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Abstract

We investigate the idea that linear contracts are reliable because they give the

same incentives for effort at every point along the contract. We ask whether this

reliability leads to a microfoundation for linear contracts, when the principal is

profit-maximizing. We consider a principal-agent model with risk neutrality and

limited liability, in which the agent observes the realization of a mean-zero shock to

output before choosing how much effort to exert. We show that such a model can

indeed provide a foundation for reliable contracts, and illustrate what elements are

required. In particular, we must assume that the principal knows a lower bound,

but not an upper bound, on the shocks.
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1 Introduction

Why are certain forms of incentive contracts particularly widespread in the world? A sig-

nificant strand of literature in agency theory has attempted, in particular, to understand

why linear contracts — in which the agent is paid some fixed fraction of the output he

produces — are common, where textbook models tend to predict contract structures that
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are more finely tuned to the environment. (See e.g. Bhattacharyya and Lafontaine (1995,

pp. 763–4) and Chu and Sappington (2007, fn. 3) for examples of the prevalence of linear

contracts.) Much of this literature has emphasized robustness to uncertainty or to large

spaces of possible actions by the agent as a way to microfound linear contracts (Hurwicz

and Shapiro, 1978; Holmström and Milgrom, 1987; Chassang, 2013; Carroll, 2015).

In this paper we explore the possibility of foundations based on the following intuitive

property of linear contracts: the marginal incentive for effort is the same no matter where

along the contract the agent currently stands. That is, we consider a model in which the

agent privately observes some shock ε that affects output; the agent then chooses effort x

at a cost c(x), and the principal observes total output x + ε. In this environment, linear

contracts have the property that they incentivize the same effort choice no matter what

ε has been observed; we call this property reliability. Reliability is convenient since it

makes the contract easy to analyze. But of course, the principal’s goal is not analytical

convenience, but rather profit. So, we ask whether reliability can provide a justification

for using linear contracts, when the principal is ultimately concerned with profit.

One can imagine numerous situations in which it is reasonable that the agent observes

a shock before choosing effort. For example, the agent may be part of a team, and observe

the effort of his teammates, but the principal only sees total output. Or output may be

measured in terms of the time for a project to reach completion, and the agent may

observe exogenous delays that are going to occur (as in the highway procurement studied

in Lewis and Bajari (2014)). Another application is to investor-entrepreneur contracts.

The investor cannot observe the firm’s total cash flow, but the entrepreneur can, and

the entrepreneur decides how much fund to divert to private benefits (see DeMarzo and

Fishman, 2007; Biais et al., 2007). Other situations such as sharecropping and trading

voyages are discussed in Lacker and Weinberg (1989).

What are our findings? A profit-motivated principal may indeed choose a reliable

contract, under appropriate circumstances. We avoid income effects; our model assumes

risk-neutrality (and limited liability).1 And we also assume that the principal does not

even know the distribution of the additive shock ε, but knows only that it has mean zero;

the principal maximizes her worst-case expected profit, over all such distributions. In

such a model, linear contracts are a natural candidate for the maxmin optimum because

they perfectly hedge the principal’s uncertainty: Since they always induce the same effort

1 A model with an interim participation constraint would deliver very similar results. (As it is, our
model could be interpreted as having an ex-ante participation constraint, where the outside option is low
enough to be non-binding.)

2



choice, they always lead to the same expected output, and the same expected payment to

the agent, regardless of the noise distribution; and so they always give the same expected

net profit for the principal. This intuition naturally connects linear contracts’ reliability

to their payoff for the principal. In such a model, we show that reliable contracts are

indeed optimal — and we identify the worst-case noise distribution.

Even so, the result relies on a combination of assumptions, as we discuss further in

the conclusion. In particular, we must build an asymmetry into the model: we assume

that the noise is bounded below and not above. If noise is bounded above also, then

reliable contracts are suboptimal; we characterize the optimum. If noise is unbounded on

both sides, the principal cannot be guaranteed any positive profit. Moreover, the optimal

contract, even when reliable, is not linear; a piecewise-linear contract can do better.

Numerous previous models have exploited the reliability feature of linear contracts. For

example, Laffont and Tirole (1986) and McAfee and McMillan (1987) consider problems

in which the agent’s effort is perturbed by additive noise, and the optimal contract is

linear in observed output. However, providing incentives is not costly in their models in

the same way that it is in ours: we assume a limited liability constraint; they do not,

so the only binding constraint imposing a lower bound on payments in their models is

an ex-ante participation constraint. In our model, getting rid of limited liability in this

way would lead to the trivial solution of selling the firm to the agent. (In Laffont and

Tirole (1986) and McAfee and McMillan (1987), there is also a screening component that

makes the models more complex.) The classic model of Holmström and Milgrom (1987),

in which the agent controls the drift of a Brownian motion that is fully observed, also

shares the reliability intuition — linear contracts are optimal because the incentives at

each point in time are independent of the history; the counterpart of our shock ε is the

realized path of the output so far. Their model also assumes no limited liability; they

have risk aversion, which leads to a different tradeoff than limited liability does in ours.

The most closely connected work in this line is Edmans and Gabaix (2011). Their

model, in which the agent observes the shock before choosing effort, is the basis for ours,

although they allow for risk-aversion and multiple periods, so that our model is a very

special case. Edmans and Gabaix take as exogenously given the effort level that the

principal wishes to implement. In general, this effort level may be a function of the

shock realization, but their main model assumes that the target effort is independent

of the shock. Our exploration here is concerned with possible microfoundations for this

assumption.

Several other recent papers on dynamic contracts also study settings where an agent
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could privately observe a signal before choosing his effort. Edmans et al. (2012) extend the

model of Edmans and Gabaix (2011) to allow for private savings in CEO compensation.

They assume that the principal implements constant effort in each period, and they find

that in the optimal contract the agent’s consumption is log-linear in terms of the firm’s

return. Again, our work serves as a potential micro-foundation for this “constant effort”

assumption. Garrett and Pavan (2012, 2015) study seniority-based pay and managerial

turnovers, using models where an agent privately observes his productivity before choosing

the effort. Their papers employ the dynamic nature of the contracting environment, and

effort wouldn’t be constant over time. In Garrett and Pavan (2012) the optimal contract

awards longer-tenure managers more high power schemes, and optimal effort on average

could change over time.

There is also a closely connected strand of the cost-based procurement literature fol-

lowing Laffont and Tirole (1986). In particular, Rogerson (2003) and Chu and Sappington

(2007) consider a simplified version of the Laffont-Tirole model that is mathematically

very similar to our model, but with a known distribution of ε (which is interpreted there

as the agent’s innate productivity). They show that for some salient specifications of the

model, piecewise-linear contracts with two segments are approximately optimal. Garrett

(2014) shows that such contracts are actually optimal in a maxmin version of the model

with uncertainty about the agent’s cost function. The contracts derived in these papers,

when translated back into our setting, are piecewise-linear contracts whose initial segment

is flat — just like the reliable contracts featured in this paper. However, in the contracts

studied in these papers, some agent types exert high effort and others no effort. In our

piecewise-linear contracts, the agent always exerts the same level of effort, and the flat

portion exists only to satisfy limited liability (and indeed, piecewise-linearity here is only

one choice among many equally good ways to satisfy this constraint).

