible. If they do not, then they may ask her to add
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scenarios that allow for the possibility of rate hikes to the domain of the CPS
that represents her research. This justifies our requirement that π-null events be
composed entirely of states that are in at least one condition of π.
Another point of note is that our definition of π-null events requires that even
an uncountable union of π-null events is π-null if and only if that union has
null probability conditional on every event in the domain of π. Given that we
informally take the view that members of N (π) are the Savage-null events, this
means that we take the position that π pins down what is irrelevant to decision.
Under such an interpretation, it may be the case that π, µ ∈ Σ agree with each
other on the intersection of their domains yet contain contradictory information
about making decisions. See the following example.

Example 2.1. Let X be the real line and X its Lebesgue-measurable subsets.
Let D(π) = {[0, 1] ∪ {x} | x ∈ X} and D(µ) = D(π) ∪ {[0, 2]}. Let π(C) = µ(C)
be the uniform measure on [0, 1] for all C ∈ D(π) and let µ([0, 2]) be the
uniform measure on [0, 2]. Note that {x} ∈ N (π) ∩N (µ) for all x ∈ [1, 2] but
[1, 2] ∈ N (π) \N (µ).

Such interpretations are possible, and even desirable, because Rényi (1955) takes
conditional beliefs and conditioning events to be the primitives rather than
deriving conditional beliefs from a prior belief. Another consequence of this
interpretation of the CPS approach to probability is that null events are irrelevant
to decisions but non-null events are not necessarily relevant. Thus, instead of
defining non-null events, we define potent events, which are the non-null events
such that every part meets some conditioning event.

Definition 2.2. Let A ∈ X and π ∈ Σ. We say that A is potent under π (or
π-potent) if A ⊆ D(π) and there exists C ∈ D(π) such that π(A | C) ̸= 0. The
set of all π-potent is denoted by P(π).

We summarize some frequently invoked properties of null and potent events
below in the following lemma. The proofs are omitted because all parts follow
trivially from definitions.

Lemma 2.1. Let π ∈ Σ.
(i) D(π) ⊆P(π);
(ii) D(π) =

⋃
P(π);

(iii) P(π) ∩N (π) ̸= ∅;
(iv) P(π) ∪N (π) = {A ∈X | A ⊆ D(π)};

It is important to recall that, in Rényi’s definition, conditional beliefs are primi-
tives and therefore directly defined instead of being indirectly encoded in a prior
and extracted by means of the classical conditional probability formula. In the
prior-based approach to conditional probability, consistency requirements for
conditional beliefs can be quite strong because all non-null events are condition-
ing events. In the CPS-based approach, the consistency requirements can be
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quite weak because each CPS explicitly defines its own set of conditions, which
can be sparse. Equation (2) in Definition 1.1 only requires pairwise consistency
across the entries of the partial function π : X → Π; that is, if π is a CPS, then
the entries π(B) and π(C) must satisfy (2) for every pair B,C ∈ D(π) such
that B ⊆ C. The following is an extreme case in which (2) need not be checked
because the conditions in D(π) are incomparable in the subset relation.

Example 2.2. LetX = {1, 2, 3} and X = 2X . Let D(π) = {{1, 2}, {2, 3}, {1, 3}}.
Let π({x} | {x, (x+ 1) mod 3}) = 1.

Furthermore, there may be some conditional beliefs that are not directly de-
fined by a CPS but nevertheless can be calculated using the classical approach.
Naturally, there will be cases—such as Example 2.3 below—where our intuition
strongly suggests that π and µ are encoding the same information even though
π ̸= µ.

Example 2.3. Let X = {1, 2, 3} and X = 2X . Let D(π) = {{1, 2}, {2, 3}} and
D(µ) = {{1, 2, 3}}. Define π and µ as follows.

π({1} | {1, 2}) = 1/2 = π({2} | {2, 3})
µ({1} | {1, 2, 3}) = 1/3 = µ({2} | {1, 2, 3})

But how can we formalize such intuition about equivalence? We do by formalizing
the direct and indirect implications of a CPS. In the remainder, let us identify
each CPS π with its graph, which is a subset of P × Π. This allows Σ to be
partially ordered as follows.

Definition 2.3. Let π, µ ∈ Σ. We say that µ extends π (to D(µ)) if µ ⊇ π.

The extension µ implies the beliefs conditional on the conditions of π in the very
direct sense that π(C) = µ(C) for all C ∈ D(π). See Example 2.4 below.

