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1 Introduction

In many matching markets, the matching itself is not the end of the story;
participants make decisions or take actions that in turn affect how valuable the
match is. Workers in online labor markets decide how carefully to work or how
fast to get the job done. Buyers matched with sellers of goods may be able
to choose from among multiple versions of a product and multiple methods of
delivery. These parties’ behavior depends on the incentives they face, such as
rewards to the worker for good performance, or the prices on different options
offered to the buyer.

The traditional branch of economic theory dealing with design of incentives
is known as contract theory , and its elements will be presented in this chapter.
As usual, incentive issues are tightly linked with asymmetries of information.
Essentially, if all parties were perfectly informed, there would be no incentive
problems to solve. These asymmetries are often divided into two kinds: hid-
den actions, where one party does something that is not perfectly observed by
the other, and hidden information, where one party knows something that af-
fects preferences (as in most mechanism design problems). Both kinds of issues
are studied through the principal-agent framework , a modeling approach that
focuses on interactions between two participants, the principal (who designs
the incentives) and the agent (who has the superior information and responds
strategically).

A few words about modeling philosophy: Like most models in economics—
and unlike most models in computer science and operations research—those in
this chapter are “toy” models; that is, they are gross oversimplifications whose
purpose is to develop concepts. Specialized algorithms to calculate optimal
incentive schemes are typically of limited interest, because in practical situations
one usually cannot describe the environment in enough detail to provide accurate
input to the algorithm anyway. Given that the purpose is conceptual, we may

∗This chapter will appear in Online and Matching-Based Market Design, Federico
Echenique, Nicole Immorlica, and Vijay V. Vazirani, editors, c© 2021, Cambridge Univer-
sity Press.

1



as well formulate the models to be simple enough so that the solutions can be
found by hand, and then we can examine their salient properties.

2 Hidden-Action Models

In hidden-action models, as the name implies, the agent can choose among
several actions. For such models to be interesting, it should be the case that
the action the agent would choose in the absence of incentives is different from
the one the principal would like chosen; such a situation is also referred to as
one of moral hazard .

We will first offer a simple version of such a model that illustrates its essential
elements. As we shall see, this model also has a simple solution—but arguably
too simple for many purposes. We will then explore a couple of variants that
address some shortcomings of the basic model and thereby highlight various
considerations in incentive design.

It is common to introduce hidden-action models with the interpretation that
the agent is a worker, and the principal is the boss, who has to motivate the
agent to work. Although we follow this framing here, it is worth keeping in mind
that these models have many other applications; Section 2.4 discusses some.

2.1 A simple benchmark model

The agent can take various possible actions that create revenue, or output, for
the principal, but these actions may be costly for himself. We take as given a
finite set Y ⊆ R+ of possible output levels. The output produced is random,
but its distribution depends on the action taken. We are not concerned with
the physical description of the actions the agent can take, but only with their
consequences for payoffs, and thus model them as follows:

Definition 1. An action is a pair a = (F, c), where F ∈ ∆(Y ) and c ∈ R+.

The interpretation is that the action generates output drawn from distri-
bution F , and it costs c to the agent. As a convention, we write F (y) for the
probability of drawing an output level y or less, and f(y) for the probability of
drawing exactly y.

Remark 2. Depending on the application, the cost c might be interpreted as
money the agent has to spend, or simply as the monetary equivalent of the
displeasure the agent experiences from exerting effort to perform the action.

Definition 3. A technology is a nonempty, finite set of actions.

An instance of the model is given by a triple (Y,A, u), where Y is the set of
possible output levels, A is the technology available to the agent, and u ∈ R is
the agent’s outside option, the payoff he would receive by declining to transact
with the principal.

The principal can give incentives via a contract, which specifies a recom-
mended action and a payment for each level of output that might be produced:
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Definition 4. A contract (a,w) consists of a ∈ A and a function w : Y → R.

The interaction between the parties is envisioned to proceed as follows:

• The principal proposes a contract.

• The agent can either reject the contract and earn his outside option u, or
accept the contract.

• If the agent accepts the contract, he chooses an action (F, c) from his
technology. The principal does not observe the action directly, but she
does observe the level of output it produces, y ∼ F .

• The agent is then paid as promised by the contract, w(y), and the principal
keeps the rest, y − w(y).

Here, and throughout this chapter, we assume the parties have quasi-linear
utility (see page ??) and evaluate random outcomes by expected utility. So the
agent’s overall payoff from taking action (F, c), taking the cost into account, is
Ey∼F [w(y)]− c, and the principal’s corresponding payoff is Ey∼F [y − w(y)].

Definition 5. Say the contract ((F, c), w) is valid if it satisfies the following
two conditions:

• (Incentive compatibility) Ey∼F [w(y)]−c ≥ Ey∼F ′ [w(y)]−c′ for all (F ′, c′) ∈
A.

• (Individual rationality) Ey∼F [w(y)]− c ≥ u.

The incentive compatibility condition is also sometimes referred to by saying
that w implements action (F, c). Individual rationality expresses that the agent
should be willing to accept the contract.

Remark 6. Why do we require contracts to include an action recommendation
(and write incentive compatibility explicitly)? We could have instead just said
that w itself is the contract, and the agent chooses whichever action he prefers.
But this approach ensures there is no ambiguity about what the agent does if
he has multiple optimal actions.

The principal’s problem is to find a valid contract that maximizes her payoff.
In this benchmark model, there is an easy solution. Define the surplus from an
action (F, c) as s(F, c) = Ey∼F [y] − c. Let s∗ be the maximum surplus among
all actions in A, and (F ∗, c∗) ∈ A an action attaining it. Then:

Observation 7. Offering payment w(y) = y−s∗+u, together with recommend-
ing action (F ∗, c∗), constitutes an optimal valid contract.

Proof. To see that the contract is valid: for any action (F, c) the agent takes,
his payoff is s(F, c) plus the constant −s∗+u, so taking the surplus-maximizing
action (F ∗, c∗) is incentive compatible. The agent’s resulting payoff is u, so
individual rationality is satisfied too.
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To see that the contract is optimal: notice that it gives the principal a payoff
of s∗−u. There is no way to do better, because for any contract, whatever action
(F, c) the agent takes, the sum of the two parties’ payoffs equals the surplus
s(F, c) ≤ s∗. Since the agent’s payoff needs to be at least u, the principal gets
at most s∗ − u.

