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Abstract

We consider the following variant of the random assignment problem: There are

n agents and n indivisible objects to be assigned to them. A mechanism chooses a

lottery over the possible assignments, given agents’ reported preferences. However,

agents can only report their k favorite objects to the mechanism, for some fixed

k ≤ n − 2. We show that no mechanism satisfies ex-post efficiency (relative to

the limited information available to the mechanism) and strategyproofness. Our

framework also allows for some objects to be identical, and for the number of objects

to exceed the number of agents.
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1 Introduction

In the traditional version of the random assignment problem, there are n agents and n

indivisible objects. Each agent is to receive one of the objects. The objects may, for

example, be housing units, spaces at schools, or time slots for the use of a machine. Each

agent has preferences over the objects. A mechanism specifies an allocation of the objects,

possibly using lotteries to help ensure fairness, as a function of the agents’ preferences.

The seminal study of the random assignment problem is Bogomolnaia and Moulin

[2]. They considered a setting in which each agent can report only a (strict) ordinal

preference ranking of the objects to the mechanism. The appropriate notion of efficiency

for random allocations is then ordinal efficiency, defined as follows: A random allocation

L ordinally dominates random allocation L′ if every agent i’s probability distribution over

objects under L first-order stochastically dominates his distribution under L′ (relative to

his preference ordering), with strict domination for some i; then L is ordinally efficient if

there is no other random allocation that dominates it. Bogomolnaia and Moulin showed

that when n ≥ 4, there is no mechanism that satisfies strategyproofness, equal treatment

of equals, and ordinal efficiency at all preference profiles. In a related paper, Zhou [14]

considered a setting in which agents can report full von Neumann-Morgenstern utility

functions to the mechanism, and showed that for n ≥ 3, there is no mechanism satisfying

strategyproofness, ex-ante Pareto efficiency, and equal treatment of equals.

In this note we instead suppose the information available to the mechanism is coarser:

each agent can only report his k favorite objects, for some fixed k. In realistic situations

with many different objects, it is reasonable to imagine that k is small compared to n.

It may be difficult for agents to figure out their full preferences or to communicate these

preferences to the mechanism. Many real-world assignment or matching mechanisms

constrain agents to list a small number of choices. For example, the New York City

school choice mechanism only allows students to rank their 12 most preferred programs,

out of over 500 available [1]; in Spain, college applicants can apply to only 8 programs,

and in Hungary they are limited to 4 [5].

The setting considered in [2] corresponds to k = n or n− 1. In this note we consider

k ≤ n − 2. We obtain a new impossibility result for any such k: there is no random

allocation mechanism satisfying strategyproofness and ex-post efficiency. (In this setting

with incompletely known preferences, ex-post efficiency means that whatever allocation

is chosen, there is no other allocation that is guaranteed to be a Pareto improvement

given the limited preference information available to the mechanism. This is weaker
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than efficiency with respect to the true full preferences, which one easily sees cannot be

guaranteed, even ignoring strategic issues.) Note that when k decreases, strategyproofness

becomes a stronger requirement but efficiency becomes weaker. Thus, our result does not

follow from that of [2], nor vice versa; nor does the result for one value of k imply the

result for any other k.

We actually prove our result in a setting that is more general than the traditional

random assignment problem, in two respects. First, we allow that some of the objects

may be identical, as in some of the existing literature, especially the literature on large

assignment problems, e.g. [4, 6, 8, 10]. The agents report their k most preferred object

types. The number m of distinct object types, and the number of objects of each type, are

taken to be fixed; a mechanism specifies a random allocation for each profile of preferences.

Second, we allow that there may be more objects than agents; an assignment gives each

agent one object and may leave some objects left over. (The case where there are fewer

objects than agents also fits into our framework by assuming a number of copies of a

“null” object type, as long as we allow that agents may find some real object types less

desirable than the null type.) The impossibility result holds as long as k ≤ m − 2 and

there are some k object types whose quotas add up to less than the number of agents.

The result for the traditional setting, when there are exactly n objects and they are all

distinct, is just a special case.