Finally, our paper fits in the broader literature on mechanism design with maxmin

objectives, starting with López-Cuñat (2000) and followed by many others, e.g. Chung

and Ely (2007); Frankel (2014); Garrett (2014). Many of these papers show how, in various

settings, an intuitively simple mechanism can emerge as a solution to a problem where a

principal wants a mechanism that is robust to some uncertainty about the environment,

expressed via a maxmin objective. Previous work by one of the authors (Carroll, 2015) has

given maxmin foundations for linear contracts, using quite different ideas from this paper:

There, potential actions by the agent correspond to arbitrary distributions over output (in

contrast to the one-dimensional effort choice and additive functional form assumed here),

and the principal faces large-scale uncertainty about the space of actions that are actually
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available to the agent. Linear contracts are robust in that setting because they tightly

tie the agent’s expected payoff to the principal’s, regardless of what shape of distribution

the agent chooses. In effect, the key linear relation there is between the principal’s payoff

and the agent’s, whereas here it is between the principal’s payoff and the exogenous ε.

2 The model

The environment is given by the following parameters: bounds a, b ∈ R ∪ {±∞} on the

possible shocks, where a < 0 < b; a maximum effort level x > 0; and a cost-of-effort

function c : [0, x) → R+. We assume c is increasing, strictly convex, twice-differentiable,

c(0) = c′(0) = 0, and c(x) → ∞ as x → x. All these parameters are assumed to be

common knowledge between our two characters, the principal and agent.

The agent will privately observe a shock ε ∈ [a, b], and then choose an effort level x at

cost c(x). The publicly observed output is y = x+ ε, and this is what may be contracted

on. Both parties are risk-neutral, and limited liability applies: the agent can never be paid

less than zero. (We do not explicitly include a participation constraint; see footnote 1.)

Output will always lie in [a, b+ x]; thus, a contract is an upper semi-continuous function

w : [a, b+x]→ R+. The upper semi-continuity requirement is imposed to avoid problems

of best-reply nonexistence.

When the agent observes shock ε, the agent chooses effort x to maximize his net payoff

w(x + ε) − c(x). We write x(w; ε) for the set of such maximizers x (there may be more

than one). We then write

uP (w; ε) = max
x∈x(w;ε)

(x+ ε− w(x+ ε))

for the principal’s resulting payoff. Note that the agent may have several optimal choices

of effort, in which case we assume he chooses in a way that is best for the principal; this

is what the max formulation represents.

Finally, the principal is uncertain about the distribution of ε. All she knows is its mean,

which (by normalization) we can take to be zero. Thus, write F [a, b] for the set of mean-

zero distributions on [a, b]. The principal wants to choose a contract that guarantees her

a reasonable payoff in expectation, in spite of her uncertainty. In particular, she evaluates

any contract in terms of its worst-case guarantee:

VP (w) = inf
F∈F [a,b]

(EF [uP (w; ε)]) .
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One possible choice for a contract is a linear contract, which in this case would take

the form w(y) = α(y − a). Under such a contract, the agent would always choose effort

x∗(α) given by the first-order condition c′(x) = α. Consequently, we have uP (w; ε) =

(1 − α)(x∗(α) + ε) + αa. When we take the average with respect to any distribution

F ∈ F [a, b], the ε term drops out, and consequently we have VP (w) = (1− α)x∗(α) + αa.

More generally, let us say that a contract w reliably implements effort level x∗ if

x∗ ∈ x(w; ε) for all ε; and call a contract reliable if it reliably implements some x∗. Thus,

linear contracts are reliable. However, a linear contract is not the only way — and more

importantly, not the cheapest way — to implement a given effort level. With a linear

contract, even at the lowest shock realization ε = a, the agent earns a positive rent,

αx∗ − c(x∗). By paying less for output levels below a+ x∗ (which the agent should never

produce anyway), the principal can lower this rent.

Lemma 2.1. A contract w reliably implements effort x∗ > 0 if and only if there is some

constant h ≥ 0 such that the following hold:

• w(y) ≤ c(y − a) + h for all y ∈ [a, a+ x∗];

• w(y) = c′(x∗)(y − a) + h+ c(x∗)− c′(x∗)x∗ for all y ∈ [a+ x∗, b+ x∗];

• w(y) ≤ c(y − b) + c′(x∗)(b− a) + h for all y ∈ [b+ x∗, b+ x).

In this case,

VP (w) = x∗ + c′(x∗)a− c(x∗)− h.

The (straightforward) proof is in Appendix A. Note that the lemma excludes the case

x∗ = 0; in this case, any contract w that’s non-increasing can reliably implement x∗.

In particular, the optimal way for the principal to reliably implement any given effort

x∗ is by setting h = 0. For example, the piecewise-linear contract given by

w(y) = max{c′(x∗)(y − a) + c(x∗)− c′(x∗)x∗, 0}

accomplishes this. Such a piecewise-linear contract is depicted in Figure 1. The thin line

ŵ(y) is a linear contract, and the thick lines w(y) represent a piecewise-linear contract.

As shown, the piecewise-linear contract makes a non-local incentive constraint bind: at

the lowest shock realization ε = a, the agent is indifferent between effort x∗ and 0, unlike

in a linear contract.
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ŵ(y)

a a+ x∗

w(y)

c(y − a)

Figure 1: Linear vs. piecewise-linear contracts

Note also from the formula for VP (w) that if a is close enough to zero, the principal’s

problem is nontrivial — that is, she can indeed get a positive profit guarantee by using

some such reliable contract. (In our normalization, zero is not the principal’s outside

option but rather the payoff that the she would get by always paying the agent the

minimum possible and inducing no effort. So “positive profit” means it is profitable to

induce some effort.)

However, our principal is not specifically interested in reliability; she is interested in

maximizing her profit guarantee VP (w). Can this lead her to choose a reliable contract?

Our main result is an affirmative answer — if we assume that b, the upper bound on

shocks, is infinite.

Theorem 2.2. Suppose that b = ∞. Then, the maximum value of VP (w) is attained by

a reliable contract.

The profit guarantee is equal to maxx (x − c(x) + c′(x) · a). It is positive if a is close

enough to 0; it decreases as a decreases, and it goes to 0 as a goes to −∞.

We prove this theorem momentarily.