Remark 8. The contract above is sometimes referred to as “selling the firm to
the agent” for the price s∗ − u, i.e. it can be interpreted as asking the agent to
pay s∗ − u to the principal, then giving the agent ownership of the output.

In the above analysis, the principal does well by simply making the agent
the beneficiary of the fruits of his labor, thus giving him incentives to choose
his action efficiently.

Although this idea is intuitive, the resulting contract is often unrealistic: If
the range of possible output levels is large (for example, the agent is responsible
for a big project), this contract may end up specifying huge positive or negative
payments depending on the realized y. There are various reasons why this might
not be appropriate; here are two main ones:

• First, the agent might be risk averse: he might prefer a less-variable
payment, even if its expected value is lower. This is modeled by assuming
that the agent maximizes an expression such as Ey∼F [u(w(y))]− c, where
u : R → R is some concave function, rather than simply maximizing
Ey∼F [w(y)] − c. In this case, the principal can do better by offering the
agent some insurance against the uncertainty in output.

• Second, there might be limited liability : large negative payments might
just be impossible (there’s no way to take away more money than the
agent owns), or might be possible but illegal.

Risk aversion is widespread in many economic applications. However, we will
turn our focus next to limited liability, as it allows us to stay within the quasi-
linear utility framework.

Remark 9. We have made a rather stark assumption about how the parties
interact: the principal gets to propose a contract, and the agent has to take
it or leave it. In reality, we might imagine that there is some bargaining over
the terms of the contract. Although we cannot predict the outcome without
assuming more specifics on the bargaining process, it might be reasonable to
assume they choose a contract w that is Pareto optimal (see page ??). In this
case, notice that if w gives the agent an expected payoff u, then w must be an
optimal contract for the principal in the model when the agent’s outside option
u is replaced by u. In other words, for a given (Y,A), we can find all the Pareto
optimal contracts by varying u and solving for the principal’s optimal contract
for each u. In the model above this doesn’t do much because the contract will
always be of the form w(y) = y − (constant), but the same observation can be
applied to more complex models, such as the one in the next section.
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2.2 A model with limited liability

We can change the model to incorporate limited liability by adding a constraint
that contracts should never pay less than some minimum amount. It is without
loss of generality to assume this minimum is 0 (otherwise, we can renormalize it
to 0 by simply translating the payments in all contracts, and the agent’s outside
option, by a constant).

Thus, for this section, we define valid contracts as follows:

Definition 10. The contract ((F, c), w) is valid if it satisfies the incentive com-
patibility and individual rationality constraints from Definition 5 and further
also satisfies

• (Limited liability) w(y) ≥ 0 for all y.

Remark 11. If u ≤ −(min(F,c)∈A c), then the individual rationality condition
is redundant. In the previous section, individual rationality was needed to
make the principal’s problem interesting (otherwise the principal could make
arbitrarily large profits by setting all values w(y) to large negative numbers).
With limited liability, this is no longer the case, so sometimes we just assume
that u is low enough that individual rationality can be ignored.

The interaction between the parties, and goal of maximizing the principal’s
payoff, remain as before.

An optimal contract for this model can be found as follows. For any fixed
action (F, c) ∈ A, we can consider the payment functions w for which ((F, c), w)
is valid (if any such w exists). Note that optimizing the principal’s payoff among
all such w is equivalent to minimizing Ey∼F [w(y)] over such w. Moreover, given
the choice of (F, c), the constraints in the definition of a valid contract are linear
inequalities on w. Thus we have the following algorithm:

Algorithm 12. 1. For each (F, c) ∈ A, solve the LP to determine a payment
function w that minimizes Ey∼F [w(y)], subject to ((F, c), w) being valid.
Record the payoff v∗(F, c) = Ey∼F [y − w(y)] accordingly. (If the LP is
infeasible, set v∗(F, c) = −∞.)

2. Identify the action (F, c) for which v∗(F, c) is maximized, and choose the
corresponding optimal payment function w.

At this point, not much can be said about optimal contracts. For example,
they may not be monotone: the agent may sometimes be paid less for higher
levels of output. (See Exercise 1.) And in general, an optimal contract will no
longer implement the surplus-maximizing action. To make progress in describing
properties of optimal contracts, we need to first make more specific assumptions
about the structure of the problem.

One common way of imposing such structure is to assume that the agent’s
actions are ordered; higher actions may be interpreted as higher levels of effort,
and we might assume that higher effort makes higher levels of output relatively
more likely. Together with a convexity assumption on output distributions (see
Remark 15), this leads to the following definition.
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Definition 13. Say the instance (Y,A, u) is monotone convex if the elements
of Y can be labeled {y1, . . . , yK} with y1 < · · · < yK , and the actions can be
labeled {(F1, c1), . . . , (FJ , cJ)} with c1 < · · · < cJ , such that:

• (Full support) fj(yk) > 0 for all j and k;

• (Monotone likelihood ratio property)

fj(yk)

fj(yk−1)
>

fj−1(yk)

fj−1(yk−1)
for all 1 < j ≤ J, 1 < k ≤ K;

• (Convexity) for each 1 < j < J , and each 1 ≤ k < K,

Fj−1(yk)− Fj(yk)

cj − cj−1
≥ Fj(yk)− Fj+1(yk)

cj+1 − cj
.

Remark 14. In the simple case K = 2, we can think of the outcomes as
“success” or “failure”; thus, higher effort makes success more likely.

Remark 15. The convexity assumption implies that the the probability of
output above yk (namely 1 − Fj(yk)) is a concave function of the effort cj . It
can be understood as saying that an intermediate effort level generates at least
as good an output distribution as an equally costly randomization between high
and low effort levels.

Proposition 16. Suppose that (Y,A, u) is monotone convex, and assume u is
low enough so that the individual rationality constraint is redundant.

There exists an optimal contract ((F, c), w) such that w(y) = 0 for all y 6=
yK .

Moreover, let (Fj∗ , cj∗) be the surplus-maximizing action (if there is more
than one maximizer, let j∗ be the highest). Then, any optimal contract imple-
ments an action (Fj , cj) with j ≤ j∗.