Example 2.4. Let X = {1, 2, 3} and X = 2X . Let D(π) = {{1, 2}} and
D(µ) = 2X \ ∅. Define π and µ as follows so that µ ⊇ π.

π({1} | {1, 2}) = 1/2 = π({2} | {1, 2})
µ(A | B) = π(A ∩B | {1, 2, 3})/π(B | {1, 2, 3})

On the other hand, extensions fail to capture indirect implications of the sort
that leads us to intuit equivalence of beliefs in Example 2.3. This leads us to
formalize the indirect implications of a CPS in two steps. We begin by giving
a label to cases when one CPS can be extended to another using the classical
conditional probability formula without changing what is relevant to decisions.

Definition 2.4. Let π, β ∈ Σ. We say that β tightly extends π and write β ⊒ π
if β is the unique extension of π to D(β) and P(π) = P(β).2

2 i.e., β = ν if and only if ν ⊇ π and D(ν) = D(β) and P(ν) = P(π).
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What can we say about the content of π and µ when π tightly extends µ? First of
all, µ does not change which events are decision-relevant because P(π) = P(µ).
Secondly, π exactly determines µ on the domain of µ via (2). However, due
to the aforementioned fact that consistency checks in (2) are only applied to
pairs of conditions that can be ordered by the subset relation, only some of the
information encoded in π pins down µ. More specifically, the values of π on

{E ∈ D(π) | ∃F ∈ D(µ) : E ⊆ F ∨ F ⊆ E}

pin down µ. That is, different parts of π constrain the extension depending
on the domain to which it is being extended. Given that π can itself contain
unchecked inconsistencies of the sort in Example 2.2, it may be the case that π
tightly extends both µ and ν that each directly imply contradictory information
about beliefs conditional on some C. See Example 2.5 below.

Example 2.5. Let X = {1, 2, 3, 4} and X = 2X . Let

D(π) = {C ∈X | |C| = 2};
D(µ) = D(π) ∪ {{1, 2, 3}, {1, 3}};

and D(ν) = D(π) ∪ {{1, 3, 4}, {1, 3}}.

Let π, µ, ν be defined as follows.

π({x} | {x, (x+ 1) mod 4}) = 1
µ({1} | {1, 2, 3}) = 1 µ({1} | {1, 3}) = 1
ν({3} | {1, 3, 4}) = 1 ν({1} | {1, 3}) = 0

We see that µ ⊒ π and ν ⊒ π but µ({1, 3}) ̸= ν({1, 3}).

In Example 2.5, adding conditions to the domain of CPS π permits the calcu-
lation of the belief conditional on {1, 3} via the consistency constraints that
correspond to the addition of the conditions. On the other hand, depending
on consistency checks imposed (i.e., the other conditions being added to the
domain), the calculated belief conditional on {1, 3} may be different! As such,
we cannot say that µ({1, 3}) is the belief conditional on {1, 3} implied by π just
because µ tightly extends π.
Thus, further refinement is needed to formalize a notion of implied conditional
beliefs that avoids such contradictions. We call this imputation.

Definition 2.5. Let π, µ ∈ Σ. We say that π imputes µ and write π → µ if, for
each ϱ ⊒ π, there exists ν ⊒ ϱ such that ν ⊇ µ.

Informally, µ can be “calculated” from π if π pins down (i.e., is tightly extend
by) some ϱ ⊇ µ. When π imputes µ, µ can be calculated from π in this way.
Furthermore, µ can be “calculated” from any ϱ that tightly extends π. As a
consequence, if π imputes a belief conditional on some event C, that must be
the only belief conditional on C that π imputes.
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As such, it is reasonable to view imputations of π as implications of π. We
therefore define equivalence to be equality of imputations as follows:

Definition 2.6. Let π, µ ∈ Σ. We say that π is equivalent to µ and write π ≡ µ
when

{ν ∈ Σ | π → ν} = {ν ∈ Σ | µ→ ν}. (3)

The equivalence class of π is denoted by [π] := {µ ∈ Σ | π ≡ µ}.

Its definition makes it obvious that ≡ is an equivalence relation. The definition
also suggests a way to define the canonical representation of each equivalence
class.

Definition 2.7. Let π ∈ Σ. We define π̄ :=
⋃
{µ ∈ Σ | π → µ} and say that it

is the canonical representation of π.