As a side point, we observe that as a → 0, the optimal profit guarantee approaches

the first-best surplus. This should not be surprising, since a = 0 forces ε = 0 for certain

and thus represents a complete-information model.
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3 The main proof

So far we have described contracts with w as a function of output y. This expository

approach is in keeping with prior literature exploiting the reliability property (e.g. Holm-

ström and Milgrom, 1987; Edmans and Gabaix, 2011), and makes the structure of linear

contracts immediately apparent. However, the economics of our problem is naturally that

of a screening model: the agent’s type is his private information ε, and he chooses an “allo-

cation” y to produce and a corresponding payment w(y) to receive. Thus, in the screening

formulation of the problem, a contract would be written as a menu of pairs (y(ε), w(y(ε))),

such that it is incentive-compatible for each type ε to choose the corresponding pair.

The “value” of choosing y for an agent of type ε is −c(y− ε) (or −∞ if y /∈ [ε, ε+ x)).

The standard single-crossing condition then requires that this function should have in-

creasing differences in y and ε. This is assured by the convexity of c. Consequently, stan-

dard arguments imply that, for any incentive-compatible contract, y(ε) must be weakly

increasing; and conversely, any allocation rule y(ε) that is weakly increasing and satisfies

y(ε) ∈ [ε, ε+ x) can be supported by the transfers given by the standard integral formula

arising from the envelope theorem.

Let U(ε) = w(y(ε)) − c(y(ε) − ε) denote the agent’s utility when his type is ε. The

standard envelope integral formula gives

U(ε) = U(a) +

∫ ε

a

c′(y(s)− s) · ds.

Consequently the transfer rule is given by

w(y(ε)) = c(y(ε)− ε) + U(a) +

∫ ε

a

c′(y(s)− s) · ds. (3.1)

Before we proceed, we must address a technical issue involving (3.1): Although it is

true that any increasing allocation rule y(ε) can be implemented by transfers (3.1), in

our setting this may not be the unique such transfer rule for a given y(ε). Specifically,

at values where y(ε) − ε = 0, it is impossible for higher types ε′ > ε to imitate type ε,

because the effort y(ε) − ε′ would need to be non-negative. In that case, the standard

logic to pin down U breaks down because even if we assume U is differentiable, we only

know that U ′(ε) ≤ c′(y(ε) − ε), without necessarily having equality. Then, (3.1) is not

unique in implementing y(ε). (To see this clearly, recall that the schedule of zero effort

for all ε is implemented by any transfer rule that is decreasing.)
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This means we cannot immediately rewrite the principal’s problem in terms of the

allocation rule y(ε) only. However, we can overcome this issue by focusing on the optimal

contract. Lemma C.1 shows that if a contract performs better than any reliable contract,

then it must induce effort bounded away from zero, for all ε. Hence either the optimal

contract is reliable, in which case (3.1) holds by Lemma 2.1; or we have infε(y(ε)− ε) > 0,

and (3.1) again becomes an equality.2 Therefore for the optimal contract, we know that

Equation (3.1) holds.

We now formulate the principal’s problem. The optimal contract guarantees the prin-

cipal a profit equal to

inf
F∈F [a,b]

EF [y(ε)−w(y(ε))] = inf
F∈F [a,b]

EF
[
y(ε)− c(y(ε)− ε)− U(a)−

∫ ε

a

c′(y(s)− s) · ds
]
.

In the optimal contract we set U(a) = 0. For the ease of notation, define x(ε) = y(ε)− ε.
If F has a density function f , then the expectation can be written in terms of virtual

values, as follows: ∫ b

a

(
x(ε)− c(x(ε))− 1− F (ε)

f(ε)
c′(x(ε))

)
· dF (ε). (3.2)

Theorem 2.2 claims that when b = +∞ the maxmin value of expression (3.2) is given

by a reliable contract, and the maxmin profit is equal to maxx (x− c(x) + c′(x) · a).

The proof idea, given the background developed at this point, is simple: We know

that a reliable contract gives the same expected profit no matter what distribution F

the principal faces. To show that no other contract gives a better contract guarantee, it

suffices to find a particular F such that the reliable contract is optimal for that F (i.e. to

show the principal’s problem has a saddle point). From looking at (3.2), we see that if F

is chosen so that the virtual value is the same for every ε, then indeed the optimum will be

to have x(ε) constant; thus we conjecture an exponential distribution for our worst-case

F . Then all that remains is to check that the details work out.

2Here the argument is standard once again: Assume infε(y(ε)− ε) > 0. We know y is increasing. Also,
on any interval, y(ε)− ε must be bounded strictly below x, since inducing effort close to x would require
paying an arbitrarily large amount and so lead to arbitrarily negative profits. Now, for any ε0, choose a
small enough neighborhoodN of ε0 and a small positive number η > 0 such that η < y(ε)−ε′ < x−η for all
ε, ε′ ∈ N . Then IC constraints imply that c(y(ε)−ε)−c(y(ε)−ε′) ≤ U(ε′)−U(ε) ≤ c(y(ε′)−ε)−c(y(ε′)−ε′),
which is the standard local constraint for the integral envelope formula. This implies that U is Lipschitz-
continuous on N , with Lipschitz constant c′(x − η). Hence U is absolutely continuous, with derivative
equal to U ′(ε) = c′(y(ε)− ε) wherever it exists. We obtain that U(ε) = U(a) +

∫ ε
a
c′(y(s)− s) · ds.
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Proof of Theorem 2.2. We first construct a reliable contract that guarantees profit maxx (x−
c(x) + c′(x) ·a). Let x∗ denote a maximizer of x− c(x) + c′(x) ·a. Let w∗ denote a reliable

contract that implements x∗. Lemma 2.1 implies that

inf
F∈F [a,b]

EF [uP (w∗; ε)] = x∗ − c(x∗) + c′(x∗) · a.

We next show that no contract can guarantee a larger profit. All we need to do is to

construct a distribution F such that supw EF [uP (w; ε)] = x∗ − c(x∗) + c′(x∗) · a.

Let F be the exponential distribution with rate λ = − 1
a

on the range [a,+∞). We

have F (ε) = 1 − e−λ(ε−a), and its density is f(ε) = λe−λ(ε−a). We check that the mean

of ε is equal to 1
λ

+ a, which is equal to 0. We have 1−F (ε)
f(ε)

= 1
λ

= −a for all ε, so the

virtual value for type ε (the integrand in (3.2)) is equal to x(ε)− c(x(ε))+a · c′(x(ε)). The

maximizer of this virtual value is equal to x∗, which is independent of ε, so the optimal

contract given F is a reliable contract that implements x∗. We obtain that

sup
w

EF [uP (w; ε)] = x∗ − c(x∗) + c′(x∗) · a.

We conclude that the maxmin profit is equal to x∗ − c(x∗) + c′(x∗) · a.