Proof. First, a preliminary observation: we must have fj−1(yK) < fj(yK) for
each j > 1. This is so because iterated application of the monotone likelihood
ratio property implies

fj−1(yk)

fj(yk)
>
fj−1(yK)

fj(yK)
(1)

for each k < K, and so if fj−1(yK) ≥ fj(yK) then fj−1(yk) > fj(yk) for each
other k, and then we could not have

∑
k fj−1(yk) = 1 =

∑
k fj(yk).

Now on to the contracting problem. It is evident that action (F1, c1) can be
implemented by paying 0 for every output level. We claim that, for each j > 1,
action (Fj , cj) can be implemented by the payment function

w(yK) =
cj − cj−1

fj(yK)− fj−1(yK)
, w(yk) = 0 for k < K,
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leading to the expected payment

Ey∼Fj
[w(y)] = fj(yK)

cj − cj−1
fj(yK)− fj−1(yK)

, (2)

and that there is no cheaper way to implement (Fj , cj).
First, let us show that action j cannot be implemented more cheaply than

claimed. Consider any payment function w. We have

Ey∼Fj−1 [w(y)] =

K∑
k=1

fj−1(yk)w(yk)

≥
K∑
k=1

fj−1(yK)

fj(yK)
fj(yk)w(yk)

=
fj−1(yK)

fj(yK)
Ey∼Fj

[w(y)].

(In the inequality step, we have used (1) together with w(yk) ≥ 0.) So if w
implements (Fj , cj), then

Ey∼Fj
[w(y)]− cj ≥ Ey∼Fj−1

[w(y)]− cj−1 ≥
fj−1(yK)

fj(yK)
Ey∼Fj

[w(y)]− cj−1,

hence

Ey∼Fj [w(y)] ≥ cj − cj−1
1− fj−1(yK)/fj(yK)

which is the asserted lower bound. (The last step uses fj−1(yK) < fj(yK) to
ensure the denominator is positive.)

Now let us show that the claimed contract implements action j. That is,
writing r = (cj − cj−1)/(fj(yK)− fj−1(yK)), we need to show that

fj(yK)r − cj ≥ fj′(yK)r − cj′ (3)

for each j′. Consider the convexity assumption for k = K−1, and any 1 < j̃ < J .
Since fj̃(yK) = 1− Fj̃(yK−1), we can rewrite the assumption as

fj̃(yK)− fj̃−1(yK)

cj̃ − cj̃−1
≥
fj̃+1(yK)− fj̃(yK)

cj̃+1 − cj̃
. (4)

In particular, for j̃ ≤ j, we have fj̃(yK) − fj̃−1(yK) ≥ 1
r (cj̃ − cj̃−1), and so for

any j′ < j, by summing over j̃ = j′ + 1, . . . , j we conclude fj(yK)− fj′(yK) ≥
1
r (cj−cj′). This implies (3) for j′ < j. Likewise, (4) gives us fj̃(yK)−fj̃−1(yK) ≤
1
r (cj̃ − cj̃−1) for j̃ > j, and therefore, for any j′ > j, summing over j̃ = j +

1, . . . , j′ gives fj′(yK)− fj(yK) ≤ 1
r (cj′ − cj). This implies (3) for j′ > j. Thus,

the contract implements action j.
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zj

zj+1

cj-1 cj cj+1

 fj (yK)

 fj+1 (yK)

 fj-1 (yK)

Figure 1: Costs to implement successive actions

We have now shown that, for every action j, the cheapest way to implement
it involves paying 0 for every y 6= yK , which proves the first assertion of the
proposition.

It remains to prove that any optimal contract implements an action j ≤ j∗.
For j > 1, let zj denote the expected payment given in (2), and put z1 = 0. We
claim that zj + (cj+1 − cj) ≤ zj+1 for each j < J . If j > 1, we have

zj + (cj+1 − cj) = fj(yK)
cj − cj−1

fj(yK)− fj−1(yK)
+ (cj+1 − cj)

≤ fj(yK)
cj+1 − cj

fj+1(yK)− fj(yK)
+ (cj+1 − cj)

= fj+1(yK)
cj+1 − cj

fj+1(yK)− fj(yK)
= zj+1,

where we have used (4). And if j = 1, the claim is immediate from the definition
of zj , so it holds in this case too. Thus, zj−cj is increasing in j, or equivalently,
cj − zj is decreasing. Figure 1 may be helpful in visualizing the situation: if we
take the segment between two successive points on the (cj , fj(yK)) curve and
extend it leftwards, it meets the horizontal axis at point cj − zj , and the figure
shows how concavity of the curve implies cj − zj ≥ cj+1 − zj+1.

The principal’s payoff from implementing action (Fj , cj) is Ey∼Fj
[y] − zj .

We know that for any j > j∗, we have

Ey∼Fj
[y]− cj < Ey∼Fj∗ [y]− cj∗

by definition of j∗. Adding to this cj − zj ≤ cj∗ − zj∗ , we have

Ey∼Fj
[y]− zj < Ey∼Fj∗ [y]− zj∗ ,
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so that it is not optimal for the principal to implement (Fj , cj).

Remark 17. The optimal contract identified in Proposition 16 pays only for the
highest output level and no others. An intuition is that, due to the monotone
likelihood ratio assumption, this output level is the one whose probability is most
reduced if the agent deviates to a lower action, and so loading all the payment
on this outcome is the most efficient way to discourage such deviations.

Remark 18. One of the basic lessons from this model is that, in general, the
agent’s action is “distorted downward” relative to the socially optimal action.
Due to limited liability, the principal cannot extract the full surplus of whatever
action she induces, as she could in the previous section; some of the surplus is
left to the agent, and more so for higher actions. Consequently, the principal’s
preference for inducing high actions is less strong than in the setting without
limited liability. Note, however, that this lesson depends on the monotone
convex structure we have imposed; see Exercise 3.

Remark 19. Notice that under the optimal contract specified, the agent gets
the same payoff from the targeted action (Fj , cj) or (Fj−1, cj−1) (if j > 1). This
confirms the importance, noted in Remark 6, of specifying how such indifference
should be broken.