Proposition 2.1 justifies the use of canonical representations as defined by showing
that each CPS is equivalent to its canonical representation. Lemma 2.2 that
follows is a technical result used to prove Proposition 2.1.

Proposition 2.1. Let π ∈ Σ. Then π ≡ π̄.

Proof. Lemma 2.2 says that {ζ ∈ Σ | ζ ⊒ π} has at least one ⊒-maximal element.
Fix one such ⊒-maximal τ .
If µ ← π, then, for each ϱ ⊒ π, there exists ν ⊒ ϱ such that ν ⊇ µ. It follows
that, because τ ⊒ π, there exists ν ⊒ τ such that ν ⊇ µ. However, τ = ν in
that case because τ is maximal among the tight extensions of π. It follows that
τ ⊇ µ for all µ← π. Therefore, τ ⊇ π̄ and π → π̄. It is obvious that π̄ → π since
π̄ ⊇ π. It follows that π ≡ π̄.

Lemma 2.2. Let π ∈ Σ. There exists µ ⊒ π such that µ = ν for all ν ⊒ µ.

Proof. The set {ζ ∈ Σ | ζ ⊒ π} is partially ordered by ⊒.
Let Ξ be a chain in {ζ ∈ Σ | ζ ⊒ π}. Equation (2) checks consistency of
conditional beliefs across pairs of conditions. It follows that, if ξ ∪ ξ′ is a CPS
for every ξ, ξ′ ∈ Ξ, then (2) is satisfied by

⋃
Ξ. Since Ξ is a chain, every pair in

Ξ is comparable in ⊒ and therefore also in ⊇. It follows that ξ ∪ ξ′ is a CPS for
every ξ, ξ′ ∈ Ξ. Therefore,

⋃
Ξ is a CPS.

We also have P(
⋃

Ξ) = P(π) because ξ ⊒ π for all ξ ∈ Ξ. Furthermore,
⋃

Ξ
is the unique extension of each ξ ∈ Ξ to D(

⋃
Ξ) =

⋃
ξ∈Ξ D(ξ) because it would

otherwise be the case that the restriction of
⋃

Ξ to the domain of some ξ′ ∈ Ξ
does not coincide with ξ′.
Therefore,

⋃
Ξ ⊒ ξ for all ξ ∈ Ξ. We have shown that every ⊒-chain in {ζ ∈ Σ |

ζ ⊒ π} has an upper bound. By Zorn’s Lemma, it follows that {ζ ∈ Σ | ζ ⊒ π}
has at least one ⊒-maximal element, which is the desired result.
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We conclude this section with a useful property, which we make use of in the
subsequent section, of any CPS µ that provides ways to exactly calculate proba-
bilities conditional on any π-potent event, i.e., µ that tightly extends π to P(π).
It says that such a µ must be the canonical representation of π. When π is
extended to P(π), conditional probabilities take on a more “classical” flavor.
Recall that, in the classical approach to conditional probability, we can condition
on any event that has a non-zero prior probability. While there is no prior in
the CPS approach, such events may be viewed as analogous to potent events.
Thus, Proposition 2.2 below says that, if there is only one way to extend a CPS
to allow for such quasi-classical conditioning on all potent events, that extension
is the canonical representation.

Proposition 2.2. Let π, µ ∈ Σ. If D(µ) = P(π) and µ ⊒ π, then µ = π̄.

Proof. By assumption, µ is the unique extension of π to P(π). It follows that
µ ⊒ ν for all ν ⊒ π due to the fact that D(µ) = P(π) = P(ν) ⊇ D(ν) for such
ν. It follows that π → ϱ if and only if µ ⊇ ϱ. Therefore, π̄ =

⋃
{ϱ ∈ Σ | µ ⊇

ϱ} = µ.

3 Lexicographic Probability Systems

In this section, we apply our definition of equivalent CPSs toward refining some
existing results of Brandenburger et al. (2023) on the relationship between
lexicographic probability systems and finitary conditional probability systems.

Definition 3.1. We say that CPS π ∈ Σ is finitary if {∅} ∪ D(π) is a finite
subalgebra of X . The set of all finitary conditional probability systems is denoted
by Φ.

Definition 3.2. We say that finite sequence λ = (λ0, . . . , λn−1) ∈
⋃

m≥1 Πm of
σ-additive probability measures on ⟨X,X ⟩ is a lexicographic probability system
(or simply LPS) if it is mutually singular, i.e., there exist pairwise disjoint events
U0, . . . , Un−1 ∈X such that λi(Ui) = 1 for all i ∈ {0, . . . , n− 1}. The set of all
LPSs on ⟨X,X ⟩ is denoted by Λ. The length n of such λ is denoted by ℓ(λ).3

Definition 3.3. Let λ = (λ0, . . . , λn−1) ∈ Λ. Define the following.