If a is close to 0, the payoff guarantee is close to the first-best surplus, which is

positive. Moreover, decreasing a enlarges the set of possible distributions of ε; indeed,

the distribution takes the range [a, b], and decreasing a expands the range of ε. Hence

the payoff from a reliable contract decreases as a decreases. Finally, as a goes to −∞,

we have x∗ goes to 0 (otherwise c′(x∗) · a goes to −∞), which means the maxmin profit

x∗ − c(x∗) + c′(x∗) · a goes to 0.

To tie up loose ends, we should acknowledge a difference between the original formula-

tion of our problem and the screening formulation in this section. The original formulation

required w(y) to be specified for all possible y. Given a menu formulation of a contract,

when we rewrite it in the original language, we need to deal with the possibility that

the agent might want to choose an output level y that was not in the original menu,

i.e. not equal to y(ε) for any ε. That is, we need to make sure w is extended to an upper

semi-continuous function on the whole domain [a, b + x] without incentivizing any off-

equilibrium choices of y. However, for Theorem 2.2 this is not a problem, since we have

already described how to specify w on the whole domain (in Lemma 2.1).

(This potential issue is resolved in the same way in the model of the next section.)

10



4 Finite upper bound

Theorem 2.2 assumes that the noise ε has no upper bound (i.e. b = +∞). This assumption

allows us to clearly identify the worst-case distribution (i.e. an exponential distribution)

and prove that the optimal contract is reliable. However, it might seem unnatural to

assume that the lower bound a is finite, but the upper bound b is infinite. As a robustness

check, we investigate whether the optimal contract is still reliable if b is finite.

In fact, the optimal contract is no longer reliable. In particular the “no distortion at

the top” property, familiar from other screening models, will hold in our setting: The

agent will be induced to choose the first-best effort level, x1 = arg maxx(x − c(x)), at

the extreme ε = b, but not for lower values of ε. However, the optimal effort schedule is

“somewhat” reliable if b is large enough. In particular, as b goes to infinity, the optimal

effort schedule converges (locally uniformly) to the constant effort x∗ implemented by the

optimal reliable contract from Theorem 2.2.

In this section we consider a fixed, finite b, and derive the optimal contract. We will

then show that it converges to a reliable contract as b goes to infinity. The derivation is

tedious, so we first provide an intuitive description, and interested readers can take a look

at the formal derivation.

Informal derivation To derive the optimal contract, we construct an effort schedule

x(ε) such that the principal’s payoff uP (w; ε) is linear in ε. The linearity of uP (w; ε)

ensures that for any distribution of ε the principal earns an expected profit equal to

uP (w; 0). Moreover, given any contract ŵ, we can imagine an alternative contract w such

that uP (w; ε) is linear in ε, and contract w guarantees the same profit as ŵ. Hence it

suffices to consider contracts w for which uP (w; ε) is linear.

Figure 2 illustrates this argument. Contract ŵ yields a non-linear profit function

uP (ŵ; ε). Its worst-case expected profit, over all distributions of ε with mean zero, is given

by the intercept of the thick black line with the vertical axis; the worst-case distribution

puts all weight on ε1 and ε2. If we find a new contract w whose profit function is exactly

this thick black line, then its worst-case expected profit is the same as the original contract.

This motivates us, when solving for the optimal contract, to restrict attention to contracts

w for which uP (w; ε) is linear.

We write uP (w; ε) from Equation (3.1): uP (w; ε) = x(ε) + ε− c(x(ε))−
∫ ε
a
c′(x(s)) · ds.
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ε
ε1 ε2

uP (ŵ; ε)

uP (w; ε)

Figure 2: The profit guarantee of contract ŵ is equal to uP (w; 0).

The first derivative is equal to

∂

∂ε
uP (w; ε) = x′(ε) + 1− c′(x(ε)) · x′(ε)− c′(x(ε)) = (x′(ε) + 1) · (1− c′(x(ε))).

We construct the effort schedule from the following differential equation:

(x′(ε) + 1) · (1− c′(x(ε))) = β, (4.1)

for some constant β > 0, with the boundary condition that x(b) = x1 is the first-best

effort. This boundary condition is given by the “no distortion at the top property” in the

integral (3.2).

The solution to (4.1) gives us the optimal effort schedule. We have that x(ε) is con-

tinuous, increasing, and convex. There is one subtle problem: as ε decreases, x(ε) might

eventually become negative; in that case we choose the effort schedule max{0, x(ε)}. The

formal proof shows that this is the correct optimal effort schedule. Figure 3 illustrates

the two possible forms of x(ε). The left one comes directly from the differential equation

(4.1), and the right one modifies the negative value of x to 0.

As b goes to infinity, convexity implies that the beginning part of x(ε) (for small ε) is

close to flat. Therefore the optimal effort schedule is “approximately” reliable if b is large

enough.3

3A rough intuition for convexity is as follows: suppose the contract induces higher effort at ε than
at ε − η, where η is small. Motivating this effort means that the pay per unit output must be higher
at ε than at ε − η. But the profit function should be linear, so to compensate for this extra pay, the
incremental effort induced at ε+ η should be higher still.
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x1

c′−1(1− β)

ε
ε

x(ε)

ba

x1

Figure 3: Construction of x(ε).

Formal derivation We first construct a family of candidate optimal contracts, param-

eterized by a real number α < 1. (It is related to β from above by α = 1− β.) For each

such α, we begin by constructing a function xα(ε), which describes the agent’s effort level

when the shock realization is ε, in the corresponding candidate contract.

To define xα, we go through the following steps. First define function εα as follows. If

α ≥ 0, the domain of εα is ((c′)−1(α), x1] (recall x1 was defined as the first-best effort). If

α < 0, the domain of εα is [0, x1]. On its domain we set

εα(x) = −
∫ x1

x

1− c′(s)
c′(s)− α

ds+ b. (4.2)

Note that εα(x) is increasing and continuously differentiable. Define xα(ε) as the

inverse of εα(x). Then xα is also increasing. Since xα(ε) is going to represent the agent’s

effort choice upon observing ε, we should make sure it is defined for all possible values

of ε. For this purpose, we extend xα downward to be defined on the domain (−∞, b],
as follows. If α < 0, then xα as originally defined has domain [εα(0), b], and we extend

the domain by defining xα(ε) = 0 for all ε < εα(0). Intuitively, domain extension adds a

horizontal ray to the left of the graph of xα, and this ray is at the minimal value of xα. If

α ≥ 0, then we have limx→(c′)−1(α) εα(x) = −∞.4 We see that xα already has the domain

(−∞, b], so we don’t need to extend it.

We know that xα is non-decreasing and continuous on (−∞, b]. To characterize the

optimal contract, we also need to define εα as follows. If α < 0 and a < εα(0), then

εα = εα(0); otherwise εα = a. Notice that if εα 6= a, then for all ε ∈ [a, εα] we have

4Let x0 = (c′)−1(α). For s sufficiently close to x0 we have c′(s)− α < k(s− x0), where k is any fixed

positive number greater than c′′(x0). Thus 1−c′(s)
c′(s)−α = 1−α

c′(s)−α − 1 > 1−α
k(s−x0)

− 1 for s sufficiently close to

x0, say in the interval (x0, x0 + δ). The integral
∫ x0+δ

x0

1
s−x0

ds diverges, so limx→(c′)−1(α) εα(x) = −∞.
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xα(ε) = 0. The next proposition shows explicitly how to construct the optimal contract.