Although the analysis here leads to some useful insights—the idea of plac-
ing payment where it can efficiently discourage deviations, and the downward
distortion—arguably the prediction remains fairly unrealistic. In particular, the
optimal contract in Proposition 16 gives no incentives over output levels other
than the highest one. This relies on a lot of faith in the monotone convex struc-
ture. If this structure is assumed when it is not actually correct (either because
the principal oversimplifies to apply Proposition 16, or because her belief about
the technology is just wrong), then things can go haywire. Suppose, say, that
the principal has adopted the optimal contract from Proposition 16, targeting
some action (Fj , cj), but in fact, the agent also has the ability to spend a cost
just slightly less than cj to produce the highest output yK with probability
equal to fj(yK) and otherwise produce no output. Then he would prefer to do
this, potentially resulting in a severe drop in the principal’s payoff.

Our next model incorporates this concern by assuming less knowledge of the
technology.

2.3 A robust model

Let us keep the limited liability assumption, but now assume that the principal
does not fully know the agent’s technology. Instead, she only knows some actions
that are available to the agent, but envisions that there may be other actions
available. Thus, an instance of the model is now given by (Y,A0, u), where A0

is a technology representing the actions known to the principal.
For this section, let us make four assumptions that will simplify the analysis:
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• Assume that u < −min(F,c)∈A0
c, so that individual rationality will not

be a concern.

• Assume that min(Y ) = 0. (This is an innocuous normalization; it can be
achieved by adding a constant to every element of Y without changing the
principal’s optimization problem.)

• Also assume that for every (F, c) ∈ A0, c > 0. (This gets rid of some
messy edge cases.)

• Assume there exists (F, c) ∈ A0 whose surplus s(F, c) is positive.

We redefine contracts for this section as follows:

Definition 20. A contract is a function w : Y → R+.

Thus, limited liability is incorporated, but a contract no longer prescribes
what action the agent should take, since this cannot be specified without know-
ing what actions are available.

Definition 21. Contract w guarantees a payoff level v to the principal if, for
every technology A such that A0 ⊆ A, there exists an action (F, c) ∈ A such
that

• Ey∼F [w(y)]− c ≥ Ey∼F ′ [w(y)]− c′ for every (F ′, c′) ∈ A, and

• Ey∼F [y − w(y)] ≥ v.

Evidently, if a contract guarantees v, it also guarantees any v′ ≤ v. We may
refer to the supremum of all v guaranteed by a given contract as the guarantee
of the contract.

Thus, for any contract, we are interested in understanding what payoff it
guarantees to the principal in spite of her uncertainty about the true technology
A.

To illustrate how one can show that a contract guarantees a certain payoff,
we now consider a particularly simple class of contracts:

Definition 22. Contract w is linear if there exists a fraction α ∈ (0, 1) such
that w(y) = αy for all y ∈ Y .

Linear contracts are widely seen in practice: for example, think of sales
agents who are paid a fixed percentage of each sale they make.

Observation 23. Suppose that the principal uses a linear contract w(y) = αy.
Write u0(α) = max(F,c)∈A0

(αEy∼F [y]−c). Then, the contract guarantees payoff
1−α
α u0(α).

(In particular, note that the guarantee is positive if α is close to 1, because
we assumed a positive-surplus action exists.)
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Proof. Note that for any technology A containing A0, and any optimal action
(F, c) ∈ A for the agent, we have

αEy∼F [y] ≥ αEy∼F [y]− c ≥ u0(α),

since any action in A0 is also in A. Therefore

Ey∼F [y − w(y)] = (1− α)Ey∼F [y] ≥ 1− α
α

u0(α).

After seeing this argument, one might next ask: is there any theoretical
reason to focus on linear contracts here? The next result shows that there is:
given the goal of maximizing the guarantee, without loss of generality, we can
restrict attention to linear contracts.

Theorem 24. If any contract w guarantees a payoff level v > 0, then there
exists a linear contract that also guarantees v.

The proof proceeds roughly as follows. First, we write down a linear program
that identifies the “worst-case” action the agent might choose if offered w. We
then use a geometric separation argument to find a linear contract that matches
w for this worst-case action, and show that because the linear contract better
aligns the agent’s interests with the principal’s, its guarantee can only be better.

Proof. Denote u0(w) = max(F,c)∈A0
(Ey∼F [w(y)]− c). Note that u0(w) < maxy w(y),

by our assumption that c > 0 for all (F, c) ∈ A0.
Consider the problem of minimizing Ey∼F [y−w(y)] over all F ∈ ∆(Y ) such

that Ey∼F [w(y)] ≥ u0(w). This is a linear program for F , and we claim that this
problem has a solution where the constraint is satisfied with equality. If not,
then the constraint can be dropped, which implies that the function y − w(y)
attains its minimum over Y at a point y with w(y) > u0(w). Then consider
the distribution F ′ that simply places probability 1 on this y; if the technology
is A = A0 ∪ {(F ′, 0)}, then the unique optimal action for the agent is (F ′, 0).
Since the principal then receives y − w(y) ≤ 0 − w(0) ≤ 0 (since 0 ∈ Y ), the
contract cannot guarantee any payoff level above 0, a contradiction.

Now let F̃ be a solution to the minimization problem above, and let ṽ be
the resulting objective value. We claim that ṽ is exactly the guarantee of w, so
that ṽ ≥ v. Indeed, for any possible technology A, an optimal action (F, c) ∈ A
necessarily satisfies Ey∼F [w(y)] ≥ Ey∼F [w(y)] − c ≥ u0(w), i.e. F is feasible in
the minimization problem, so Ey∼F [y−w(y)] ≥ ṽ, and w guarantees at least ṽ.

Conversely, for any ε > 0, by perturbing F̃ we can find F ′ ∈ ∆(Y ) such that
Ey∼F ′ [y − w(y)] < ṽ + ε and Ey∼F ′ [w(y)] > u0(w) (here we have used the fact
that u0(w) < max(w)), so if we consider the technology A = A0 ∪ {(F ′, 0)},
the agent’s unique optimal action is (F ′, 0), showing that w does not guarantee
ṽ + ε.

Now we proceed to the separation argument. Define two convex subsets S
and T of R2 as follows: S is the convex hull of all points (y, w(y)) for y ∈ Y ,
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Figure 2: Separation argument and improvement to a linear contract

while T consists of all points (p, q) such that q > u0(w) and p−q < ṽ. These sets
are disjoint: any point in their intersection would correspond to a feasible point
in the minimization problem having objective value p − q < ṽ, which cannot
exist. Therefore, there exists some line in R2 separating S and T . Expressing
this statement algebraically: there exist values κ, λ, µ ∈ R, with κ, λ not both
zero, such that

κp+ λq ≤ µ for all (p, q) ∈ S; (5)

κp+ λq ≥ µ for all (p, q) ∈ T. (6)

The argument is illustrated in Figure 2. Sets S and T are the two shaded
regions. (Although we have assumed Y is finite, w is shown as a curve for visual
clarity.)