N (λ) := {E ∈X | ∀i λi(E) = 0} (4)
P(λ) := {E ∈X | ∃i λi(E) > 0} (5)

m(λ,E) := inf{i | λi(E) > 0} (6)
3 Blume et al. (1991) use the term LPS to refer to any finite sequence of probability measures

and label mutually singular sequences as lexicographic conditional probability systems (LCPSs).
On the other hand, Brandenburger et al. (2008) and Brandenburger et al. (2023) use the
terminology in Definition 3.2.
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Events in N (λ) and P(λ) are respectively called null and potent, which parallels
the analogous terminology for CPSs. Note that E ∈ P(λ) if and only if 0 ≤
m(λ,E) <∞.4

Brandenburger et al. (2023) define maps for conversions between LPSs and
finitary CPSs. We restate those definitions below with some immaterial modi-
fications in presentation. For a given set B ⊆ X of events, gB converts LPSs
that assign nonzero lexicographic probability to all members of B into finitary
CPSs.

Definition 3.4 (Brandenburger et al. (2023)). Let B ⊆ X such that ∅ /∈ B.
Then gB : {λ ∈ Λ | B ⊆P(λ)} → Σ is defined as follows.

D(gB(λ)) := B (7)

gB(λ)(A | B) :=
λm(λ,B)(A ∩B)
λm(λ,B)(B) for all B ∈ B (8)

The map f goes in the opposite direction and converts finitary CPSs into an LPSs.
Although it has been reformulated here for maximum compactness, Definition 3.5
below is equivalent to that which is given in Brandenburger et al. (2023).

Definition 3.5 (Brandenburger et al. (2023)). Let ϕ ∈ Φ. Inductively define
Wm(ϕ) and ℓ(ϕ) then f : Φ→ Λ as follows.

Wm(ϕ) :=
⋂
{C ∈ D(ϕ) | ϕ(C | X \

⋃
i<m Wi(ϕ)) = 1} (9)

ℓ(ϕ) := min{m |
⋃

i<m Wi(ϕ) = X} (10)
f(ϕ) := (fi(ϕ))0≤i<ℓ(ϕ) where fi(ϕ) := ϕ(Wi(ϕ)) (11)

Brandenburger et al. (2023) show that these maps satisfy a number of meaningful
properties:

• The map f is surjective but not injective.
• The map f is piecewise invertible in the sense that gB(f(ϕ)) = ϕ for all
ϕ ∈ Φ with domain B.

A partial case is thus made that finitary CPSs are LPSs and finitary CPSs are
LPSs in an informal sense because the fact that ϕ ∈ Φ ∩ ΣB can be re-encoded
as an LPS and back to itself suggests that no information content is destroyed
by the conversions.
However, the domain of gB is {λ ∈ Λ | B ⊆ P(λ)} ≠ Λ. Furthermore, there
exist λ,A ,B such that gA (λ) ̸= gB(λ) even if gA (f(ϕ)) = gB(f(ϕ)). In other
words, gB(λ) is an arbitrary conversion of LPS λ into a CPS to some extent via
the choice of B. To make the full case that finitary CPSs are LPSs and finitary

4 On the other hand, E ∈ N (λ) if and only if m(λ, E) = −∞, but we do not make use of
such cases.
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CPSs are LPSs, we would like to construct a meaningful bijection between Λ
and Σ. Everything needed for such a construction is already in Brandenburger
et al. (2023). We merely need to apply our notion of equivalence.

Definition 3.6. Let λ ∈ Λ. Define g(λ) := gP(λ)(λ) so that D(g(λ)) = P(λ).

The map g in Definition 3.6 is a specific instance of the object gB in Definition 3.4.
The domain of the CPS that results from the conversion of LPS λ is made to be
P(λ). Thus, the conversion of λ to g(λ) does not depend on an arbitrary choice
of the collection B ⊆X .
Brandenburger et al. (2023) uses gB in its analysis only when B ∪{∅} is a finite
subalgebra of X . This is to ensure that the CPS gB(λ) will be a finitary CPS.
In many, perhaps even most, cases of interest, P(λ)∪{∅} will not even be finite
and, therefore, g(λ) will not be a finitary CPS. If the goal is to identify LPSs
with finitary CPSs, this is not ideal.
This is where the notion of equivalence developed in this paper closes the gap.
Proposition 3.2—which is shown using Proposition 3.1—demonstrates that

• each LPS converts to the canonical form of some finitary CPS; and
• for each finitary CPS, there is an LPS that converts to its canonical form;

which makes the case that LPSs and finitary CPSs are different encodings of the
same information.