Proposition 4.1. Suppose that a > −∞ and b <∞. Then:

(a) For any real number α < 1, define contract wα such that

wα(xα(ε) + ε) = c(xα(ε)) +

∫ ε

a

c′(xα(s)) ds for every ε ∈ [a, b].

Moreover let wα(y) ≤ c(y− a) for all y < xα(a) + a, and wα(y) = wα(xα(b) + b) for

all y > xα(b) + b.

Then for some α the contract wα maximizes VP over all possible contracts, and the

payoff from wα is equal to VP (wα) = xα(εα) − c(xα(εα)) + αεα. For the value of α

that maximizes this expression, the corresponding contract wα is optimal.

(b) The optimal contract wα is strictly better for the principal than any reliable contract.

The optimal contract guarantees a positive payoff.

We defer the full proof of Proposition 4.1 to the appendix, but here is a summary. We

cannot simply look for the worst-case F as in Theorem 2.2: for some choices of parameters,

there will not exist any F for which the candidate optimal effort schedule xα maximizes

the virtual value pointwise. Thus, rather than look for a saddle point as before, we need

a different approach.

We first consider any candidate optimal contract, and consider a linear bound as in

the informal derivation above; let the slope of this line be 1− α. Then we show that the

optimal contract must induce effort bounded away from zero (Lemma C.2) in the interval

(εα, b], so we can write the transfer rule as the integral envelope formula in Equation (3.1).

We use this formula to show that the contract cannot give a better guarantee than wα

unless the surplus generated at the upper end ε = b is greater than under wα — which is

impossible, since wα generates first-best surplus there.

We have two takeaways from this section. First, when b is finite, the effort schedule

exhibits the “no distortion at the top” property in screening models. This is in line

with other screening literature that has previously found that this property holds with

bounded, but not with unbounded, type distributions; see e.g. the discussion of optimal

income taxation in Saez (2001).

Second, the optimal effort schedule is convex and non-decreasing, so as b goes to

infinity the initial part of the effort schedule (e.g. for small shocks) is nearly flat. That

is, for any fixed finite b̃, the effort schedule for ε ∈ [a, b̃] must be nearly flat when b is
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large. Moreover, its value on this interval must converge, as b→∞, to the effort induced

by the optimal (reliable) contract for b = ∞ (that is, the x∗ identified in the proof of

Theorem 2.2). To see this convergence, notice that because profit is a linear function of

ε, the guarantee from the optimal contract w equals uP (w; 0). From the envelope integral

formula, this is close to the corresponding guarantee from a reliable contract that induces

effort x(0). So as b → ∞, the effort level x(0) in the optimal contract must converge to

the effort level in the optimal reliable contract.

Note that because the principal’s problem may not have a saddle point, the principal

may be able to do strictly better by committing to a randomized contract, rather than

using a deterministic contract as we have assumed (see Auster, 2016; Carrasco et al., 2015;

Kos and Messner, 2015). We do not pursue this question further here.

5 Conclusion

We have considered a simple property of linear incentive contracts, which we termed

reliability : they incentivize the same action by the agent, regardless of the situation

(represented in our model by a privately observed shock to output). This property helps

make linear contracts particularly easy to understand and analyze. Our concern, however,

was with whether reliability can provide a microfoundation for linear contracts when the

principal is ultimately concerned with profit. To model this, we aimed to write down a

model in which such contracts are robust not only in terms of the action they induce, but

also in terms of the expected profit, net of payment to the agent, that is guaranteed to

the principal.

By adopting risk-neutrality and limited liability, we have set up the model with a

simple tension — incentivizing more productive effort comes with an information-rent

cost. And we have adopted a simple formulation of maxmin uncertainty about the shock

distribution, to represent the desire for robustness. To cross the bridge from certainty

about the action to certainty about expected net profit, we have further relied on two

minimalist but important functional form assumptions: the additive specification for

production, and the assumption on the principal’s knowledge of the shock distribution

(knowing the mean but nothing more). Together, these assumptions ensure that reliable

contracts perfectly hedge the principal’s uncertainty: Because the agent’s effort is constant

and the expected shock is known, expected output is certain; and because the contracts

are linear in output over the relevant range, expected payment to the agent is also certain;

thus, expected net profit is certain.
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We see that reliable contracts are indeed optimal in such a model, but subtleties arise.

First, even among reliable contracts, linear contracts are never optimal, since they give

information rents at the bottom that can be avoided. Second, an asymmetry assumption

is required: reliable contracts are optimal only when the possible shocks are unbounded

above but bounded below. In particular, when shocks are bounded above, a situation

that is familiar from screening applies: in general, incentivizing effort is costly in terms

of information rent provided to higher types, so the principal wants to incentivize less-

than-first-best effort; but for higher types this tradeoff disappears, and it is optimal to

induce first-best effort at the top. We have shown how to explicitly describe the optimal

contract in this situation.

How reasonable are our assumptions? In particular, for the uncertainty about the

shock distribution (which is the unconventional part of the model), is it reasonable to

assume that the principal knows bounds a, b, and the mean of the shock, but nothing

more? One methodological defense is as follows: given that we wish to express robustness

by incorporating uncertainty about the distribution, these are about the simplest minimal

assumptions one can make to place some structure on the problem. Indeed, some other

contemporary work on maxmin mechanism design (Brooks, 2013; Carrasco et al., 2015;

Kos and Messner, 2015) makes similar assumptions of known mean and bounds. The

asymmetry of finite a but infinite b might be justified if we imagine that there is a natural

lower bound to output, but that the project undertaken by the agent could potentially

be wildly successful.

The basic idea that it is optimal to induce constant effort (independent of the agent’s

private information) for reasons of simplicity, as in Edmans and Gabaix (2011), has in-

tuitive appeal. One positive interpretation of our results is as a modeling handbook: if a

theorist wishes to write down an agency model that reflects this intuitive appeal, we can

provide quite specific guidance on how to do so. A negative interpretation would be that

this reliability argument seems to depend on a very particular combination of assump-

tions. Perhaps there are still more general-purpose reasons to favor reliable contracts on

account of their simplicity, but if so, a more involved model is needed to express them.

