
Supplemental Material for

“A General Framework for Robust Contracting Models”

This Supplemental Material for “A General Framework for Robust Contracting

Models” gives more details of the extensions and further applications for the linearity

result. Sections, results, and equations in this Supplemental Material are numbered

starting with “S”; numbers without “S” refer to the main paper.

To briefly outline, we first discuss in Section S-1 how the framework can be ex-

tended to include a participation constraint. Then, in Section S-2 we discuss two

applications of the framework beyond the ones described in the main paper: one that

involves contracting with a supervisor who subcontracts with a team of agents, which

we call the “supervised team” model, and one where the principal contracts directly

with many agents, which we call the “unsupervised team” model. The latter is based

on the model in Dai and Toikka (2021). In Section S-3, we show how to compare

worst-case outcomes in the robust principal-agent model and hierarchical models (i)

and (ii), and in Section S-4 we discuss the technical assumption of compactness of

the set of S-A contracts in hierarchical model (i). To finish, Section S-5 contains all

remaining proofs, both those omitted from the main text as well as those for results

within this supplement.

S-1 Participation constraint

Our general framework in Subsection 3.1 does not include a participation constraint.

One interpretation is that the outside option is low enough that any such constraint

is non-binding: any contract satisfying limited liability would always be accepted by

the counterparty.

However, we can also slightly extend the framework to model the possibility that

the counterparty could reject the contract. We will briefly describe how to do so here.

LetW ⊆ C+(Y ) be some (exogenously specified) set of contracts, which we inter-

pret as the contracts that the counterparty would definitely accept. Let us assume

the principal is interested in maximizing the worst-case guarantee VP over contracts

in W . (She could then compare the resulting payoff to her outside option, which is

the guarantee she would get by offering a contract outside W .)
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Suppose that W satisfies the following property: If w ∈ W , and w′ ∈ C+(Y ) such

that EF [w′(y)] ≥ EF [w(y)] for all F ∈ Φ(w), then w′ ∈ W . This is essentially an

analogue of Responsiveness for the participation decision. Notice that if w ∈ W is any

contract satisfying VP (w) > 0, then the preceding property implies that the contract

w′ constructed in the proof of Theorem 1 is also in W . Thus, when the principal is

restricted to the set of contracts W , she can still focus on linear contracts, as long as

her outside option is nonnegative.

S-2 Team Applications

In the following two subsections, we present two models of contracting with a team

that fall within the framework of Section 3, to further illustrate the breadth of the

framework. We demonstrate that both models satisfy Richness and Responsiveness,

so Theorem 1 applies. For brevity, we do not concern ourselves with existence of

an optimal contract here; this means we can also dispense with the extra detail of

principal-preferred tie-breaking.

S-2.1 Supervised Team with Differentiated Roles

In this model, the supervisor oversees a team of two agents, who both simultaneously

take costly actions. Agent 1’s action produces some intermediate good in a compact

set Y1 ⊆ R+, and agent 2’s action determines how the intermediate good is mapped to

final output, which is some element of Y . Modeling this requires some more notation.

Let C(Y1,∆(Y )) denote the space of continuous functions from Y1 to ∆(Y ), endowed

with the topology of uniform convergence.1 Given K ∈ C(Y1,∆(Y )), each y1 ∈ Y1

defines a probability measure K(y1) ∈ ∆(Y ). For G ∈ ∆(Y1), and K ∈ C(Y1,∆(Y )),

define the probability measure KG ∈ ∆(Y ) on Borel sets A ⊆ Y as

KG(A) =

∫
Y1

[K(y1)](A)G(dy1).

The principal contracts with the supervisor through w ∈ C+(Y ). The supervisor

contracts with both agent 1 and agent 2 by choosing contracts wA1 and wA2. The

1As in Chapter 19 of Aliprantis and Border (2006), this is the space of Markov transitions
satisfying the Feller property.
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supervisor only observes final output, and must compensate both agents based only

on this. We assume wA1 and wA2 are constrained to lie in S, an exogenously specified,

compact and convex subset of C+(Y ) that contains all linear contracts with slopes

α ∈ [0, 1]. Agent 1 has access to an intermediate technology A1, a compact subset

of ∆(Y1) × R+. Agent 2 has access to an intermediate-to-final-output conversion

technology, A2, which is a compact subset of C(Y1,∆(Y )) × R+. When actions

(G, c1) ∈ A1 and (K, c2) ∈ A2 are chosen by agents 1 and 2, respectively, final output

is produced stochastically according to KG.

Like in hierarchical model (i), we assume that the principal only knows AP1 ⊆ A1

and AP2 ⊆ A2, and the supervisor and agents 1 and 2 all know A1 and A2. Thus

AP1 and AP2 are the primitives of the model. Given contracts wA1, wA2 and actions

(G, c1) ∈ A1 and (K, c2) ∈ A2, agent 1 and 2’s payoffs are, respectively,

VA1(G, c1|wA1, K) = EKG[wA1(y)]− c1,

VA2(K, c2|wA2, G) = EKG[wA2(y)]− c2.

These payoffs (for fixed wA1, wA2 and fixed technologies A1 and A2) define a

simultaneous-move game between agents 1 and 2. Since the agent payoffs are con-

tinuous and action sets compact, there exists at least one mixed Nash equilibrium

in this game, by Glicksberg’s existence theorem (Glicksberg, 1952). For any such

equilibrium σ = (σ1, σ2), we can write the resulting distribution over final output as

H(σ) = K(σ2)G(σ1), where G(σ1) is the weighted average over G generated by mixed

strategy σ1, and likewise K(σ2).

Let E(wA1, wA2,A1,A2) be the set of equilibria of the game, and let

ES(wA1, wA2,A1,A2) ⊆ E(wA1, wA2,A1,A2) be the subset of equilibria that maxi-

mize the supervisor’s payoff EH(σ)[w(y)−wA1(y)−wA2(y)]. We thus assume that the

supervisor can direct the agents as to which Nash equilibrium to play, given contracts

wA1 and wA2. This is similar to the supervisor-preferred tie-breaking assumptions in

the hierarchical models. We then write

VS(wA1, wA2|w,A1,A2) = EH(σ)[w(y)− wA1(y)− wA2(y)]

for (any) σ ∈ ES(wA1, wA2,A1,A2), and write ΓSA(w,wA1, wA2,A1,A2) for the corre-

sponding set of distributions H(σ). Thus VS is the supervisor’s objective, and ΓSA is
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the set of distributions that may ensue. Now define

ΓiS(w,A1,A2) =
⋃

(wA1,wA2)∈arg maxS×S VS(·,·|w,A1,A2)

ΓSA(w,wA1, wA2,A1,A2).

