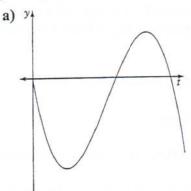
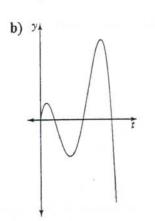
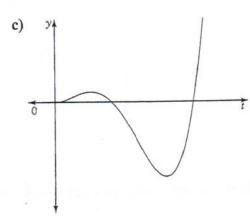

2.3 Velocity, Acceleration, and Second Derivatives

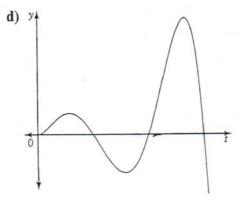
- When v(t) = 0, the object is at rest, or stationary. There are many instances where an object will be momentarily at rest when changing directions. For example, a ball thrown straight upward will be momentarily at rest at its highest point, and will then begin to descend.
- When v(t) > 0, the object is moving in the positive direction.
- When v(t) < 0, the object is moving in the negative direction.
- When a(t) > 0, the velocity of an object is increasing (i.e., the object is accelerating).
- When a(t) < 0, the velocity of an object is decreasing (i.e., the object is decelerating).
- An object is speeding up if $v(t) \times a(t) > 0$ and slowing down if $v(t) \times a(t) < 0$.

Identify which curve or line in each graph represents each function: y = s(t), y = v(t), and y = a(t). Justify your choice.

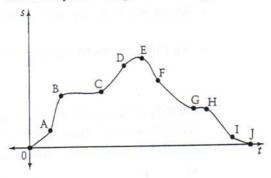





Copy and complete a chart for each graph [Hint: Zintervals for (a) and 4 intervals for (b)]


Interval	1.	
v(t)		
a(t)		
$v(t) \times a(t)$		4-
Motion of Object		
Description of slope of $s(t)$		

Copy each graph of a position function y = s(t). Sketch the graphs of y = v(t) and y = a(t).



Sketch a graph of y = s(t) that satisfies each pair of conditions.

- a) Velocity is increasing; acceleration is positive.
- b) Velocity is decreasing; acceleration is negative.
- velocity is constant; acceleration is zero.

The graph shows the position function of a motorcycle during a 30-min trip.

- a) What is the initial velocity of the motorcycle?
- b) What is the velocity of the motorcycle at E?
- c) Is the motorcycle going faster at A or at D? Explain.
- d) What happens between B and C? between G and H?
- e) Is the motorcycle speeding up or slowing down at A, D, F, and I? Explain.
- f) What happens at J?

Refer to the graph in question 9. Is the acceleration positive, zero, or negative between each pair of points?

- a) O to B
- b) B to C
- c) D to E
- d) E to G
- e) G to H
- f) H to J