Proposition 3.1. Let ϕ ∈ Φ. Then D(ϕ̄) = P(ϕ) and the following holds for
all A ∈X and B ∈P(ϕ).

ϕ̄(A | B) =
ϕ(A ∩B |Wm(ϕ,B)(ϕ))
ϕ(B |Wm(ϕ,B)(ϕ)) (12)

where m(ϕ,B) := inf{i | ϕ(B |Wi(ϕ)) > 0} (13)

Proof. In this proof, we will abbreviate Wm(ϕ,B)(ϕ) as Wm(ϕ,B) for legibility
given that there is no risk of confusion. Let ψ(A | B) be defined by the right-
hand side of (12). For all A,B,C ∈X , such that A ⊆ B ⊆ C and B,C ∈P(ϕ),
we want ψ(A | B)ψ(B | C) = ψ(A | C).

ϕ(A |Wm(ϕ,B))
ϕ(B |Wm(ϕ,B))

ϕ(B |Wm(ϕ,C))

(((((((
ϕ(C |Wm(ϕ,C))

=
ϕ(A |Wm(ϕ,C))

(((((((
ϕ(C |Wm(ϕ,C))

ϕ(A |Wm(ϕ,B))ϕ(B |Wm(ϕ,C)) = ϕ(A |Wm(ϕ,C))ϕ(B |Wm(ϕ,B))

If ϕ(B | Wm(ϕ,C)) = 0, then the equation reduces to holds because ϕ(A |
Wm(ϕ,C)) = 0 owing to B ⊇ A. If ϕ(B |Wm(ϕ,C)) > 0, then m(ϕ,C) = m(ϕ,B)
because C ⊇ B. Then the same expression is on both sides of the equality. It
follows that the equation holds in every case so that ψ as defined in (12) is a
CPS.
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Furthermore, for every B ∈ D(ψ) = P(ϕ), ψ(A | B) is exactly pinned down by
(2) because ϕ(B |Wm(ϕ,B)) > 0:

ψ(A | B)
>0︷ ︸︸ ︷

ϕ(B |Wm(ϕ,B)) = ϕ(A ∩B |Wm(ϕ,B))

Therefore, ψ is the unique extension of ϕ to P(ϕ). Furthermore, it is immediate
that P(ψ) = P(ϕ) because P(ψ) ⊆ P(ϕ) as defined and ϕ ⊆ ψ. Thus, we
have ψ ⊒ ϕ. Proposition 2.2 then implies that ψ = ϕ̄.

Proposition 3.2. Let ϕ ∈ Φ. Then (g ◦ f)(ϕ) = ϕ̄ and (g ◦ f)(ϕ) ≡ ϕ.

Proof. If (g ◦ f)(ϕ) = ϕ̄ then it is immediate that (g ◦ f)(ϕ) ≡ ϕ because ϕ ≡ ϕ̄.

((g ◦ f)(ϕ))(A | B) =
(fm(f(ϕ),B)(ϕ))(A ∩B)

(fm(f(ϕ),B)(ϕ))(B) =
(ϕ(Wm(f(ϕ),B)(ϕ)))(A ∩B)

(ϕ(Wm(f(ϕ),B)(ϕ)))(B)

=
ϕ(A ∩B |Wm(f(ϕ),B)(ϕ))
ϕ(B |Wm(f(ϕ),B)(ϕ))

↓=
ϕ(A ∩B |Wm(ϕ,B)(ϕ))
ϕ(B |Wm(ϕ,B)(ϕ))

= ϕ̄(A | B)

The marked equality ↓= follows from m(ϕ,A) = m(f(ϕ), A), which is itself a
consequence of (fi(ϕ))(A) = ϕ(Wi(ϕ)) being true by definition. The final equality
is due to Proposition 3.1.