In words, for fixed P-S contract w and true technologies A1 and A2, this is the set

of final output distributions such that (a) the supervisor is choosing maximizing con-

tracts wA1, wA2 and (b) the agents are playing a supervisor-preferred Nash equilibrium

given wA1, wA2. We can verify nonempty-valuedness of ΓiS(w,A1,A2) using compact-

ness arguments as in the earlier models. The outcome correspondence is then defined

to be

ΦST (w) =
⋃

technologies A1⊇AP
1 ,A2⊇AP

2

ΓiS(w,A1,A2),

and the principal evaluates contracts according to the resulting objective V ST
P (w).

Proposition S-1. For any w ∈ C+(Y ), there exists a linear w′ ∈ C+(Y ) such that

V ST
P (w′) ≥ V ST

P (w).

The proof of Proposition S-1 is similar to those in the hierarchical models. How-

ever, the argument for Richness requires a little more subtlety than before. In the

earlier models with a single agent, the argument ran essentially as follows: take the

technology under which the agent would produce the given distribution F , add to

it the option to produce the new F ′ at cost 0, and check that distribution F ′ would

indeed result. In the present model, the analogue is to add to agent 2’s technology

an extra action that always produces distribution F ′ (regardless of the value of y1) at

cost 0. When we do this, it is clear that the supervisor can induce F ′ by giving both

agents the zero contract (analogously to the earlier hierarchical models), but it is not

immediate that she would actually want to do so. The issue is that we cannot add

F ′ without also making other new opportunities available to the supervisor, namely

mixed Nash equilibria in which agent 2 mixes between (F ′, 0) and one or more other

actions. But with a little extra work, we can show that the supervisor cannot prefer

to induce one of these other equilibria without contradicting the assumption that F

was optimal originally.
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S-2.2 Unsupervised Team

We now consider a different formulation with a team, one that is based on the model

in Dai and Toikka (2021), with some simplification. In the unsupervised team model,

the principal directly contracts with a team of I ≥ 2 agents, indexed i = 1, . . . , I.

Agents simultaneously take unobservable costly actions, which jointly determine final

output. The principal has uncertainty about both which costly actions the agents

can take, and which distribution over output the unknown actions induce. Adopting

the formalism from Dai and Toikka, a technology consists of a finite set A = ×Ii=1Ai
(each Ai nonempty), and mappings specifying action costs, ci : Ai → R+ for each

agent i, and the output distribution produced by any action profile, H : A → ∆(Y ).

Agent i’s action set is Ai. Given a profile of mixed actions σ = (σ1, . . . , σI) (so each σi

is an element of ∆(Ai)), we define H(σ) =
∑

a∈A σ(a)H(a), where σ(a) =
∏

i σi(ai)

is the probability of action profile a being played under σ. We also define for each

player i the average cost of mixed action σi as ci(σi) =
∑

ai∈Ai
σi(ai)ci(ai).

Consistent with all of the previous applications, we assume that the prin-

cipal is poorly informed of the technology, so that the principal only knows

(AP , cP1 , . . . , cPI , HP ); these are the model primitives. It is assumed that the un-

known A ⊇ AP is finite, ci : Ai → R+ for all i, and H : A → ∆(Y ), such that

ci(ai) = cPi (ai) for all i, ai ∈ APi , and H(a) = HP (a) for all a ∈ AP . We use notation

(A, H, c) ⊇ (AP , HP , cP ) to denote this relationship. Additionally, we assume that

cPi (ai) > 0 for all ai ∈ APi , for all i. (This assumption simplifies the proofs, though it

diverges from Dai and Toikka.)

Our substantive departure from Dai and Toikka’s model comes through the con-

tracts that the principal offers the agents. We assume that the principal can offer

a contract w ∈ C+(Y ), and the payment from w is equally split among agents, so

that each agent receives w(y)/I when y is the realized output. In contrast, Dai and

Toikka assume that the principal can offer each agent a different contract, so that

the principal chooses (w1, . . . , wI) ∈ C+(Y )I . However, their analysis shows that the

principal can only get a positive guarantee by offering the agents incentives that are

affine transformations of each other. Whereas this affine equivalence is a result in

their model, we take it as a starting point, and we add just a slight further simplifi-

cation by assuming that the payments offered to all agents are equal, thus allowing

the model to fit within the single-contract framework developed in Section 3.
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The payoff of agent i under pure strategy profile a and contract w is thus

EH(a) [w(y)/I]− ci(ai).

We extend payoffs to mixed strategy profiles linearly, as usual. With these pay-

offs, a contract w and technology (A, H, c) define a simultaneous-move normal form

game. Denote E(w,A, H, c) as the set of (mixed) Nash equilibria, which is nonempty

since A is finite. In the case that there are many equilibria, we assume that

an equilibrium σ maximizing the sum of agents’ payoffs, EH(σ)[w(y)] −
∑

i ci(σi),

is selected (henceforth, such an equilibrium is called “agents-optimal”).2 We de-

note the set of agents-optimal equilibria as EA(w,A, H, c) ⊆ E(w,A, H, c). Let

Γ(w,A, H, c) =
{
H(σ) : σ ∈ EA(w,A, H, c)

}
. Hence the outcome correspondence is

defined as

ΦUT (w) =
⋃

(A,H,c)⊇(AP ,HP ,cP )

Γ(w,A, H, c).

The principal evaluates contracts according to the resulting objective V UT
P (w).

We show that the outcome correspondence ΦUT satisfies Richness and Respon-

siveness, hence linear contracts are optimal in this environment, as Dai and Toikka

also show.

We begin with a useful characterization of ΦUT . First, observe that for any fixed

(A, H, c) and contract w a potential game is induced among the agents, with potential

P : A → R defined by

P (a) = EH(a)[w(y)]− I
I∑
i=1

ci(ai).

(Precisely, the potential is (1/I) · P (a), but it will be more convenient for us to

work with P .) Let a0 denote a maximizer of P among action profiles in AP , and let

w0 = P (a0) be the corresponding maximum value.

Lemma S-2. ΦUT (w) = {F ∈ ∆(Y ) : EF [w(y)] > w0}.

The proof, which adapts techniques from Dai and Toikka (2021), is in Section

2Dai and Toikka (2021) instead assume the equilibrium that is best for the principal is played.
This version of the model would require a bit more argumentation to fit with our framework, as
Responsiveness can be violated for some (undesirable) contracts.
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S-5. The argument that every distribution that may be chosen does indeed satisfy

EF [w(y)] > w0 is essentially a direct application of the potential game structure, with

additional use of the equilibrium selection criterion and the assumption cPi (ai) > 0 to

ensure the inequality holds strictly. For the converse, given a distribution F satisfying

the inequality, we construct a new technology by adding a single zero-cost action to

each agent’s action set, so that when all agents play the new action, the resulting

distribution is F . We carefully specify the distributions at all of the other new

profiles (where some, but not all, agents play their new action) to make the new

action dominant for each agent, thereby making F the unique equilibrium outcome.