Note that for large M , the points (−M,u0(w)+1/M) and (ṽ+M,M+1/M)
are both in T . Hence, we must have κ ≤ 0 and κ+λ ≥ 0, since otherwise one or
the other of these points would violate (6) for large enough M . Together with
(κ, λ) 6= (0, 0), these imply λ > 0. Also, note that the point (u0(w)+ṽ, u0(w)) =
(Ey∼F̃ [y],Ey∼F̃ [w(y)]) lies in S, and it also lies in the closure of T , so it must
lie on the line:

κ(u0(w) + ṽ) + λu0(w) = µ. (7)

The latter implies in turn that κ < 0, since if κ = 0, then (5) would imply
w(y) ≤ µ/λ = u0(w) for all y, contradicting u0(w) < max(w).

Now we can define our new contract. Condition (5) implies that w(y) ≤ µ−κy
λ

for all y ∈ Y . Accordingly, define w′ by w′(y) = µ−κy
λ . Then w′(y) ≥ w(y) ≥ 0

for all y, so w′ is indeed a contract. (It is shown by the thick straight line in
Figure 2.)
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We claim that w′ again guarantees at least ṽ. The calculation is a variant of
the one in Observation 23. Write α = −κ/λ > 0 and β = µ/λ, so w′(y) = αy+β.
Equation (7) can be rewritten as (1 − α)u0(w) − αṽ = β. Now consider any
technology A containing A0, and any (F ′, c′) ∈ A optimal for the agent:

Ey∼F ′ [w′(y)]−c′ ≥ max
(F,c)∈A0

(Ey∼F [w′(y)]− c) ≥ max
(F,c)∈A0

(Ey∼F [w(y)]− c) = u0(w),

where the second inequality follows from w′(y) ≥ w(y). Hence,

αEy∼F ′ [y] + β = Ey∼F ′ [w′(y)] ≥ u0(w),

and so

Ey∼F ′ [y − w′(y)] = (1− α)Ey∼F ′ [y]− β ≥ (1− α)

(
u0(w)− β

α

)
− β = ṽ.

This shows that w′ guarantees ṽ as claimed.
At this point, we have shown that there exists an “affine” contract, i.e. one

of the form w′(y) = αy + β with α, β constants, that guarantees ṽ ≥ v. We
have noted α > 0, and β = w′(0) ≥ 0. Note also that α < 1, because otherwise
w′(y) ≥ y for all y, contradicting the fact that w′ has a positive guarantee.
Finally, if β > 0 strictly, then replacing w′(y) with just αy can only improve the
guarantee (since, for any technology A, the agent’s optimal action is the same
as before, and now the principal’s payoff increases by β). After this change, our
definition of a linear contract is met.

This theorem shows that, if contracts are evaluated by their worst-case guar-
antee, then a linear contract is optimal. (To be precise, we have not yet shown
that the optimum is attained; for this, see Exercise 4.)

2.4 Applications of hidden-action models

While we have focused on the employment application for hidden-action models,
it is worth emphasizing that such models have many other applications: The
concepts are relevant any time one party designs incentives that influence the
action taken by another, by promising material rewards (which may be money,
or something else, e.g. social status) contingent on a noisy signal of the ac-
tion chosen. Here are just a few more examples to illustrate the breadth of
applications:

• Financial contracting: an investor writes a contract with a startup founder,
specifying how profits are shared between the parties; the investor needs
to be offered an adequate return, while the founder needs to be given
incentives to invest the money productively.

• Health insurance: a classic application featuring moral hazard and risk
aversion. The company wants to design the insurance contract to protect
the consumer against risks without incentivizing the consumer to spend
too much on unnecessary procedures.
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• Reputation systems: the design of the system by which ratings (for sellers
on eBay, drivers on Lyft, etc.) translate into future business affects their
incentives for performance.

• Political accountability: voters can reelect politicians or not, depending
how well they (appear to) have governed; some theorists have studied the
extent to which these reelection incentives can induce good performance.

3 Hidden-Information Models

In hidden-information models, the agent holds private information about his
preferences, and an allocation is chosen as a function of this information. Like
hidden-action models, there are a wide variety of applications. Here, for con-
creteness, we will envision the principal as a seller of a product and the agent as
a buyer. The product can be offered in different quality levels (think of a hotel
offering various room types, or a cell phone provider offering multiple service
plans), from which the buyer will choose depending on his preferences. Section
3.2 will list some other applications.

We will present a classic version of such a model here. We will adopt a
formulation with continuous types, as this makes the mathematics particularly
clean (and, if the reader has seen the theory of optimal auctions, much of the
analysis will look familiar); but discrete formulations are also possible.

Models of this sort are also often called screening models: the seller “screens”
the different types of buyer by offering multiple options that are chosen by
different types.

Remark 25. Some authors also call these adverse selection models. There is
some confusion in the literature about this term. It comes from the world of
insurance, where different buyers may choose different products, and thereby
sort themselves in a way that makes the products more costly for the seller to
provide. For example, a health insurance contract that is sold at a high price but
covers a large percentage of costs is especially likely to attract very sick people,
and these are precisely the people that the insurance company would prefer not
to attract. In the model presented below, there is nothing “adverse”: the cost
of providing a given quality q does not depend on who buys it. Nonetheless, the
term is sometimes applied to such a model.

3.1 A price-discrimination model

The agent can be given a product of quality q, which can be chosen from some
interval [q, q] ⊆ R. The agent’s preference over qualities is determined by his

type θ, drawn from a given interval [θ, θ] ⊆ R. It is important that both the
possible qualities and the types are “ordered,” with higher types both valuing
the product more overall and having stronger preference for high quality; we
shall formalize this shortly.
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If the agent of type θ purchases a good of quality q and pays a transfer t for
it, his overall payoff is u(q, θ) − t. We normalize the agent’s outside option to
0. Here u is a function satisfying the following conditions:

• u is twice continuously differentiable. (We will denote its derivatives with
respect to particular arguments via subscripts, thus writing uθ, uqθ, etc.)