Some common mechanisms that artificially constrain agents to rank only their top k

choices were previously studied by Haeringer and Klijn [5] and by Pathak and Sönmez

[12]. However, the present note seems to be the first to consider the mechanism design

problem with this constraint. Existing literature on large markets also considers rankings

of fixed length [7, 9, 13], but in that literature agents really do have preferences only over

k choices, whereas in our model agents can have preferences over the remaining object

types but are unable to express them.

2 The model

We consider a set of m object types a1, . . . , am. For each object type aj there is a quota

qj ≥ 1 of objects of that type. There are n agents, who will simply be referred to by the

numbers 1, . . . , n. The number of agents is less than or equal to the number of objects:

n ≤ q1 + · · ·+ qm. The numbers m, qj, n are fixed in what follows.

Each agent has a strict preference ordering over the object types. All strict preference

orderings are possible. However, we will assume that, for some fixed positive integer
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k ≤ m, each agent is constrained to report only the list consisting of his k favorite object

types in order. Such a list is called a ranking, and the object types in the list are said

to be ranked by the agent. If an agent’s preferences are aj1 Â · · · Â ajm , we will write

aj1 Â · · · Â ajk
to denote his (true) ranking. We let R denote the set of all possible

rankings. A typical profile of agents’ rankings will be denoted by R = (R1, . . . , Rn) ∈ Rn.

For any such profile R, agent i, and ranking R′
i ∈ R, we write (R′

i, R−i) for the profile

obtained by taking R and replacing i’s ranking by R′
i. (All the dependences of these

definitions on k are notationally suppressed, since k is held fixed.)

An allocation is an assignment of one object type to each agent, such that each object

type aj is assigned to at most qj agents. (If n < q1 + · · · + qm, then some objects are

left unassigned.) Agents are assumed to have selfish preferences over allocations: each

agent cares only about what object type he gets. A random allocation is a probability

distribution over allocations. Let X be the set of all allocations, and ∆(X ) the set of all

random allocations.

A random allocation induces for each agent a random allotment — a probability

distribution over object types. If p is a random allotment, we write p(aj) for the probability

assigned to object type aj. Given an agent’s ranking aj1 Â · · · Â ajk
, we say that random

allotment p dominates random allotment p′ if

• ∑t
s=1 p(ajs) ≥

∑t
s=1 p′(ajs) for each t = 1, . . . , k, and

• p(aj) ≤ p′(aj) for each unranked object type aj.

It is easy to check that p dominates p′ if and only if, for every von Neumann-Morgenstern

utility function consistent with the ranking aj1 Â · · · Â ajk
, the expected utility from p

is greater than or equal to the expected utility from p′. If at least one of the inequalities

holds strictly, then p strictly dominates p′.

Given a profile of the agents’ rankings, an allocation X Pareto dominates an allocation

X ′ 6= X if every agent i either

• gets the same object type under X as X ′, or

• gets a ranked object type under X and an unranked object type under X ′ (according

to i’s ranking), or

• gets ranked object types under both allocations, with the object type assigned by

X ranked higher than that assigned by X ′.
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Equivalently, the rankings contain enough information to guarantee that every agent

weakly prefers X over X ′. An allocation is Pareto efficient if it is not Pareto dominated

by any other allocation. Note that this is weaker than requiring Pareto efficiency with

respect to the agents’ true, complete preferences.

A random allocation is ex-post efficient if every allocation in its support is Pareto

efficient.

An aside on this efficiency concept is in order. An alternative efficiency criterion,

following the traditional definition of ordinal efficiency [2], would be as follows. For two

random allocations L,L′, say that L strictly ordinally dominates L′ if, for every agent

i, the random allotment given to i by L dominates the random allotment given to i by

L′, with strict domination for some i. Then say that L is ordinally efficient if no other

random allocation strictly ordinally dominates it.