With the characterization of ΦUT in Lemma S-2, it is straightforward to check

Richness and Responsiveness, allowing us to apply Theorem 1.

Proposition S-3. For any w ∈ C+(Y ), there exists a linear w′ ∈ C+(Y ) such that

V UT
P (w′) ≥ V UT

P (w).

Again, the proof is in Section S-5.

S-3 Model Comparisons

As a further application of the hierarchical models considered in Section 5, we inves-

tigate the possibility of comparing outcomes across the robust principal-agent model,

hierarchical model (i), and hierarchical model (ii), holding fixed the known technology

AP . How does the principal’s guarantee change as we move from one organizational

structure to another? In the hierarchical models, the supervisor does not produce

anything and takes some portion of the payoff, leading one to believe that the prin-

cipal would be better off directly contracting with the agent. On the other hand, the

supervisor has better information than the principal about the technology accessible

to the agent, so perhaps the principal can benefit by delegating contract-writing to

the supervisor, if the supervisor can write a cheaper contract that incentivizes the

agent to produce more. So the comparison of the models is not so obvious.

In the traditional setting, where all parties know the true technology, there is a

simple proof that the principal does better without the supervisor: For any action

(F, c), the expected amount that she has to pay the supervisor to induce that action is

at least as high as she would have to pay the agent directly to incentivize the action,

since the principal has to at least cover the supervisor’s cost of incentivizing the action.
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Since every action becomes more expensive with the supervisor present, the principal’s

payoff can only become lower. For the robust version of the model, one might try to

adapt this argument as follows: consider the worst-case technology in the principal-

agent model; then apply the argument above to show that the principal gets an even

lower payoff in the hierarchical model (under this same technology) than the principal-

agent model. However, this adaptation does not work, because typically there is no

one “worst-case technology” in the principal-agent model, without reference to a

particular contract. More precisely, if we denote by ūP the value of the principal’s

guarantee in the optimal robust contract, there does not exist any single technology A
that prevents the principal from achieving a payoff higher than ūP ; i.e. the principal’s

maxmin problem does not have a saddle point. (This is Proposition 1 in Carroll

(2015), section II.D.)

Nonetheless, we can make a clean comparison between organizational structures.

The main result of this section is that the payoff guarantee to the principal can be

weakly ordered from highest to lowest as follows: first the robust principal-agent

model, then hierarchical model (i), then hierarchical model (ii). In fact, the compar-

ison across models holds for any fixed contract: we are able to show that the set of

possible outcomes from the outcome correspondence grows as we move from model

to model, which immediately implies that the worst-case outcome becomes weakly

worse. (To compare hierarchical models (i) and (ii), we require an additional techni-

cal assumption, because model (i) had the added restriction that wA had to lie in the

exogenous set S. The technical assumption is not binding for linear w and hence for

optimal w.)

Proposition S-4. Given AP and a grounded contract w ∈ C+(Y ), we have ΦPA(w) ⊆
ΦPSA(i)(w), and if S contains all contracts wA = βw with β ∈ [0, 1], then ΦPSA(i)(w) ⊆
ΦPSA(ii)(w). These facts imply that

max
w∈C+(Y )

V PA
P (w) ≥ max

w∈C+(Y )
V
PSA(i)
P (w) ≥ max

w∈C+(Y )
V
PSA(ii)
P (w).

For some technologies AP , the optimal robust guarantee is the same in all three

models, so the bounds in Proposition S-4 are tight. For instance, this happens under

any technology AP in which the highest-mean-output action actually has cost 0.

To obtain more precise comparisons across models for specific AP , we must apply

Theorem 1 and take advantage of the analysis described in Section 7 to solve for
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optimal robust guarantees.

S-4 Compactness of Supervisor’s Contract Space

This section of the Supplement discusses the assumption, made in hierarchical model

(i), that the contracts offered by the supervisor are constrained to a compact set

S ⊆ C+(Y ). (For simplicity we focus here on the hierarchical model, but note that

the same assumption was also made in the supervised team model in Subsection S-2.1,

and very similar comments apply there.)

Indeed, some kind of restriction on the set of contracts allowed to the supervisor is

needed in order to ensure that the supervisor’s maximization problem has a solution.

Otherwise, for a given technology A ⊇ AP and fixed contract w between principal

and supervisor, it is possible that ΓiS(w,A) is empty. In such a case, the supervisor’s

behavior has not been defined.

The concern for possible nonexistence of a solution to the supervisor’s problem

is not simply due to pathologies. Indeed, even when the supervisor receives a linear

contract from the principal, and the true technology contains just two actions with

continuous densities, it is possible that there exists no optimal contract for the su-

pervisor in the space C+(Y ). We give an example similar to that of Mirrlees (1999),

but adapted to the context of hierarchical model (i).

Take w(y) = y, so the principal gives all output to the supervisor. Let Y = [0, 1]

and take technology A = {(F, 0), (G, c)}, where F and G have densities

f(y) = −2y + 2

g(y) = 2y

respectively. Then EF [y] = 1/3 and EG[y] = 2/3. Suppose 0 < c < 1/3, so the agent

taking action (G, c) generates more total surplus than (F, 0). To induce the agent

to take action (G, c), the supervisor must pay the agent at least c in expectation

under G. If the supervisor could pay just this amount to incentivize the agent to

take action (G, c) over (F, 0), then the supervisor could capture the entire expected

surplus, EG[y] − c. In fact, the supervisor can induce action (G, c) by paying (in

expectation) arbitrarily close to c, for example, by paying c/(2− 4ε)ε for realizations

y > 1 − ε and 0 for other realizations. (To be precise, this payment function is
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disallowed because it is not continuous, but it can be arbitrarily approximated by

continuous functions.) However, the supervisor cannot pay exactly cost c, since F

has full support and so any (nonzero) contract would leave the agent a positive rent

under (F, 0), hence must pay strictly more than c in order to induce the agent to take

action (G, c). So the supremum payoff for the supervisor is not attained.

S-5 Remaining Omitted Proofs

Proofs from Section 5.2: Hierarchical Model (i)

Proof of Lemma 6. Sufficiency is immediate. For necessity, let (A, c, wA) be a PSA(i)-

certificate for F under w. Create a new technology A′ = A ∪ {(F, 0)} and put

w′A ≡ 0. We check that (A′, 0, w′A) is also a PSA(i)-certificate. Technology A′ allows

the supervisor to induce F at cost 0 to herself, which is clearly cheaper than any other

way to induce F , and is also weakly more profitable to her than inducing any other

action in A (since inducing (F, c) via wA was optimal under A). Thus, conditions

(a)–(c) are satisfied. It remains to check (d). Note that if another action (F ′, c′) ∈ A′

also passes (a)–(c) under w′A, we must have c′ = 0, and EF ′ [w(y)] = EF [w(y)]. So, for

inducing F to have been optimal for the supervisor underA, it must have already been

available at cost 0, i.e. A = A′, and the contract wA must have paid 0 for F , therefore

also for F ′ (otherwise (b) would have been violated for the original certificate). Thus

both F and F ′ survived (b)–(c) under wA. Since F further survived (d) under wA,

we conclude EF ′ [y] ≤ EF [y], hence F survives (d) under w′A as needed.