A Proof of Lemma 2.1

Proof of Lemma 2.1. We first prove the “if” part. Suppose w satisfies the conditions

given in Lemma 2.1. We claim that the agent always chooses effort x∗. For all ε, the

agent gets utility w(x∗ + ε) − c(x∗) from exerting effort x∗. By definition of w, we have
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w(x∗+ ε)− c(x∗) = c′(x∗)(x∗+ ε− a) + h− c′(x∗)x∗ = c′(x∗)(ε− a) + h. We show that no

other effort yields more than c′(x∗)(ε− a) + h. Suppose the agent observes ε and chooses

effort x. Let y = x+ ε. We have three cases.

• If y ∈ [a, a+x∗], then w(x+ε)−c(x) = w(y)−c(y−ε) ≤ c(y−a)+h−c(y−ε). Since

c is increasing and convex, we have c(y − a) + h− c(y − ε) ≤ c′(y − a)(ε− a) + h ≤
c′(x∗)(ε− a) + h ≤ w(x∗ + ε)− c(x∗). Hence the agent exerts effort x∗.

• If y ∈ [a+ x∗, b+ x∗], then w(x+ ε)− c(x) = w(y)− c(y− ε) = c′(x∗)(y− x∗− a) +

h + c(x∗) − c(y − ε) = [c′(x∗)y − c(y − ε)] − c′(x∗)(x∗ + a) + h + c(x∗). Since c is

convex, the term c′(x∗)y − c(y − ε) is concave in y. The first order condition yields

c′(x∗) = c′(y − ε), which means the term is maximized when y = x∗ + ε. Thus in

this interval x∗ is the optimal effort level.

• If y ∈ [b+ x∗, b+ x], then w(x+ ε)− c(x) = w(y)− c(y − ε) ≤ c(y − b) + c′(x∗)(b−
a)+h−c(y−ε) = [c(y−b)−c(y−ε)]+c′(x∗)(b−a)+h. The term c(y−b)−c(y−ε)
is decreasing, so the maximum takes place when y = b + x∗, which brings us back

to the previous case.

We now prove the “only if” part. Suppose a contract always induces x∗. Since x∗ > 0,

the envelope integral formula holds (see the beginning of Section 3), so for all ε we have

w(x∗ + ε) = c(x∗) + U(a) +

∫ ε

a

c′(x∗) ds = c(x∗) + U(a) + (ε− a)c′(x∗).

Let h = U(a). We have h ≥ 0 because w satisfies the limited liability constraint. Thus,

contract w satisfies w(y) = c′(x∗)(y − a− x∗) + h+ c(x∗) for all y ∈ [x∗ + a, x∗ + b].

If y ∈ [a, a + x∗], let ε = a, we get w(y) − c(y − a) ≤ w(x∗ + a) − c(x∗) = h,

so w(y) ≤ c(y − a) + h. If y ∈ [b + x∗, b + x], let ε = b, we get w(y) − c(y − b) ≤
w(x∗ + b)− c(x∗) = c′(x∗)(b− a) + h, so w(y) ≤ c(y − b) + c′(x∗)(b− a) + h.

Finally, it is always incentive-compatible for the agent to choose effort x∗. If he does so,

expected output is x∗ and the principal’s expected payment is E[w(y)|y ∈ [a+x∗, b+x∗]] =

c′(x∗)(x∗−a)+h+c(x∗)−c′(x∗)x∗. Thus, for any distribution of ε, the principal’s expected

payoff is x∗ + c′(x∗)a− c(x∗)− h.

Note that there may sometimes exist other effort levels the agent is willing to choose,

if ε = a and the constraint w(y) ≤ c(y − a) + h holds with equality at several values of

y (and likewise at ε = b). Consequently, for some distributions of ε the principal may be

able to get a higher expected payoff than indicated above. However, if a < ε < b then
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the agent’s unique optimal choice of effort is x∗ (we can see this from the second bullet

point, using the strict convexity of c). So by considering the distribution F that puts

probability 1 on ε = 0, we conclude that VP (w) = x∗ + c′(x∗)a− c(x∗)− h exactly.

B Properties of wα and xα

In this section we study the contract wα, which has been defined in Section 4 for fixed,

finite values of a and b. We first prove Lemma B.1, which pins down xα(ε). Then we

prove a lemma (B.2) which computes the profit guarantee of wα. The lemma also shows

that some contract of the form wα performs strictly better than any reliable contract.

We clarify the order of lemma dependency to avoid any impression that we are using

circular reasoning. The proof of Lemma B.1 is self-contained, and the proof of Lemma B.2

cites Lemma B.1. Proofs of lemmas in later sections (C and D) will depend on lemmas

in this section.

Lemma B.1. For all ε ≥ εα we have

xα(ε)− c(xα(ε)) = [xα(εα)− c(xα(εα))] +

∫ ε

εα

(c′(xα(s))− α) ds.

Proof of Lemma B.1. We derive a differential equation for xα. Whenever x is in the

interior of the domain of εα, we have

ε′α(x) =
1− c′(x)

c′(x)− α

1 +
1

ε′α(x)
=

1− α
1− c′(x)

.

Therefore the inverse function xα(ε) is differentiable for ε > εα, and its derivative satisfies

1 + x′α(ε) =
1− α

1− c′(xα(ε))

(1− c′(xα(ε)))x′α(ε) = c′(xα(ε))− α.

Since xα is continuous at εα, we obtain that for all ε ≥ εα:

xα(ε)− c(xα(ε)) = [xα(εα)− c(xα(εα))] +

∫ ε

εα

(c′(xα(s))− α) ds.
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Lemma B.2. The contract wα induces effort schedule xα. The profit guarantee of wα

satisfies VP (wα) ≥ xα(εα) − c(xα(εα)) + εαα, with equality unless εα ≥ 0, in which case

VP (wα) = 0. Moreover we have supα VP (wα) > maxx (x− c(x) + c′(x)a).

Proof. Let yα(ε) = xα(ε) + ε. Since xα is continuous and non-decreasing, yα is continuous

and increasing. If y < yα(a), then wα(y)− c(y − ε) ≤ wα(yα(a))− c(xα(a)) + c(y − a)−
c(y − ε) < wα(yα(a)) − c(yα(a) − ε), so the agent would rather produce yα(a). On the

other hand, if y > yα(b), then wα(y) − c(y − ε) < wα(yα(b)) − c(yα(b) − ε), so the agent

would rather produce yα(b). Thus we can assume that the agent produces an output

in the interval [yα(a), yα(b)]. Since wα satisfies the envelope integral formula, and yα is

increasing, wα implements yα.

We can calculate the payoff from wα using Lemma B.1. For all ε ≥ εα, we have

xα(ε)− wα(xα(ε) + ε) = xα(ε)− c(xα(ε))−
∫ ε

a

c′(xα(s)) ds

= xα(ε)− c(xα(ε))−
∫ ε

εα

c′(xα(s)) ds

= xα(ε)− c(xα(ε))−
∫ ε

εα

[c′(xα(s))− α] ds− (ε− εα)α

= xα(εα)− c(xα(εα))− (ε− εα)α.