• u is weakly increasing in θ, for each q ∈ [q, q]. (It is common to interpret
the minimum quality q as not receiving a product, in which case one often
sets q = 0 and assumes u(0, θ) = 0 for all θ.)

• u is strictly supermodular : for qualities q′ > q, u(q′, θ)− u(q, θ) is strictly
increasing in θ. (Given the differentiability assumption, this is equivalent
to uqθ ≥ 0, with strict inequality on a dense set.)

Producing (or acquiring) a product of quality q costs c(q) to the principal.
Thus, if the agent receives q and pays t, the principal’s payoff is t−c(q). Assume
that c is continuous.

From the principal’s point of view, the agent’s type is unknown; it is drawn
from a distribution F , assumed to have a density f on [θ, θ], which is continuous
and strictly positive throughout the interval. As before, we write F (θ) for the
probability of drawing a type ≤ θ.

An instance of the model is then given by the tuple (q, q, θ, θ, u, c, f).
We can envision the principal offering a price for each quality q (or perhaps

a subset of the possible qualities), and letting the agent choose his favorite
from the offered (quality, price) pairs. However, by the revelation principle (see
Section ??), the outcome of such an interaction can equivalently be described by
a (direct) mechanism that specifies the quality and price chosen by each type:

Definition 26. A mechanism (q, t) consists of two measurable functions q :
[θ, θ] → [q, q] and t : [θ, θ] → R. Sometimes q is called the allocation function
(or allocation rule) and t is the payment function.

Although we use the same notation q both for a typical quality level and
for an allocation function (and t likewise), the meaning should be clear from
context.

Definition 27. The mechanism (q, t) is valid if it satisfies the following condi-
tions:

• (Incentive compatibility) u(q(θ), θ) − t(θ) ≥ u(q(θ̂), θ) − t(θ̂) for all θ, θ̂ ∈
[θ, θ].

• (Individual rationality) u(q(θ), θ)− t(θ) ≥ 0 for all θ ∈ [θ, θ].

The principal’s expected payoff from mechanism (q, t) is Eθ∼F [t(θ)−c(q(θ))].
The problem is to find a valid mechanism that maximizes this payoff.

The allocation function q is implementable if there is some payment function
t such that (q, t) is a valid mechanism (and we say that t implements q). A first
question is what allocation functions are implementable—and what payments
implement them.
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Proposition 28. If (q, t) is a valid mechanism, then the function q is weakly
increasing.

Conversely, any weakly increasing q is implementable, and it is implemented
by t if and only if there is some constant C ≥ 0 such that

t(θ) = u(q(θ), θ)−
∫ θ

θ

uθ(q(θ̃), θ̃) dθ̃ − C (8)

for all θ.

Proof. First, suppose (q, t) is valid, and suppose for contradiction that θ < θ′

are two distinct types with q(θ) > q(θ′). By incentive compatibility,

u(q(θ), θ)− t(θ) ≥ u(q(θ′), θ)− t(θ′)

from which
u(q(θ), θ)− u(q(θ′), θ) ≥ t(θ)− t(θ′).

Similarly, u(q(θ′), θ′)− u(q(θ), θ′) ≥ t(θ′)− t(θ). Combining,

u(q(θ), θ)− u(q(θ′), θ) ≥ t(θ)− t(θ′) ≥ u(q(θ), θ′)− u(q(θ′), θ′).

This contradicts the strict supermodularity assumption, which tells us that
u(q(θ), ·) − u(q(θ′), ·) is strictly increasing. This shows that q must be weakly
increasing.

Henceforth, fix any q that is weakly increasing. We first show every function
t implementing q has the form in (8). For such a t, let

U(θ) = u(q(θ), θ)− t(θ) (9)

be the payoff earned by an agent of type θ in the mechanism. We claim that
U is Lipschitz continuous. To see this, let λ be an upper bound for |uθ| (which
exists since uθ is continuous); then for any θ, θ′, incentive compatibility implies

U(θ′) ≥ u(q(θ), θ′)− t(θ) ≥ (u(q(θ), θ)− λ|θ′ − θ|)− t(θ) = U(θ)− λ|θ′ − θ|.

Writing the corresponding inequality with θ and θ′ reversed, and combining,
we obtain |U(θ′) − U(θ)| ≤ λ|θ′ − θ|, so U is Lipschitz continuous as claimed.
This in turn implies U is absolutely continuous, i.e. it is differentiable almost
everywhere and is given by the integral of its derivative.

However, if we fix any θ ∈ (θ, θ) at which U is differentiable, incentive
compatibility says that U(θ′) ≥ u(q(θ), θ′)− t(θ) for all θ′, with equality when
θ′ = θ. Both sides of this inequality are differentiable in θ′ at the equality point
θ′ = θ, so their derivatives there must coincide, i.e.

dU

dθ
= uθ(q(θ), θ).

Thus we have, for each θ,

U(θ)− U(θ) =

∫ θ

θ

uθ(q(θ̃), θ̃) dθ̃.
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Substituting into (9) and solving for t(θ) shows that t(θ) has the form given in
(8), with C = U(θ). Finally, C ≥ 0 follows from individual rationality.

Let us conversely show that any payment function as in (8) implements q.

First, we verify incentive compatibility. Consider any θ and θ̂. Define U as in

(9), and note that U(θ) =
∫ θ
θ
uθ(q(θ̃), θ̃) dθ̃ + C.

Now,
u(q(θ̂), θ)− t(θ̂) = U(θ̂) + (u(q(θ̂), θ)− u(q(θ̂), θ̂)).

Checking incentive compatibility is thus equivalent to checking

U(θ)− U(θ̂) ≥ u(q(θ̂), θ)− u(q(θ̂), θ̂),

or equivalently ∫ θ

θ̂

uθ(q(θ̃), θ̃) dθ̃ ≥
∫ θ

θ̂

uθ(q(θ̂), θ̃) dθ̃. (10)

For θ̂ < θ, this is true because monotonicity of q and supermodularity of u imply
uθ(q(θ̃), θ̃) ≥ uθ(q(θ̂), θ̃) for each θ̃ > θ̂. For θ̂ > θ, (10) has the integration
ranges “reversed,” with the lower endpoint above the upper endpoint, so it may
be easier to understand in the equivalent form∫ θ̂

θ

uθ(q(θ̃), θ̃) dθ̃ ≤
∫ θ̂

θ

uθ(q(θ̂), θ̃) dθ̃.