Proof of Proposition 7. (Richness) Suppose w ∈ C+(Y ), F ∈ ΦPSA(i)(w), F ′ ∈ ∆(Y )

such that EF [y] = EF ′ [y], EF [w(y)] ≤ EF ′ [w(y)]. By Lemma 6, there exists a PSA(i)-

certificate for F under w of the form (A, 0, 0).

Create a new technology A′ = A∪{(F ′, 0)}. We argue that (A′, 0, 0) is a PSA(i)-

certificate for F ′. In the new technology, the supervisor can induce F ′ using the zero

contract, and this is at least as good for her as inducing F was under A, so condition

(a) is satisfied. The agent is willing to take any zero-cost action, so (b) is satisfied.

The preceding observation also implies that (c) is satisfied. Finally, if (d) is violated,

there is some other (F ′′, c′′) ∈ A that also satisfies (a)–(c) with wA ≡ 0 and is strictly
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better for the principal; but this means c′′ = 0, and then

EF ′′ [y − w(y)] > EF ′ [y − w(y)] ≥ EF [y]− EF ′′ [w(y)] ≥ EF [y − w(y)].

Here the first inequality is by the principal’s strict preference; the second is because

EF ′ [y] = EF [y] by assumption but the supervisor was willing to induce F ′′; the third

is because the supervisor was willing to induce (F, 0) rather than (F ′′, 0) in A. We

conclude that the principal strictly prefers F ′′ over F under w, which means that F

would have also violated (d) under A and wA ≡ 0, contrary to assumption.

Hence we have a PSA(i)-certificate for F ′, so F ′ ∈ ΦPSA(i)(w), and Richness holds.

(Responsiveness) Let w,w′ ∈ C+(Y ), F /∈ ΦPSA(i)(w) satisfy the hypotheses of

Responsiveness, and suppose, toward a contradiction, that F ∈ ΦPSA(i)(w′). By

Lemma 6, we can find a PSA(i)-certificate for F under w′ of the form (A, 0, 0). Also,

let F̃ be a distribution that could be chosen under A and w, and let (A, c̃, w̃A) be a

PSA(i)-certificate for F̃ accordingly.

Under w′, the supervisor can still induce (F̃ , c̃) via contract w̃A, and applying the

hypotheses of Responsiveness and optimality of inducing (F, 0) under w′ and (F̃ , c̃)

under w we have

EF [w′(y)] ≥ EF̃ [w′(y)− w̃A(y)] ≥ EF̃ [w(y)− w̃A(y)] ≥ EF [w(y)] ≥ EF [w′(y)].

Then, all the above inequalities are equalities. In particular, EF [w′(y)] = EF [w(y)]

and EF̃ [w′(y)] = EF̃ [w(y)]. Then, under w, it remains optimal for the supervisor to

induce F via the zero contract, and F ∈ ΓSA(w, 0,A). However, F /∈ ΓPSA (w, 0,A),

so it must be the case that there is another F ′ ∈ ΓPSA (w, 0,A), which gives both

the supervisor and agent the same payoffs as F under (w, 0), but gives the principal

strictly higher payoff. Then, since F ′ ∈ ΦPSA(i)(w), we have EF ′ [w′(y)] ≥ EF ′ [w(y)]

by the hypothesis of Responsiveness. This must be an equality, otherwise (F, 0) would

not survive supervisor-preferred tie-breaking under w′. Therefore, F ′ ∈ ΓSA(w′, 0,A),

and

EF ′ [y − w′(y)] = EF ′ [y − w(y)] > EF [y − w(y)] = EF [y − w′(y)],

contradicting the assumption that F survived principal-preferred tie-breaking under

w′. This checks Responsiveness.
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So Theorem 1 applies, and we can restrict to linear contracts when maximizing

V
PSA(i)
P . It remains to show that Φ̃PSA(i) is lower hemicontinuous, to ensure that the

optimum is attained.

(Lower Hemicontinuity) Let ε > 0, α ∈ [0, 1], F ∈ Φ̃PSA(i)(α). Let (A, 0, 0) be a

PSA(i)-certificate for F under wα (using Lemma 6). Since F is principal-preferred,

F has the highest mean among zero-cost actions in A. If F = δȳ, then for any α, the

supervisor cannot earn a higher amount than αȳ, so F ∈ Φ̃PSA(i)(α) for all α. So we

can assume F 6= δȳ.

Given a neighborhood O of F , choose F ′ as we did in the lower hemicontinuity

argument in the robust P-A model, so that F ′ ∈ O. Note that |V i
S(wA|wα′ ,A) −

V i
S(wA|wα′′ ,A)| ≤ |α′ − α′′| · ȳ for any α′, α′′ and wA; consequently, f ∗(α′) =

maxwA∈S V
i
S(wA|wα′ ,A) must be a continuous function, since when α′ is moved by

a small amount η, the max cannot fall by more than η · ȳ.

Now, we can find η > 0 such that α′ ∈ Bη(α) \ {0} =⇒ f ∗(α′) < α′EF ′ [y],

via the same justifications as in the robust P-A argument. Hence constructing A′ =

A ∪ {(F ′, 0)} yields ΓiS(wα′ ,A′) = {F ′}, hence F ′ ∈ Φ̃PSA(i)(α′) ∩ O.

Proofs from Section 5.3: Hierarchical Model (ii)

Proof of Lemma 8. Sufficiency is immediate. For necessity, let (A,AS, c, wA) be a

PSA(ii)-certificate for F under w. Create new technologies A′ = AS ′ = AS∪{(F, 0)};
we show that (A′,AS ′, 0, w′A ≡ 0) is again a PSA(ii)-certificate. Contract w′A ≡ 0

ensures that the supervisor obtains at worst V u
S (w′A|w,AS

′
) ≥ EF [w(y)], which is at

least as good as the worst case from any other contract (since the latter worst case

either could also have happened under some superset of AS or uses action (F, 0));

therefore condition (a) is satisfied. The agent is inclined to take any zero-cost action,

satisfying (b). Inducing F at cost 0 is at least as good for the supervisor as any

other zero cost action in A′, since otherwise the supervisor could have been assured

strictly better under AS using the zero contract, and (c) would have been violated

under A and AS. Therefore (c) holds. To check (d), note that if a different action

(F ′, c′) ∈ A′ passes (a)–(c), it must be that c′ = 0, and EF ′ [w(y)] = EF [w(y)].