Because we already know from Brandenburger et al. (2023) that f : Φ → Λ is
surjective, Proposition 3.2 tells us that

• for each λ ∈ Λ, g(λ) = ϕ̄ for some ϕ ∈ Φ; and
• for each ϕ ∈ Φ, there is some λ ∈ Λ such that g(λ) = ϕ̄; and

which—after identifying each CPS with its equivalence class—makes it possible
to view g as a bijection Λ→ {[ϕ] | ϕ ∈ Φ} and f as its inverse {[ϕ] | ϕ ∈ Φ} → Λ.
Thus, we are able to reach the desired goal of identifying LPSs with finitary
CPSs and vice versa.
Elsewhere in the literature, Hammond (1994) and Halpern (2010) also explore—
among other topics—the relationship between CPSs and LPSs, but there are
a few key differences.5 In the case of Hammond (1994), the state space X is
required to be finite and he considers conversions to and from complete CPSs
(See Myerson 1986), which allow conditioning on all events. In Halpern (2010),
a refinement of CPSs called Popper spaces are used.
To conclude this section, we note a minor error in Brandenburger et al. (2023)
that is made immaterial by Proposition 3.2. Proposition 4.1 in Brandenburger
et al. (2023) “suggests a sense in which gB can be seen as an inverse of fB”.6

5 We do not list all differences here because some–such as the coverage of non-standard
probabilities—are topically related but orthogonal to the goal of demonstrating that finitary
CPSs and LPSs encode the same information.

6 fB is the restriction of f : Φ → Λ to ΣB ⊆ Φ.
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Part (ii) of the proposition says that if A is a finite subalgebra of X , then
f(gB(λ)) is a subsequence of λ for all λ ∈ Λ such that A \ {∅} = B ⊆ P(λ).
The following counterexample demonstrates that this is not true.

Example 3.1. Let X = {a, b, c, d} and X = ℘(X). Fix the finite algebra
A on X whose atoms are {a}, {b, c}, and {d}. Let B = A \ {∅} and define
λ = (λ0, λ1) ∈ Λ as follows.

1/2 = λ0({a}) = λ0({b}) = λ1({c}) = λ1({d})

Then B ⊆P(λ) = X . The CPS gB(λ) is defined as follows.

1 = gB(λ)({b} | {b, c}) = gB(λ)({b} | {b, c, d}) = gB(λ)({a} | {a, d})
1/2 = gB(λ)({x} | {a, b, c}) = gB(λ)({x} | {a, b, c, d}) for x = a, b

It follows that f(gB(λ)) is a length-2 LPS, but is not a subsequence of λ:

1/2 = f0(gB(λ))({a}) = f0(gB(λ))({b})
1 = f1(gB(λ))({d})

A correction of Proposition 4.1(ii) in Brandenburger et al. (2023) should say
that, if A is a finite subalgebra of X , then f0(gB(λ)) = λ0 for all λ ∈ Λ such
that B = A \ {∅} ⊆ P(λ). Nevertheless, the implicit goal of “[suggesting] a
sense in which gB can be seen as an inverse of fB” is to show that CPS are LPS
and vice versa in some fundamental way. This is a goal we have accomplished
concretely because Proposition 3.2 essentially establishes f and λ 7→ gP(λ)(λ)
as mutually inverse bijections between Λ and the quotient space Φ/≡.

4 Further Work

One avenue for extension of this work may be the characterization of when the
canonical form of a CPS has a domain equal to its potent sets. We have already
shown that CPS representations of LPSs always have this property. We would
argue that this property is of interest because it captures to some extent when
a CPS is consistent with a fully “revision”-based approach.
The intuition is that when the canonical form of a CPS has a domain equal to
its potent sets, it cannot contain implicit inconsistencies with the conditional
probability formula. If CPS π has events A and B in its domain but π-potent A∩
B is not in the domain of its canonical form then π must contain inconsistencies
about probabilities conditional on A∩B that are not checked by (2) for π. That,
suggests in turn that one could arrive at different implicit7 conditional beliefs
given A ∩ B depending on the order in which information is observed (i.e., A

7 We obviously could not arrive at multiple beliefs given a condition in the domain since
those are explicitly specified.
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then B versus B then A).8 Such contextuality conflicts with the “revision”-only
view that belief changes reflect only “a change of in knowledge about a static
world”.
Another related question of interest is when extensions of a CPS π specify
probabilities conditional on added events in the expanded domain in a way that
does not conflict with any of the implicit information already encoded in π.
Given that such conflicts are not always checked by equation (2), we conjecture
that the comparison of π’s canonical form versus that of the extension may shed
light on when such unchecked conflicts do or do not exist.
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