Again, this is true because monotonicity and supermodularity ensure uθ(q(θ̃), θ̃) ≤
uθ(q(θ̂), θ̃) on the relevant range of θ̃.

Finally, U(θ) = C ≥ 0, so individual rationality is satisfied for type θ. For
any other type θ, individual rationality then follows from incentive compatibility
and monotonicity of u in the type, as

u(q(θ), θ)− t(θ) ≥ u(q(θ), θ)− t(θ) ≥ u(q(θ), θ)− t(θ) ≥ 0.

Given Proposition 28, we can rewrite the principal’s problem as follows:
choose a weakly increasing function q : [θ, θ] → [q, q] and a constant C ≥ 0 to
maximize ∫ θ

θ

(
u(q(θ), θ)−

∫ θ

θ

uθ(q(θ̃), θ̃) dθ̃ − C − c(q(θ))

)
f(θ) dθ.

Clearly it is optimal to set C = 0. For the inner integral, we can swap the order
of integration between θ and θ̃, then relabel θ̃ as θ; with these steps, we can
rewrite the principal’s objective as∫ θ

θ

(
u(q(θ), θ)− 1− F (θ)

f(θ)
uθ(q(θ), θ)− c(q(θ))

)
f(θ) dθ. (11)
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The nice thing about this expression is that, for each value of θ, the integrand
depends on q(θ) but not on the values of q at any other points. Thus, we can
hope to optimize q(θ) for each θ separately.

With this in mind, we define the following objects:

Definition 29. u(q, θ) = u(q, θ) − 1−F (θ)
f(θ) uθ(q, θ) is the virtual value of type

θ for quality q. s(q, θ) = u(q, θ) − c(q) is the virtual surplus with type θ and
quality q.

For each θ, let q◦(θ) be the quality that maximizes the virtual surplus s(q, θ)
(or the highest maximizer, if there is more than one). With a few further
assumptions, we can characterize an optimal solution to the principal’s problem.

Theorem 30. Suppose that the utility function u is three times continuously
differentiable, with uqθθ ≤ 0 everywhere, and that the function h(θ) = f(θ)/(1−
F (θ)) is differentiable and increasing in θ.

Then, taking q(θ) = q◦(θ), and taking payments t(θ) given by (8) with C = 0,
gives a valid mechanism that maximizes the principal’s payoff.

Proof. It is immediate that the suggested allocation function maximizes (11)
as long as it is indeed weakly increasing. To check this, we show that the
virtual surplus s(q, θ) is weakly supermodular (i.e. for q′ > q, s(q′, θ)− s(q, θ) is
weakly increasing in θ). This will imply the result, since if θ < θ′ but q◦(θ) >
q◦(θ′), we would have s(q◦(θ), θ′)− s(q◦(θ′), θ′) < 0 ≤ s(q◦(θ), θ)− s(q◦(θ′), θ),
contradicting supermodularity.

Writing s(q, θ) = u(q, θ) − uθ(q, θ)/h(θ) − c(q), we take the cross-partial
derivative and find

sqθ = uqθ −
uqθθ
h

+
uqθhθ
h2

.

Every term is nonnegative, so sqθ ≥ 0, and s is supermodular.

Remark 31. The technical condition that h be increasing, or equivalently that
1−F (θ) be log-concave, is satisfied by many standard probability distributions,
such as uniform, truncated normal, or truncated exponential.

It is common to compare the qualities in the principal’s optimal mechanism
with the socially optimal qualities. For each type θ, let q∗(θ) be the quality
that maximizes the surplus s(q, θ) = u(q, θ)− c(q) (or the highest such quality,
if there is more than one). Note that q∗ is weakly increasing in θ, by an argument
similar to the proof of Theorem 30, because the surplus is supermodular.

Observation 32. For each θ, we have q◦(θ) ≤ q∗(θ), with equality at θ = θ.

Proof. If q◦(θ) > q∗(θ), we would have s(q◦(θ), θ) < s(q∗(θ), θ) and s(q∗(θ), θ) ≤
s(q◦(θ), θ), implying s(q◦(θ), θ) − s(q◦(θ), θ) < s(q∗(θ), θ) − s(q∗(θ), θ). But
s(q, θ) − s(q, θ) = uθ(q, θ)/h(θ) which is weakly increasing in q, so we get a
contradiction.

Also, to see the equality statement, just note that s(q, θ) = s(q, θ) when
θ = θ.
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Observation 32 is often summarized by saying there is “no distortion at
the top, downward distortion elsewhere.” (Compare to Remark 18 from the
hidden-action model.)

An intuition is that giving a less-than-efficient quality level to type θ reduces
the total surplus, but it increases the amount of money the principal can extract
from types above θ, because they are willing to pay an especially large amount
to avoid getting stuck with a low quality. The optimal choice of quality trades
off these two effects. For the highest type θ, there are no higher types, so the
second effect disappears, which is why no distortion arises.

Remark 33. The idea behind the distortion is sometimes credited to the
nineteenth-century civil engineer Jules Dupuit, who wrote the following about
third-class train cars: “It is not because of the few thousand francs which would
have to be spent to put a roof over the third-class carriages or to upholster the
third-class seats that some company or other has open carriages with wooden
benches... What the company is trying to do is prevent the passengers who can
pay the second-class fare from traveling third class; it hits the poor, not because
it wants to hurt them, but to frighten the rich.”

However, Dupuit went on to assert that first-class carriages were made ex-
cessively luxurious for the same reason. In the model here, this would mean that
high types receive above-efficient quality levels. But the model does not predict
this. One might think that giving a high type θ an excessive quality allows the
seller to extract more payments from lower types, but this is incorrect: prices
are limited by the high types’ incentive to imitate lower ones, not vice versa.
(This depends on our assumption about outside options; see Exercise 6.)

Remark 34. As already mentioned, if the reader is familiar with the theory
of optimal auctions, many of the steps here are similar. This is more than
coincidence: Indeed, the one-buyer optimal “auction” is just a special case of
this model, where q is interpreted as a probability of receiving the object rather
than a quality, u(q, θ) = qθ and c(q) = 0.