However, then (F ′, 0) ∈ AS, so under AS the supervisor could already induce F ′ with

the zero contract. Then, for F to have been induced under A and wA, it must be that

(F, 0) ∈ A and wA paid 0 for F , therefore also for F ′ (otherwise (b) would have been

violated). Thus both F and F ′ survived (b)–(c) under the original certificate. Since
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F further survived (d), we conclude that EF ′ [y] ≤ EF [y], so F survives (d) under the

new (claimed) certificate, as needed.

Proof of Proposition 9. (Richness) Suppose w ∈ C+(Y ), F ∈ ΦPSA(ii)(w), F ′ ∈ ∆(Y )

such that EF [y] = EF ′ [y] and EF [w(y)] ≤ EF ′ [w(y)]. By Lemma 8, we have a PSA(ii)-

certificate for F under w of the form (A,AS = A, 0, 0).

Put A′ = AS ′ = A ∪ {(F ′, 0)}, and w′A ≡ 0. We show that (A′,AS ′, 0, w′A)

is a PSA(ii)-certificate for F ′. In the new technology, the supervisor can obtain

V u
S (w′A|w,AS

′
) ≥ EF ′ [w(y)], and no other contract w̃A can guarantee better (just

consider the worst-case technology Ã ⊇ AS under w̃A; then Ã∪{(F ′, 0)} is a possible

technology containing AS ′, and the agent either takes the same action as under Ã or

takes action (F ′, 0)). So, condition (a) is satisfied. The agent is willing to take any

zero-cost action, so (b) is satisfied. Since EF [w(y)] ≤ EF ′ [w(y)] and (c) held for the

original certificate for F , (c) is satisfied. Finally, if (d) is violated, there is some other

(F ′′, c′′) ∈ A that also satisfies (a)–(c) with w′A and is strictly better for the principal;

but this means c′′ = 0, and then

EF ′′ [y − w(y)] > EF ′ [y − w(y)] ≥ EF [y]− EF ′′ [w(y)] ≥ EF [y − w(y)].

Here, the first inequality is by the principal’s strict preference; the second is because

EF ′ [y] = EF [y] by assumption but supervisor tie-breaking is satisfied for F ′′ under

A′; the third is because supervisor tie-breaking held for F , and (F ′′, 0) was in A. We

conclude that the principal strictly prefers F ′′ over F under w, which means F would

also have violated (d) under the original certificate, contrary to assumption.

Hence we have a PSA(ii)-certificate for F ′, and F ′ ∈ ΦPSA(ii)(w).

(Responsiveness) Let w,w′ ∈ C+(Y ) and F /∈ ΦPSA(ii)(w) satisfy the hypotheses

of Responsiveness, and suppose to the contrary that F ∈ ΦPSA(ii)(w′). By Lemma 8,

there exists a PSA(ii)-certificate for F under w′ of the form (A,AS = A, 0, w′A ≡ 0).

Also, let w̃A be an S-A contract that maximizes V u
S (·|w,AS).

Consider any possible technology Â ⊇ AS, and any resulting actions F̂ ∈
ΓPSA (w, w̃A, Â) and F̂ ′ ∈ ΓPSA (w′, w̃A, Â). We have

EF̂ ′ [w
′(y)− w̃A(y)] ≥ EF̂ [w′(y)− w̃A(y)] ≥ EF̂ [w(y)− w̃A(y)],

where the first inequality occurs because the agent is indifferent between F̂ and F̂ ′
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but breaks ties to favor the supervisor, and the second inequality comes from the hy-

pothesis of Responsiveness since F̂ ∈ ΦPSA(ii)(w). Taking infimum over technologies

Â,

V u
S (w̃A|w′,AS) ≥ V u

S (w̃A|w,AS). (S-1)

Now the following string of inequalities holds:

V u
S (0|w′,AS) ≥ V u

S (w̃A|w′,AS) ≥ V u
S (w̃A|w,AS) ≥ V u

S (0|w,AS) ≥ V u
S (0|w′,AS)

and is a cycle, so all of the inequalities are equalities. The first inequality is the

optimality of w′A = 0 under w′, the second is from (S-1), the third is optimality of

w̃A under w, and the fourth is from the hypothesis of Responsiveness EF [w(y)] ≥
EF [w′(y)] and F ∈ ΓSA(w′, 0,AS), which together ensure the supervisor is assured at

least as high a payoff by incentivizing (F, 0) using w′A ≡ 0 under w as she would be

under w′.

This cycle of equalities means that it is also optimal for the supervisor to give

contract w′A ≡ 0 under w and AS, and F ∈ ΓSA(w, 0,A). By assumption, then, F is

defeated in principal-preferred tie-breaking, so there is F̃ ∈ ΓPSA (w, 0,A), F̃ 6= F , so

that F̃ ∈ ΦPSA(ii)(w). The hypothesis of Responsiveness again says that EF̃ [w′(y)] ≥
EF̃ [w(y)] and EF [w(y)] ≥ EF [w′(y)], but it must be that EF [w(y)] = EF̃ [w(y)].

Combining gives EF̃ [w′(y)] ≥ EF [w′(y)], but we must have equality since otherwise

F /∈ ΓSA(w′, 0,A). Then F̃ ∈ ΓSA(w′, 0,A), and

EF̃ [y − w′(y)] = EF̃ [y − w(y)] > EF [y − w(y)] = EF [y − w′(y)],

contradicting the assumption F ∈ ΓPSA (w′, 0,A).

So Theorem 1 applies, and we can restrict to linear contracts when maximizing

V
PSA(ii)
P . It remains to show that Φ̃PSA(ii) is lower hemicontinuous, to ensure that the

optimum is attained.

(Lower Hemicontinuity) Let ε > 0, α ∈ [0, 1], F ∈ Φ̃PSA(ii)(α). Using Lemma 8,

let (A,AS = A, 0, 0) be a PSA(ii)-certificate for F under wα. As in hierarchical model

(i), if F = δȳ, then the supervisor can do no better than earning wα(ȳ), so for any

neighborhood of α, the supervisor is at the very least indifferent between inducing

(F, 0) and any other action, so F ∈ ΓuS(wα′ ,AS,A) for any α′ in this neighborhood.