This is a natural definition. If L is ordinally dominated by some L′, then for any profile

of von Neumann-Morgenstern utility functions consistent with the rankings, L′ ex-ante

Pareto dominates L in terms of expected utilities. Conversely, one can also show that if L

is ordinally efficient, then there exist some utility functions consistent with the rankings

for which L is ex-ante Pareto efficient. (This is similar to the ordinal efficiency welfare

theorem [11] and to its generalization in [3], but requires a separate proof, because the

convexity condition in [3] is not satisfied when preferences over unranked object types

must be strict. Details are available from the author.)

Ex-post efficiency is a weaker requirement than ordinal efficiency. If L is ex-post

inefficient, then choose some allocation X in its support and replace it by an allocation

that Pareto dominates it; the resulting random allocation then strictly ordinally dominates

L. This shows that ordinal efficiency implies ex-post efficiency. The converse is not true,

as shown by the following example, adapted from [2]. Consider three object types a, b, c,

with respective quotas 1, 1, 2, and k = m = 3, n = 4. The four agents have the following

preference rankings: agents 1 and 2 have the preference a Â b Â c, while 3 and 4 have

b Â a Â c. Let L be the lottery allocation putting probability 1/4 on each of the allocations

(a, b, c, c), (b, a, c, c), (c, c, a, b), (c, c, b, a). (The notation (a, b, c, c), for example, means

that agents 1, 2, 3, 4 receive a, b, c, c respectively.) Then L is ex-post efficient, but it is

not ordinally efficient, because it is ordinally dominated by the lottery that consists of

(a, c, b, c), (c, a, c, b) each with probability 1/2.

Our impossibility theorem will use the criterion of ex-post efficiency. Since ordinal

efficiency is stronger, the theorem will of course still be true if ex-post efficiency is replaced

by ordinal efficiency.
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Now that we have laid out our notions of preferences and efficiency, we can discuss the

mechanism design problem. We would like to allocate the objects to the agents in a way

that makes use of their rankings. This is done by a mechanism. In our environment, a

mechanism is a function f : Rn → ∆(X ), specifying a random allocation for each possible

profile of rankings.

The mechanism f is ex-post efficient if, for every profile R, f(R) is ex-post efficient

(relative to the rankings R). It is strategyproof if, for all R ∈ Rn, all agents i and all

R′
i ∈ R, the random allotment given to i by f(R) dominates the random allotment given

to i by f(R′
i, R−i) (relative to i’s true ranking Ri). This says exactly that, no matter what

utility function agent i has, and no matter what rankings the other agents report, agent

i would rather report his true k favorite object types than any other ranking.

Our main theorem is:

Theorem 1 Suppose that k ≤ m− 2, and there exist some k different object types whose

quotas add up to less than n. Then no mechanism is both ex-post efficient and strategy-

proof.

The assumptions on the parameters are tight. If k = m, so that a ranking is the

same as a full preference ordering, then we can allocate the objects using the serial

dictatorship mechanism: agent 1 gets his favorite object (more precisely, an object of

his favorite type); then agent 2 gets his favorite object from the ones remaining, and so

forth. This mechanism is ex-post efficient and strategyproof. (It can also be made to

meet any reasonable equity criterion, by first randomly reordering the agents.) The case

k = m− 1 is identical to k = m, since an agent’s ranking when k = m− 1 determines his

full preference ordering. And if there are no k quotas that add up to less than n, then we

can again apply serial dictatorship: whenever any agent i gets his turn to choose, he can

be assured of getting a ranked object type, since it is not possible for all objects of his k

ranked types to have been already used up.

We can also compare our result to existing results on the random assignment problem.

We will call our problem the traditional random assignment problem if every quota qi = 1

and also n = m: all objects are distinct, and there are as many agents as objects. We

then immediately have, as a special case of Theorem 1:

Corollary 2 In the traditional random assignment problem, if k ≤ n− 2, no mechanism

is both ex-post efficient and strategyproof.

For comparison, for k = n ≥ 4, Bogomolnaia and Moulin [2] showed that there is no

mechanism that is ordinally efficient, strategyproof, and satisfies equal treatment of equals,
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an equity property requiring that if Ri = Ri′ then i and i′ should get the same random

allotment under f(R). Our Theorem 1 is similar, but weakens ordinal efficiency to ex-post

efficiency and assumes no equity requirements.