If εα = a, then it follows that VP (wα) = xα(a)− c(xα(a)) + aα.

If εα 6= a (which can only happen when α < 0), then xα(εα) = 0 and the right-hand

side above simplifies: it becomes −(ε−εα)α for any realization of ε that is ≥ εα. Note that

this quantity is ≥ 0 since α < 0. On the other hand, whenever ε < εα, x(ε) = w(y(ε)) = 0,

so the expression above is just 0. Hence, the principal’s payoff for any ε is

ε+ xα(ε)− w(xα(ε) + ε) = ε+ max{−(ε− εα)α, 0}.

This is a convex function, so the worst possible expected payoff over all mean-zero dis-

tributions F is just its value at ε = 0: max{εαα, 0}. So we indeed have the inequality

VP (wα) ≥ εαα = xα(εα)− c(xα(εα)) + εαα, with equality if εα < 0.

Let x∗ denote the effort that maximizes the payoff from a reliable contract. If x∗ > 0

then the first-order condition is 1 − c′(x∗) + c′′(x∗)a = 0. Since c′′(x∗) > 0, we deduce

that x∗ < x1. And if x∗ = 0 then of course we also have x∗ < x1. Let α = c′(x∗).

Since α ≥ 0, we have xα(a) > (c′)−1(α) = x∗. We also know that xα(a) < x1, so we get

VP (wα) = xα(a)− c(xα(a)) + aα > x∗ − c(x∗) + aα = maxx (x− c(x) + c′(x)a).
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C Lemmas needed for the Envelope Integral Formula

In this section we prove two requisite lemmas to ensure that the envelope integral formula

holds. Recall from Section 3 that the transfer rule may not be unique if x(ε) = 0 for

some ε. We overcome this problem by showing that if a contract performs better than the

contracts we identified in Theorem 2.2 and Proposition 4.1, then x(ε) is bounded strictly

above 0 in our domain of interest.

The proof of Lemma C.1 is self-contained, and the proof of Lemma C.2 cites Lemma

B.2.

Lemma C.1. If b =∞ and VP (w) > maxx (x− c(x) + c′(x)a), then infε x(ε) > 0.

Proof. We know that, for any distribution F over ε with mean 0, the expected value

of uP (w; ε) is at least VP (w) (this is the definition of VP (w)). So if we consider the

set S ⊆ R2 consisting of the convex hull of points {(ε, uP (w; ε))|ε ∈ [a, b]}, and the set

T = {(0, ζ)|ζ < VP (w)}, these two sets are disjoint. By the Separating Hyperplane

Theorem, there exists a line separating them; taking 1−α to be the slope of this line, we

get y(ε)− w(y(ε)) ≥ (1− α)ε+ VP (w) for all ε ∈ [a, b].

If α < 0, then the right hand side of this inequality grows at a rate (1−α)ε as ε→∞,

but the left hand side is bounded above by x̄+ ε. Hence we must have α ≥ 0.

Next, if α ≥ 1, then y(a) − w(y(a)) ≥ VP (w). On the other hand, we always have

w(y(a)) − c(x(a)) ≥ 0 (since the agent can guarantee himself zero payoff at ε = a by

taking zero effort); this implies y(a) − w(y(a)) ≤ a + x(a) − c(x(a)) ≤ a + x1 − c(x1).

We deduce that VP (w) ≤ x1 − c(x1) + a, which is the profit from a reliable contract that

induces x1, contradicting the assumption that VP (w) > maxx (x− c(x) + c′(x)a).

We now restrict attention to α ∈ [0, 1). Suppose VP (w) = δ+(c′)−1(α)−c((c′)−1(α))+

αa, where δ is a positive real number. We have y(ε)−w(y(ε)) ≥ δ+(1−α)ε+(c′)−1(α)−
c((c′)−1(α)) + αa. Consequently we get

x(ε)− w(y(ε)) ≥ δ + α(a− ε) + (c′)−1(α)− c((c′)−1(α)). (C.1)

For ε = a, we again use w(y(a)) − c(x(a)) ≥ 0, to infer that x(a) − c(x(a)) ≥ δ +

(c′)−1(α) − c((c′)−1(α)). Let x̂ denote the effort level below x1 for which x̂ − c(x̂) =

δ + (c′)−1(α)− c((c′)−1(α)). We have x(a) ≥ x̂ > 0.
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We claim that for all ε > a, the following inequalities hold:

x(ε)− c(x(ε)) ≥ δ + (c′)−1(α)− c((c′)−1(α))

w(y(ε))− c(x(ε)) ≥ α(ε− a).

Let ∆ = x̂−(c′)−1(α) > 0. We first prove these inequalities for ε ∈ [a, a+∆]. Any such

type ε is able to produce output y(a), since y(a) = a+x(a) ≥ a+x̂ ≥ a+∆. Consequently,

the incentive constraint implies that w(y(ε))−c(x(ε)) ≥ w(y(a))−c(y(a)− ε) ≥ c(x(a))−
c(x(a)− (ε−a)). Since x(a)− (ε−a) ≥ x̂−∆ = (c′)−1(α), the convexity of c implies that

c(x(a))−c(x(a)− (ε−a)) ≥ α(ε−a). We thus obtained that w(y(ε))−c(x(ε)) ≥ α(ε−a).

Consequently, we have x(ε) − c(x(ε)) = [x(ε) − w(y(ε))] + [w(y(ε)) − c(x(ε))] ≥ δ +

(c′)−1(α)− c((c′)−1(α)). Therefore the two inequalities hold for all ε ∈ [a, a+ ∆].

Suppose the two inequalities hold for the interval [a+(k−1)∆, a+k∆]. Then, the first

inequality applied to ε = a+k∆ ensures x(a+k∆) ≥ x̂ > ∆, so y(a+k∆) ≥ a+(k+1)∆,

and hence any type ε ∈ [a+k∆, a+(k+1)∆] is able to produce output y(a+k∆). Moreover,

y(a+ k∆)− ε ≥ x̂+ (a+ k∆)− ε ≥ x̂−∆ = (c′)−1(α).

So, for any ε in this new interval, the incentive constraints yield

w(y(ε))− c(x(ε)) ≥ w(y(a+ k∆))− c(y(a+ k∆)− ε)

≥ αk∆ + c(x(a+ k∆))− c(y(a+ k∆)− ε) (the inductive hypothesis)

≥ αk∆ + c′(y(a+ k∆)− ε) · (ε− a− k∆) (the convexity of c)

≥ αk∆ + α(ε− a− k∆)

= α(ε− a).

As a result we have x(ε)− c(x(ε)) ≥ δ + (c′)−1(α)− c((c′)−1(α)).

Now, by induction, our two inequalities hold for all ε. Therefore, for all ε we have

x(ε) ≥ x̂ > 0.