So we can assume F 6= δȳ.
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Given a neighborhood O of F , let F ′ ∈ O be the distribution con-

structed in the proof of lower hemicontinuity in Proposition 5. For any α′, de-

fine f ∗(α′) = maxwA∈C+(Y ) V
u
S (wA|wα′ ,AS), and let w∗A(α′) ∈ arg maxwA∈C+(Y )

V u
S (wA|wα′ ,AS). Since V u

S (wA|wα′ ,AS) ≤ V i
S(wA|wα′ ,AS) for all wA and wα′ ,

f ∗(α′) ≤ V i
S(w∗A(α′)|wα′ ,AS). We also know (as in the proof of Proposition 7) that

there is η > 0 such that, when α′ ∈ Bη(α)\{0}, V i
S(w∗A(α′)|wα′ ,AS) < α′EF ′ [y]. Com-

bining these steps, then, for all such α′, f ∗(α′) < α′EF ′ [y]. Hence constructing AS ′ =
A′ = A ∪ {(F ′, 0)} yields ΓuS(wα′ ,AS

′
,A′) = {F ′}, hence F ′ ∈ Φ̃PSA(ii)(α′) ∩ O.

Proofs from Section 6: An Example Where Responsiveness Fails

Proof of Proposition 10. We can assume the contract w is grounded. Suppose F ∈
ΦPSA(iii)(w), so there is some β ∈ [0, 1] for which βw is optimal for the supervisor,

and some A such that F ∈ ΓSA(w, βw,A). Let F ′ be any other distribution with

EF ′ [w(y)] ≥ EF [w(y)]. Then F ′ also leads to (weakly) higher expected values than

w for both the agent’s payment βw(y) and the supervisor’s payoff w(y) − βw(y),

so defining A′ = A ∪ {(F ′, 0)}, we have F ′ ∈ ΓSA(w, βw,A′). Consequently, F ′ ∈
ΦPSA(iii)(w) as needed.

The proof of Lemma 11 makes use of the following fact:

Lemma S-5. Suppose x, y, x̃, ỹ are nonnegative numbers with
√
x−√y ≥

√
x̃−
√
ỹ

and
√
x−√y > 0. Put β =

√
y/x. Then, βx− y ≥ βx̃− ỹ.

Proof. Put u =
√
x, v =

√
y, ũ =

√
x̃, ṽ =

√
ỹ. So u − v ≥ ũ − ṽ. Note that the

function f(t) = v
u
(u− v+ t)2− t2 is a negative quadratic in t, maximized when t = v.

Hence,
v

u
ũ2 − ṽ2 ≤ v

u
(u− v + ṽ)2 − ṽ2 = f(ṽ) ≤ f(v) = uv − v2.

Writing in terms of x’s and y’s gives the inequality stated in the lemma.

Proof of Lemma 11. First, note that since β > 0, the supervisor’s payoff w − βw

is a scalar multiple of βw. This implies that the agent’s choice is not affected by

tie-breaking to favor the supervisor: ΓSA(w, βw,A) = ΓA(βw,A).

Now to check the characterization in (2). If the agent chooses (F ′, c′) under

technology A, then

EF ′ [βw(y)] ≥ EF ′ [βw(y)]− c′ ≥ EF [βw(y)]− c,
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and dividing through by β yields (2). Conversely, suppose (2) is satisfied. Note

that the targeted action (F, c) is indeed optimal for the agent among actions in AP ,

since (F̃ , c̃) ∈ AP implies
√

EF [w(y)] −
√
c ≥

√
EF̃ [w(y)] −

√
c̃ by targeting, hence

βEF [w(y)] − c ≥ βEF̃ [w(y)] − c̃ by Lemma S-5. In turn, for any F ′ that satisfies

(2), action (F ′, 0) (if it is available) is at least as good for the agent as (F, c), and

so under technology A = AP ∪ {(F ′, 0)}, this action becomes optimal for the agent,

i.e. F ′ ∈ ΓSA(w, βw,A).

Proofs of Results in Supplemental Material

Proof of Proposition S-1. (Richness) Let w ∈ C+(Y ), F ∈ ΦST (w), and F ′ ∈ ∆(Y )

such that EF [y] = EF ′ [y], EF [w(y)] ≤ EF ′ [w(y)]. Then there exist technologies A1 ⊇
AP1 and A2 ⊇ AP2 , and contracts wA1, wA2 that maximize VS(·, ·|w,A1,A2), such that

F is induced in the supervisor-optimal Nash equilibrium. Consider a new technology

for agent 2 defined as A′2 = A2 ∪ {(K ′, 0)}, where K ′(y1) = F ′ for all y1 ∈ Y1. Note

that under technologies A1,A′2, the supervisor can induce F ′ as the outcome of a

Nash equilibrium by offering contracts wA1(y) = wA2(y) ≡ 0 (and having agent 2

choose (K ′, 0)). We will show that it is optimal for the supervisor to do so, which

will imply F ′ ∈ ΦST (w).

Suppose not; then there exist contracts w′A1, w
′
A2 and a (mixed) Nash equilibrium

(σ′1, σ
′
2) of the game between the agents, such that the supervisor’s resulting payoff

EH(σ′1,σ
′
2)[w(y)−w′A1(y)−w′A2(y)] strictly exceeds EF ′ [w(y)]. Let π be the probability

that σ′2 places on action (K ′, 0); thus we can write σ′2 = π · (K ′, 0)+(1−π) ·σ′′2 , where

σ′′2 ∈ ∆(A2). If π = 1, then H(σ′1, σ
′
2) = F ′, contradicting the assumption that the

supervisor’s payoff exceeds EF ′ [w(y)]. Hence π < 1.

We claim that under technologies (A1,A2), if the supervisor instead offers contract

(1−π)w′A1 to agent 1 and w′A2 to agent 2, then (σ′1, σ
′′
2) is a mixed-strategy equilibrium

for the agents, and the supervisor’s payoff is strictly higher than EF ′ [y]. (Note that

(1−π)w′A1 is in the allowed set of contracts S, by convexity.) For the first part of the

claim, note that because σ′′2 was part of a best reply by agent 2 against σ′1 when agent

2 had technology A′2 and was offered w′A2, it remains a best reply under A2 and w′A2.

As for agent 1, when he is offered (1 − π)w′A1 and agent 2 plays σ′′2 , his best-reply

problem consists of choosing (G, c1) ∈ A1 to maximize EK(σ′′2 )G[(1 − π)w′A1(y)] − c1.
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Whereas when he was offered contract w′A1 and 2 played σ′2, agent 1’s objective was

EK(σ′2)G[w′A1(y)]− c1 = EπF ′+(1−π)K(σ′′2 )G[w′A1(y)]− c1

= πEF ′ [w′A1(y)] + (1− π)EK(σ′′2 )G[w′A1(y)]− c1.

So the two maximization problems differ only by a constant, so σ′1 must remain a

best reply for agent 1 under (1− π)w′A1 and σ′′2 .