We can also reinterpret any mechanism f as a function from profiles of full preference

orderings to ∆(X ), by truncating each agent’s ordering to the top k choices and then

applying f . This allows us to compare mechanisms defined for different values of k.

Notice that, for a given preference ordering over all object types, if a random allotment p

dominates random allotment p′ when agents are allowed to rank their k−1 favorite object

types, then p still dominates p′ when they are allowed to rank k object types; but the

converse does not hold. Thus, dominance conditions become stronger when k is replaced

by k − 1 (and all other parameters are held fixed). It follows that as k decreases, ex-

post efficiency becomes a weaker requirement, but strategyproofness becomes a stronger

requirement. So the conclusion of Theorem 1 for any one value of k does not imply the

conclusion for any other value of k.

3 The proof

We first sketch the proof of Theorem 1 in the traditional case. Let f be an ex-post

efficient, strategyproof mechanism. Suppose that some t agents report the ranking a1 Â
a2 Â · · · Â ak, and the remaining agents respectively have at+1, at+2, . . . , an as their first-

choice objects. Then the first t agents can only be assigned objects a1, . . . , at, and all

the remaining agents must get their first choices. The proof is by induction on t: By the

induction hypothesis, any one of the first t agents can assure himself of at by claiming

it as his first choice; so by strategyproofness, each of these agents can only get objects

weakly preferred to at, that is, a1, . . . , at. Then the remaining objects at+1, . . . , an must

go to the other n− t agents; ex-post efficiency requires that each of these agents get his

first choice. Now consider the profile where the first k+2 agents report a1 Â · · · Â ak, and

the remaining agents have first choices ak+3, . . . , an respectively. Any one of the first k+2

agents can assure himself of ak+2 by reporting it as his first choice, so by strategyproofness,

he must get one of a1, a2, . . . , ak, ak+2. But this means that the first k + 2 agents all are

guaranteed to get one of these k + 1 objects, which is impossible.

The proof of the general case is longer, but the core of the argument remains as above.

Proof of Theorem 1: Suppose the mechanism f is ex-post efficient and strategy-

proof; we will obtain a contradiction. The core of the argument is expressed in the

following lemma:
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Lemma 3 Let b1, . . . , bm be some permutation of the object types a1, . . . , am, and let

r1, . . . , rm be the correspondingly permuted quotas. For j = 1, . . . , m, write sj = r1 +

r2 + · · · + rj. For i = 1, . . . , n, let d(i) denote the smallest positive integer such that

sd(i) ≥ i. Let t be any integer with 0 ≤ t ≤ min{n, sk+1}.
Let R be a profile of rankings having the following property: it is possible to arrange the

agents in some order such that the first t agents all have the ranking b1 Â b2 Â · · · Â bk,

and for any i > t, the ith agent has bd(i) as his first choice. Then, the random allocation

f(R) is such that each of the first t agents (if t > 0) is guaranteed to get one of the object

types b1, . . . , bd(t), and each of the remaining agents gets his first choice with probability 1.

Notice that d(i) is the index such that, if objects were handed out to agents 1, 2, . . . , n

in order, starting with all the objects of type b1, then all those of type b2, and so forth

until every agent had an object, then agent i would receive bd(i).

Proof: We use induction on t. For the base case t = 0, the number of agents whose

first choice is bj is at most rj, for each j = 1, . . . , m. Thus, it is possible to allocate the

objects so that each agent gets his first choice. So ex-post efficiency requires that f(R)

put probability 1 on the allocation that gives every agent his first choice.

Now suppose the lemma holds for t − 1. Consider the profile R in which all of the

first t agents (with respect to some ordering) have the ranking b1 Â · · · Â bk, and the ith

agent has first choice bd(i) for each i > t. Refer to the first t agents as the aligned agents

and the others as unaligned.