Lemma C.2. Suppose b < ∞ and VP (w) > supα VP (wα). Then there exists an α < 1

such that y(ε)− w(y(ε)) ≥ (1− α)ε+ VP (w) for all ε, and infε≥εα x(ε) > 0.

Proof. By an application of the Separating Hyperplane Theorem, identical to that used

in Lemma C.1, we know that there is an α such that y(ε)− w(y(ε)) ≥ (1− α)ε + VP (w)

for all ε.

If α ≥ 1, then VP (w) ≤ y(a)− w(y(a)) = a + x(a)− w(y(a)) ≤ a + x(a)− c(x(a)) ≤
x1 − c(x1) + a. By Lemma B.2 we have x1 − c(x1) + a < supα VP (wα), contradicting the
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assumption that VP (w) > supα VP (wα).

If α < 1, then for some δ > 0 we have y(ε) − w(y(ε)) ≥ δ + (1 − α)ε + VP (wα) ≥
δ + (1− α)ε+ xα(εα)− c(xα(εα)) + αεα for all ε. We get

x(ε)− w(y(ε)) ≥ δ + α(εα − ε) + xα(εα)− c(xα(εα)).

If α ≤ 0, then for all ε ≥ εα the right hand side is at least δ+ xα(εα)− c(xα(εα)), and the

left hand side is at most x(ε)− c(x(ε)), which implies that x(ε) ≥ δ > 0 for all ε ≥ εα. On

the other hand, if α > 0, then xα(εα) ≥ (c′)−1(α), and we can proceed exactly the same

way as Lemma C.1 (starting from expression (C.1) and replacing a with εα). We again

obtain that x(ε) ≥ x̂ > 0 for all ε ≥ εα.

Lemma C.2 allows us to use the envelope integral formula when ε ≥ εα:

w(y(ε)) = c(x(ε)) + U(εα) +

∫ ε

εα

c′(x(s)) ds.

We will use this formula in the proof of Proposition 4.1.

D Proof of Proposition 4.1

Proof of Proposition 4.1. First we know from Lemma B.2 that contract wα induces effort

schedule xα, and that the payoff satisfies VP (wα) ≥ xα(εα)−c(xα(εα))+αεα, with equality

if εα < 0.

We now show that the principal cannot achieve a payoff guarantee of more than

supα VP (wα). Suppose for contradiction that there exists a contract w such that VP (w) >

supα VP (wα). Lemma C.2 implies that there exists an α < 1 such that y(ε) − w(y(ε)) ≥
(1− α)ε+ VP (w) for all ε ∈ [a, b]. Moreover, infε≥εα x(ε) > 0.

Thus there exists a δ > 0 such that x(ε) + ε−w(y(ε)) ≥ δ + (1− α)ε+ VP (wα) for all

ε ∈ [a, b]. For all ε ≥ εα, the envelope integral formula implies that

w(y(ε)) = c(x(ε)) + U(εα) +

∫ ε

εα

c′(x(s)) ds.
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We deduce that

x(ε)− c(x(ε)) ≥ δ − αε+

∫ ε

εα

c′(x(s)) ds+ VP (wα)

≥ δ − αε+

∫ ε

εα

c′(x(s)) ds+ xα(εα)− c(xα(εα)) + αεα

= [δ + xα(εα)− c(xα(εα))] +

∫ ε

εα

(c′(x(s))− α) ds.

On the other hand, for all ε ≥ εα we have

xα(ε)− c(xα(ε)) = [xα(εα)− c(xα(εα))] +

∫ ε

εα

(c′(xα(s))− α) ds

by Lemma B.1. We obtain that

x(ε)− c(x(ε)) ≥ [δ + xα(ε)− c(xα(ε))] +

∫ ε

εα

(c′(x(s))− c′(xα(s))) ds.

We claim that x(ε)− c(x(ε)) ≥ δ + xα(ε)− c(xα(ε)) for all ε ∈ [εα, b]. This inequality

would give us a contradiction because xα(b) is the first-best effort.

Taking ε = εα, we get x(εα) − c(x(εα)) ≥ δ + xα(εα) − c(xα(εα)). If x(ε) ≥ xα(ε)

for all ε, then c′(x(s)) − c′(xα(s)) ≥ 0 for all s, and we obviously have x(ε) − c(x(ε)) ≥
δ+xα(ε)− c(xα(ε)) because the integral term is always positive. Suppose on the contrary

that there is an ε for which x(ε) < xα(ε). Let ε∗ = inf{ε|x(ε) < xα(ε)}. Taking ε → ε∗+

we have

x(ε)−c(x(ε)) ≥ δ+xα(ε)−c(xα(ε))+

∫ ε∗

εα

(c′(x(s))−c′(xα(s))) ds+

∫ ε

ε∗
(c′(x(s))−c′(xα(s))) ds.

If ε∗ = εα, then x(ε) − c(x(ε)) ≥ δ + xα(ε) − c(xα(ε)) +
∫ ε
ε∗

(c′(x(s)) − c′(xα(s)))ds.

However, as ε → ε∗, the integral converges to 0, so we have x(ε) − c(x(ε)) > xα(ε) −
c(xα(ε)). Since xα(ε) ≤ x1, we get x(ε) > xα(ε) for ε close enough to ε∗, contradicting the

definition of ε∗. Now suppose ε∗ > εα. Since x(s) ≥ xα(s) for all s < ε∗, we know that

x(s)− c(x(s)) ≥ δ+xα(s)− c(xα(s)) for all s < ε∗, which implies that x(s) > xα(s) for all

s < ε∗. We deduce that the first integral
∫ ε∗
εα

(c′(x(s))− c′(xα(s))) ds is positive (note that

we cannot have ε∗ = εα). We also note that the second integral
∫ ε
ε∗

(c′(x(s))− c′(xα(s))) ds

goes to 0 as ε → ε∗+. Hence as ε → ε∗+, we have x(ε) − c(x(ε)) ≥ δ + xα(ε) − c(xα(ε)),

and again we get x(ε) > xα(ε) for ε close enough to ε∗, contradicting the definition of
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ε∗. Therefore we must have x(ε) − c(x(ε)) ≥ δ + xα(ε) − c(xα(ε)) for all ε ∈ [εα, b]. As

mentioned above, we now reach a contradiction because xα(b) is the first-best effort.

The above arguments show that no contract can guarantee a profit greater than

supα VP (wα). Since εα and xα(εα) are continuous in α, the sup is achieved by some

α ≤ 1. Furthermore, Lemma B.2 tells us that supα VP (wα) > maxx (x − c(x) + c′(x)a).

Hence a reliable contract performs strictly worse than some contract of the form wα.

This tells us that the sup over α is attained in the interior — it cannot be attained

at α = 1 because this would correspond to a reliable contract (implementing first-best

effort) which we know is not optimal. And it also tells us that the optimal contract

yields a strictly positive payoff, since the zero-contract is reliable and gives profit 0. This

completes the proof of the theorem.
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