Finally, for the last part of the claim: we have assumed

EF ′ [w(y)] < EH(σ′1,σ
′
2)[w(y)− w′A1(y)− w′A2(y)]

= πEF ′ [w(y)− w′A1(y)− w′A2(y)] + (1− π)EH(σ′1,σ
′′
2 )[w(y)− w′A1(y)− w′A2(y)].

Since the first term on the right evidently is at most πEF ′ [w(y)], we must have

EF ′ [w(y)] < EH(σ′1,σ
′′
2 )[w(y)− w′A1(y)− w′A2(y)]

≤ EH(σ′1,σ
′′
2 )[w(y)− (1− π)w′A1(y)− w′A2(y)],

which completes the proof of the claim.

But this shows that under (A1,A2), the supervisor could have earned a payoff

above EF ′ [w(y)] ≥ EF [w(y)], so that inducing F was not optimal, contradicting

F ∈ ΦST (w). This contradiction completes the proof of Richness.

(Responsiveness) Let w,w′ ∈ C+(Y ) and F /∈ ΦST (w) satisfy the hypotheses of

Responsiveness. Let A1 ⊇ AP1 and A2 ⊇ AP2 be technologies, and let wA1, wA2 be

optimal contracts between the supervisor and agents under w,A1,A2, and let F ′ ∈
ΓSA(w,wA1, wA2,A1,A2). Since F /∈ ΦST (w), under A1 and A2, either (a) there does

not exist w̃A1, w̃A2 such that F is induced in a Nash equilibrium (supervisor-preferred

or otherwise), or (b) there do exist w̃A1, w̃A2 that induce F in a Nash equilibrium, but

any such w̃A1, w̃A2 satisfy EF [w(y)− w̃A1(y)− w̃A2(y)] < EF ′ [w(y)−wA1(y)−wA2(y)].

Since changing w to w′ does not affect the set S of contracts the supervisor can offer,

if (a) holds, then it still holds under w′, and therefore F /∈ ΓiS(w′,A1,A2). Suppose
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(b) holds under w. Swapping w for w′, observe that

EF ′ [w′(y)− wA1(y)− wA2(y)] ≥ EF [w′(y)]− EF [w(y)] + EF ′ [w(y)]− EF ′ [wA1(y) + wA2(y)]

> EF [w′(y)]− EF [w(y)] + EF [w(y)]− EF [w̃A1(y) + w̃A2(y)]

= EF [w′(y)− w̃A1(y)− w̃A2(y)]

where the first inequality is by the hypothesis of Responsiveness, and the second

inequality is by (b). Then F ′ is strictly preferred by the supervisor to F , and hence

F /∈ ΓiS(w′,A1,A2). Hence F /∈ ∪A1,A2Γ
i
S(w′,A1,A2) = ΦST (w′), and Responsiveness

holds.

Proof of Lemma S-2. Let Φ̂(w) denote the set named in the lemma statement, so we

wish to show ΦUT (w) = Φ̂(w).

(ΦUT (w) ⊆ Φ̂(w)). Let F ∈ ΦUT (w), and let (A, H, c) be some valid technology,

and σ an agents-optimal equilibrium under this technology with F = H(σ). Let a

be a potential-maximizing pure action profile, so that it is also an equilibrium (in

pure strategies). Assume moreover that if a0 remains potential-maximizing under the

technology (A, H, c), then we have taken a = a0.

Since σ is agents-optimal, and a is also an equilibrium,

EF [w(y)] ≥ EH(σ)[w(y)]−
∑
i

ci(σi)

≥ EH(a)[w(y)]−
∑
i

ci(ai)

≥ EH(a)[w(y)]− I
∑
i

ci(ai)

≥ EH(a0)[w(y)]− I
∑
i

ci(a
0
i ) = w0.

Moreover, one of the inequalities is strict: either the potential is strictly higher under

a than a0 so that the fourth inequality is strict, or else (by assumption) a = a0 and

then the third inequality is strict since
∑
ci(ai) > 0 and I > 1. Hence EF [w(y)] > w0.

(Φ̂(w) ⊆ ΦUT (w)). First suppose w is nonconstant.

Let F ∈ Φ̂(w). Construct technology (A, H, c) ⊇ (AP , HP , cP ) as follows: add a

single action to each agent’s original action set, a′i at cost 0, and H(a′) = F . Also

write w̄ = maxy∈Y w(y) and w = miny∈Y w(y); since w is nonconstant, w̄ > w. To
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define H at profiles where some but not all agents are playing the new action, we

proceed as follows. (We abuse notation slightly by writing I for the set of agents as

well as the number of agents, and likewise for subsets J ⊆ I.)

For any profile a = (a′J , a−J) where a nonempty subset J ⊆ I of agents

are playing the new action, and all other agents (if any) are playing some pro-

file a−J ∈ AP−J , let pJ(a−J) = maxaJ∈AP
J

{
EH(aJ ,a−J )[w(y)]− I

∑
j∈J cj(aj)

}
. Note

that pJ(a−J) < w̄, since the second term inside the max operator is strictly pos-

itive for all aJ ∈ APJ . We also observe the recursive relationship pJ+i(a−(J+i)) =

maxai∈AP
i

[
pJ(ai, a−(J+i))− Ici(ai)

]
where J + i is shorthand for J ∪ {i}. And when

J = I (so a−J is the empty profile), pJ(a−J) = w0.

Next, fix constants ε0 < ε1 < · · · < εI such that

• ε0 = 0;

• all ε’s are small enough so that εJ ≤ w̄−max{w, pJ(a−J)} for all nonempty J ;

• if w0 ≥ w, then εI = EF [w(y)] − w0 (observe that this is consistent with the

previous requirement);

• if w0 < w, then εI < Ici(ai) for all i and all ai ∈ APi , and also εI < w − w0.

Now, whenever J is neither empty nor all of I, for any a−J ∈ AP−J , define

H(a′J , a−J) to be any distribution such that

EH(a′J ,a−J )[w(y)] = max{w, pJ(a−J)}+ εJ . (S-2)

The assumptions on the ε’s ensure that the right side of (S-2) always lies in the

interval [w, w̄], so that the desired distribution indeed exists. Notice also that (S-2)

holds for J = I as well if w0 ≥ w.

We claim that the profile a′ is the unique equilibrium under this technology and

contract w. In fact we will show that a′i is a strictly dominant action for all i. Fix

agent i, and fix profile a−i ∈ A−i and ai ∈ APi . If a ∈ AP , we have

EH(a′i,a−i)[w(y)/I]− ci(a′i) = max{w/I, max
ãi∈AP

i

{EH(ãi,a−i)[w(y)/I]− ci(ãi)}}+ ε1/I

> EH(ai,a−i)[w(y)/I]− ci(ai),

so action a′i is strictly preferred to ai.