If any aligned agent reported bd(t) as his first choice instead, then by the induction hy-

pothesis, he would get bd(t) with probability 1. Therefore, by strategyproofness, f(R) must

give each such agent a random allotment that dominates the allotment putting probability

1 on bd(t). Any such random allotment has its support contained in {b1, b2, . . . , bd(t)}.
This shows that each aligned agent can only get objects of types b1, . . . , bd(t). It remains

to show that each unaligned agent must get his first choice.

Let X be an allocation in the support of f(R). So by the above, X assigns each

aligned agent one of the object types b1, . . . , bd(t). Suppose that some unaligned agent is

not assigned his first choice. We will construct an allocation X ′ that Pareto dominates

X, contradicting ex-post efficiency.

To construct X ′, first give every unaligned agent his first-choice object type. (This

can be done since, as before, for each j, the number of unaligned agents who have bj as

their first choice is at most rj). These objects are all of types bd(t), bd(t)+1, . . . , bm. Next,

for every aligned agent who is assigned one of the object types b1, . . . , bd(t)−1 at X, assign
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him the same object type at X ′ as at X.

This takes care of all the agents except for the aligned agents who are assigned bd(t)

at X. Now arbitrarily assign each such agent in turn any remaining object whose type is

one of b1, . . . , bd(t). This can be done unless we run out of objects of all of these types.

Notice, however, that the number of such objects is sd(t), while the number of agents who

are to be assigned such an object at X ′ is at most sd(t) (since, for any i > sd(t), the ith

agent is unaligned and has been assigned one of bd(t)+1, . . . , bm). So we never run out of

objects of types b1, . . . , bd(t), and X ′ can be constructed as described.

Now we check that X ′ Pareto dominates X. Each agent either

• is unaligned and gets his first-choice object type at X ′, or

• is aligned and gets the same object type at X ′ as at X, or

• is aligned, gets bd(t) at X, and gets one of b1, . . . , bd(t) at X ′.

In the first two cases it is clear that the agent does at least as well at X ′ as at X. In the

third case, the hypothesis t ≤ sk+1 implies d(t) ≤ k + 1, which ensures that b1, . . . , bd(t)−1

are all ranked object types, and bd(t) is either ranked below them or (if d(t) = k + 1) is

unranked. So in this case too, the agent weakly prefers X ′ over X. Finally, since some

unaligned agent does not get his first choice at X but does get it at X ′, the domination

is strict.

So X is Pareto inefficient, which contradicts ex-post efficiency of f . This completes

the induction step and proves the lemma. ¤
Now we can finish up the proof of Theorem 1. Relabeling the object types a1, . . . , am if

necessary, we may assume they are ordered so that q1 ≤ q2 ≤ · · · ≤ qm. Since we assumed

some k quotas sum to less than n, we certainly have q1 + · · ·+ qk < n. We split into three

cases.

• Case I: q1 + q2 + · · ·+ qk + qk+2 < n.

Permute the object types by taking bk+1 = ak+2, bk+2 = ak+1, and bj = aj for all

other j. Let sj and d(i) be defined as in the lemma. So sk+1 < n. Now consider a

profile R at which each of the first sk+1 + 1 agents has the ranking b1 Â · · · Â bk,

and agent i has bd(i) as his top choice for each i > sk+1 + 1. If any one of the

first sk+1 + 1 agents changed his top choice to bk+2, then the resulting profile would

fit the case t = sk+1 of the lemma, and we would know that this agent must be

assigned bk+2. Therefore, by strategyproofness, at f(R), each of the first sk+1 + 1
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agents gets a random allotment that dominates bk+2; that is, he is guaranteed to

get one of b1, b2, . . . , bk, bk+2. Consider any allocation in the support of f(R). The

first sk+1 + 1 agents all get objects of types b1, b2, . . . , bk, bk+2, but the number of

such objects is only

q1 + q2 + · · ·+ qk + qk+1 ≤ q1 + q2 + · · ·+ qk + qk+2 = sk+1.

This is a contradiction.

• Case II: n ≤ q1 + q2 + · · ·+ qk + qk+1.

Let bj = aj for all j. Then, applying the lemma with t = n, we see that if all n

agents report the ranking a1 Â a2 Â · · · Â ak, then each agent can only get one of

the object types a1, . . . , ak+1.