Remark 35. What happens if the extra assumptions of Theorem 30 do not
hold? In this case, the allocation function q obtained by maximizing virtual
surplus may not be increasing, and therefore may not be implementable. In-
stead, a process called “ironing” must be applied to account for the monotonicity
constraint on q, resulting in intervals of types that all receive same quality. Re-
gardless, it remains true that an optimal mechanism only distorts downwards:
if we consider any weakly increasing q(θ) that sometimes distorts upwards, the
alternative allocation function min{q(θ), q∗(θ)} is also weakly increasing and
yields higher profit than q, by logic similar to Observation 32.

Remark 36. We could also imagine giving the seller more power by allowing
randomized mechanisms, that specify a probability distribution over qualities
and payments for each type.

Randomizing the payment is not relevant, since our agent has quasi-linear
utility and so paying a random amount is equivalent to just paying the expected
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value. However, randomizing the allocation function can be useful in better
screening the different types of agents. One can repeat the analysis above,
allowing for randomized mechanisms, and show that the expected profit still
equals the expected virtual surplus. For each type θ, the virtual surplus can
be maximized over all randomized qualities by just putting probability 1 on
q◦(θ). So if q◦(θ) is increasing, as it is under the assumptions of Theorem
30, then it remains optimal even among randomized mechanisms. However,
when the assumptions do not hold, one can give instances in which randomized
mechanisms do strictly better than deterministic ones.

3.2 Applications of hidden-information models

As with hidden-action models, hidden-information models have many applica-
tions. For example, they can apply to sales of a product or service, not only
when the allocation variable is quality, but also when it is some other dimension,
such as quantity or speed of service, that some buyer types value more than oth-
ers. Here are some other domains of application, with suitable reinterpretations
of the variables:

• Seller-side information: these models can also apply to trades where the
seller, rather than the buyer, holds private information. For example,
perhaps a firm is buying some input from a supplier and negotiating over
the terms of sale, and the firm has uncertainty about how costly it is for
the supplier to produce a given quality or quantity of the input.

• Taxation: models based on the framework here are widely applied to
study tax systems. Here, individuals have private information about their
income-earning ability, and the tax schedule shapes their preferences for
choosing one job (or level of work intensity) over another.

Many of the applications from Section 2 can also be approached through
hidden-information models instead; one or the other approach may be more
relevant depending on the situation. For example, suppose an employer hires
a worker to produce output, and the worker’s effort maps deterministically to
output; however, the worker has private information about his ability, which
determines how hard it is for him to produce any given level of output. This
is naturally described by a hidden-information model, where θ is the worker’s
ability, and q is the level of output he produces; the employer offers wages for
each possible output level, and the different types of worker self-select. This is
sometimes called a “false moral hazard” model.

4 Exercises

1. Consider the hidden-action model with limited liability as in Section 2.2.
Suppose that there are just two actions. Assume that u is low enough so
that individual rationality is not relevant.

20



(a) Show that there is an optimal contract that pays a positive amount
for at most one output level. Identify this contract explicitly.

(b) Give an example of an instance where any optimal contract fails to
be monotone: that is, there exist output levels y < y′ such that
w(y) > w(y′).

2. Consider the hidden-action model with limited liability as in Section 2.2.
Assume that u > 0. Let (F ∗, c∗) be the surplus-maximizing action, with
surplus s∗, and suppose there exists some output level y that receives
positive probability under F ∗, but zero probability under F for any other
(F, c) ∈ A. Prove that the principal can achieve a payoff of s∗ − u.

3. Consider the hidden-action model with limited liability as in Section 2.2.
Give an instance where there is a unique surplus-maximizing action, and
where an optimal contract induces an action that has higher cost than the
surplus-maximizing one.

4. Consider the robust contracting model with limited liability as in Section
2.3. Consider a linear contract w(y) = αy with α ∈ (0, 1).

(a) Suppose that u0(α) > 0. Show that the guarantee of this contract is
exactly 1−α

α u0(α).

(b) In terms of A0, characterize explicitly the α for which this guarantee
is maximized.

5. Consider the robust contracting model, but now without limited liabil-
ity. Thus, a contract is defined as a function w : Y → R, such that
max(F,c)∈A0

(Ey∼F [w(y)]− c) ≥ u (to ensure individual rationality). A
guaranteed payoff (for the principal) is defined as before. Identify the
highest possible guaranteed payoff, and a contract that achieves it.

6. Consider the hidden-information model in Section 3.1, but now suppose
that higher types of agent have much higher outside options: the individual
rationality constraint is replaced by requiring u(q(θ), θ) − t(θ) ≥ u(θ)
for each θ, where u is a function such that, for each q, u(θ) − u(q, θ) is
increasing in θ. Repeat the analysis. What changes? (Note: to give
a characterization of the optimal mechanism analogous to Theorem 30,
you may need to modify the extra regularity assumptions made in that
theorem.)

7. Consider the hidden-information model, but now drop the differentiability
assumptions on u: instead, assume only that u is continuous, weakly in-
creasing in θ, and strictly supermodular. Show by example that there can
be two different payment functions t, t′ : [θ, θ] → R that both implement
the same allocation function q, such that t′ − t is not constant.

8. Consider the hidden-information model, but now suppose that the agent
learns his type after agreeing to transact with the principal. That is:
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• first the principal offers a mechanism, specifying qualities and prices
(q, t);

• the agent decides whether to accept the mechanism or reject it and
receive his outside option payoff of 0;

• if the agent has accepted the mechanism, his type is drawn, θ ∼ F ;
and then

• he selects a (quality, price) pair from among those offered by the
principal (he cannot exit the mechanism at this point, even if his
best option gives him negative payoff).

Show how to formulate the incentive compatibility and individual ratio-
nality constraints in this model. Identify an optimal mechanism. What is
the principal’s payoff?

5 Notes

A careful treatment of a hidden-action model with risk aversion (which we have
not covered here) can be found in Grossman and Hart (1983). (The conditions in
the “monotone convex” formulation here also appear in that paper.) A canonical
reference for a formulation without risk aversion, and with limited liability, is
Innes (1990). The robust contracting model of Section 2.3 draws heavily on
Carroll (2015).

Classic references for the basic hidden-information model are Mussa and
Rosen (1978) and Maskin and Riley (1984). The remark on randomized mech-
anisms draws on Strausz (2006). For the theory of optimal auctions, which
uses much of the same machinery, see Myerson (1981). The passage from Jules
Dupuit is as quoted in Ekelund (1970).
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