19



Now assume that at least 1 player j 6= i is playing a′j. If EH(a′i,a−i)[w(y)] = w̄,

w̄ ≥ EH(ai,a−i)[w(y)], so P (a′i, a−i) − P (ai, a−i) > 0. (The inequality is strict, since

ci(ai) > 0 = ci(a
′
i).) Otherwise, let J be the set of players different from i who are

playing the new action in a−i. As long as J is not all of I \ {i}, we have

P (a′i, a−i)− P (ai, a−i) = max{pJ+i(a−(J+i)), w}+ εJ+1

−max{pJ(ai, a−(J+i))− Ici(ai), w − Ici(ai)} − εJ
≥ max{pJ+i(a−(J+i)), w}+ εJ+1

−max{pJ+i(a−(J+i)), w − Ici(ai)} − εJ

where the inequality is by the recursive relationship of pJ . Clearly the first max term is

weakly greater than the second max term, and εJ+1 > εJ , so P (a′i, a−i)−P (ai, a−i) >

0.

If J is all of I \ {i}, but w0 ≥ w so that (S-2) still holds for I, then the same

reasoning applies. The only remaining case is when J = I \ {i} but w > w0. In this

case, we have

P (a′i, a−i)− P (ai, a−i) = EF [w(y)]−max{pJ(ai, a−(J+i))− Ici(ai), w − Ici(ai)} − εJ
≥ w −max{pJ+i(a−(J+i)), w − Ici(ai)} − εJ
= min{w − w0, Ici(ai)} − εJ
> 0

where the last line uses the final assumption on the choice of ε’s.

This analysis shows that a′i is a strictly dominant strategy for each agent i. So,

the unique equilibrium is the action profile a′, and so F ∈ ΦUT (w).

Finally, suppose w is constant, in which case Φ̂(w) is all of ∆(Y ). Take any

F ∈ ∆(Y ). Construct technology (A, H, c) ⊇ (AP , HP , cP ) by adding a single new

action a′1 for agent 1, at cost c1(a′1) = 0, and set H(a′1, a−1) = F for all a−1 ∈ A−1.

Since w is constant, any profile where all agents are playing a minimum cost action

is an agents-optimal equilibrium. Any such profile involves agent 1 playing a′1, which

results in F ∈ ΦUT (w).

Proof of Proposition S-3. (Richness) Follows directly from Lemma S-2.

(Responsiveness) Assume the conditions of Responsiveness on w,w′ ∈ C+(Y ) and

20



F , with F /∈ ΦUT (w). By Lemma S-2, EF [w(y)] ≤ w0. Let a0 be the maximizer

of P (the potential when contract w is given) over AP , and let F ′ = HP (a0), and

let C = I
∑

i c
P
i (a0

i ), so EF [w(y)] ≤ P (a0) = EF ′ [w(y)] − C. Furthermore, since

EF ′ [w(y)] > w0, F ′ ∈ ΦUT (w), again by Lemma S-2. Let P ′ be the potential under

contract w′, and w′0 its corresponding maximum on AP . Then

EF [w′(y)] ≤ EF [w(y)] ≤ EF ′ [w(y)]− C ≤ EF ′ [w′(y)]− C = P ′(a0) ≤ w′
0
.

Again applying Lemma S-2, F /∈ ΦUT (w′).

With Richness and Responsiveness proven, applying Theorem 1 yields the result.

Proof of Proposition S-4. (ΦPA(w) ⊆ ΦPSA(i)(w)) Consider F ∈ ΦPA(w). There ex-

ists some technology A ⊇ AP such that EF [w(y)] ≥ EF̃ [w(y)] − c̃ for all (F̃ , c̃) ∈ A,

with (F, 0) ∈ A. Consider hierarchical model (i). We will show that F ∈ ΓiS(w,A).

When the supervisor offers wA(y) = 0, F ∈ ΓA(wA,A), and she can obtain payoff

EF [w(y)]. Consider any other action (F̃ , c̃) ∈ A. In order to get F̃ ∈ ΓA(wA,A) for

some wA ∈ S, it must be that EF̃ [wA(y)] − c̃ ≥ EF [wA(y)] ≥ 0, so EF̃ [wA(y)] ≥ c̃.

Then the supervisor’s payoff from offering any other contract and inducing F̃ (if this

is even possible) must be

EF̃ [w(y)− wA(y)] ≤ EF̃ [w(y)]− c̃ ≤ EF [w(y)]

and therefore wA(y) = 0 is a maximizer of the supervisor’s payoff, and F ∈
ΓSA(w, 0,A). If (F̃ , c̃) ∈ A is not a maximizer of the agent’s objective in the P-A

model, the argument above shows that F̃ is indeed not a member of ΓSA(w, 0,A).

Then F ∈ ΓPSA (w, 0,A) follows from F being principal-preferred in the P-A model,

so F ∈ ΦPSA(i)(w).

(ΦPSA(i)(w) ⊆ ΦPSA(ii)(w)) Consider F ∈ ΦPSA(i)(w). From Lemma 6, there exists

a PSA(i)-certificate (A, 0, 0) for F under w. Let AS = A. The certificate implies that

EF [w(y)] ≥ EΓS
A(w,wA,A)[w(y) − wA(y)] for every wA ∈ S. We want to show that

F ∈ ΓuS(w,AS,A) for hierarchical model (ii). We know

inf
Ã⊇AS

EΓS
A(w,0,Ã)[w(y)] = EF [w(y)].
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It is without loss of generality to consider only contracts wA of the form βw for

β ∈ [0, 1], since Proposition 5 applied to the supervisor-agent relationship shows

that there is an optimal contract of this form. By assumption, these contracts are

contained in S. Hence for any such contract wA = βw ∈ S,

V u
S (0|w,AS) = EF [w(y)] ≥ EΓS

A(w,wA,A)[w(y)− wA(y)]

≥ inf
Ã⊇AS

EΓS
A(w,wA,Ã)[w(y)− wA(y)] = V u

S (wA|w,AS)

where the first inequality is by the PSA(i)-certificate for F and the second by definition

of infimum. Hence wA(y) = 0 is a maximizer of V u
S (·|w,AS), and F ∈ ΓSA(w, 0,A).

Moreover, since ΓSA(w, 0,A) is the same in both model (i) and (ii), if F survives

principal-preferred tie-breaking within this set in model (i) then it also survives the

tie-breaking in model (ii). Thus F ∈ ΦPSA(ii)(w).

For the last statement of the proposition: Whenever w is linear, our requirement

on S is satisfied, and so we have shown that ΦPA(w) ⊆ ΦPSA(i)(w) ⊆ ΦPSA(ii)(w).

So, taking the infima over the respective sets, V PA
P (w) ≥ V

PSA(i)
P (w) ≥ V

PSA(ii)
P (w).

Taking maxima over w, and noting that each maximum is attained for a linear w by

our earlier results, completes the proof.
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