Now let bk+1 = ak+2, bk+2 = ak+1, and bj = aj for all other j. We can again apply

the lemma with t = n, and we see that if all n agents report a1 Â a2 Â · · · Â ak,

each agent can only get the object types a1, . . . , ak, ak+2.

Combining these two findings, we see that at this profile, every agent must get one

of the object types a1, . . . , ak. But again there are not enough of these objects to

give them to all n agents — a contradiction.

• Case III: q1 + q2 + · · ·+ qk + qk+1 < n ≤ q1 + q2 + · · ·+ qk + qk+2.

Let t∗ = q1 + q2 + · · · + qk+1. Consider now a profile R at which the first t∗ agents

all report the ranking a1 Â · · · Â ak, and the remaining agents all have ak+2 as their

first choice.

Letting bj = aj for all j, and applying the lemma with t = t∗ = sk+1, we see that

at f(R), the first t∗ agents each can only get objects of types a1, . . . , ak+1. Letting

bk+1 = ak+2, bk+2 = ak+1, and bj = aj for all other j, and again applying the lemma

with t = t∗ < sk+1, we see that at f(R), the first t∗ agents each can only get

a1, . . . , ak, ak+2. So as in case II, these agents can only get object types a1, . . . , ak.

The number of objects of these types is q1 + · · ·+ qk < t∗, so once again we have a

contradiction.

¤
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4 Further work

We wrap up by outlining a general framework for random assignment problems that could

potentially unify the ideas of [2] and [14] as well as our Corollary 2. (For comparability

to previous literature, we stick to the traditional random assignment problem here.)

Suppose there are n indivisible objects a1, . . . , an (each with a quota of 1) and n

agents. Allocations and random allocations are defined as before. Each agent has an

unknown cardinal utility function over the objects; we may identify such utility functions

with elements of Rn. A type is a nonempty subset of Rn. We assume there is a fixed type

space T , a set of pairwise disjoint types; each agent’s true utility function must belong to

some type in T . A mechanism can only elicit the type of each agent. Thus, the modeler’s

choice of type space captures both the preferences that agents are allowed to have and

the coarseness of information that they can communicate to the mechanism.

Given a type ti for agent i, the random allotment p dominates random allotment p′

if, for every possible utility function ui ∈ ti, p gives agent i at least as high expected

utility as p′. We say p strictly dominates p′ if the inequality is strict for some ui ∈ ti.

Given a profile of types t = (t1, . . . , tn), a random allocation L strictly dominates random

allocation L′ if every agent i’s random allotment under L dominates his random allotment

under L′ (with respect to ti), with strict domination for some i. L is efficient if no other

random allocation strictly dominates it. (When the types are convex and relatively open,

Carroll [3] showed that for every efficient lottery L, there are utility functions ui ∈ ti such

that L is actually ex-ante Pareto efficient.)

A mechanism is a function f : T n → ∆(X ), that is, a function that selects a random

allocation for each possible profile of types. The mechanism is efficient if, for each profile

t, f(t) is efficient with respect to t. It is strategyproof if, for each profile t, each agent i,

and each possible misreport t′i, the random allotment that i gets under f(t) dominates

the random allotment under f(t′i, t−i) (with respect to the true type ti).

A general impossibility theorem would say that, under some suitable conditions on

the type space T , there is no mechanism that is efficient, strategyproof, and satisfies some

equity property (such as equal treatment of equals). The theorem of Bogomolnaia and

Moulin [2] gives this conclusion when n ≥ 4 and T is the “full ordinal” type space (each

type consists of all utility functions consistent with a given strict preference order over the

objects). That of Zhou [14] gives the conclusion when n ≥ 3 and T is the “full cardinal”

type space (consisting of all types that contain exactly one utility function). The present

note implies the conclusion when T is the “ranking” type space for a given k ≤ n−2 (each
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type consists of all utility functions consistent with a given ranking). Trying to formulate

general conditions on T under which the impossibility result holds is a challenging topic

for future research.
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