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Abstract

We study the question of whether local incentive constraints are sufficient

to imply full incentive-compatibility, in a variety of mechanism design settings,

allowing for probabilistic mechanisms. We give a unified approach that cov-

ers both continuous and discrete type spaces. On many common preference

domains — including any convex domain of cardinal or ordinal preferences,

single-peaked ordinal preferences, and successive single-crossing ordinal prefer-

ences — local incentive-compatibility (suitably defined) implies full incentive-

compatibility. On domains of cardinal preferences that satisfy a strong noncon-

vexity condition, local incentive-compatibility is not sufficient. Our sufficiency

results hold for dominant-strategy and Bayesian Nash solution concepts and

allow for some interdependence in preferences.
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1 Introduction

In the analysis of mechanism design problems, taking account of all the possible

constraints imposed by incentive-compatibility at once can be unwieldy. It can be

easier to focus attention on local incentive constraints, ensuring that agents have no

incentive to make “small” misreports of their type, and then check at the end of the

analysis whether or not the mechanisms obtained are fully incentive-compatible.

In the present paper, we ask the general question of whether local incentive con-

straints are sufficient on their own to guarantee full incentive-compatibility, and obtain

an affirmative answer in a wide array of settings. We allow for arbitrary probabilistic

mechanisms, which specify a distribution over some (exogenously specified) outcome

space as a function of an agent’s type. (Our analysis is mostly worded in terms of a

single agent, but we show how it readily extends to multi-agent mechanisms, including

allowing a limited degree of interdependence in preferences.)

To clarify the significance of these results, it is useful to distinguish two major

branches of mechanism design literature. We give a simple and unified approach

that applies to both branches but has slightly different implications for the two. One

branch, with roots in axiomatic social choice theory, studies problems without mon-

etary transfers. These include voting (e.g. Gibbard (1973), Satterthwaite (1975),

Moulin (1980), Barberà, Sonnenschein, and Zhou (1991), Saporiti (2009)), match-

ing (Roth (1982), Alcalde and Barberà (1994), Bogomolnaia and Moulin (2001)),

queueing (Bogomolnaia and Moulin (2002)), and rationing (Sprumont (1991), Ehlers

and Klaus (2003)), among others. This literature has recently been influential in

applied market design as well; see for example Roth (2008) and references therein. It

is commonly taken as given here that each agent submits a ranking over outcomes

(such as candidates, in a voting context, or schools or jobs, in a matching context)

to the mechanism. Thus, agents report ordinal preferences. Incentive-compatibility

typically means that reporting one’s true preferences should be a dominant strat-

egy. We will say that such a mechanism is locally incentive-compatible if no agent

type can benefit from misreporting by switching some two consecutive outcomes in

his preference ranking. We show below that for many of the most common prefer-

ence domains considered in this literature, local incentive-compatibility implies full

incentive-compatibility. Specifically, we show this for domains of ordinal preferences

having convex closure (Proposition 2, which actually gives a generalization to poly-
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hedral type spaces); single-peaked ordinal preferences (Proposition 3); and successive

single-crossing ordinal preferences (Proposition 4).

The second large branch of literature concerns settings in which monetary trans-

fers are possible and agents have quasilinear preferences, with applications such as

monopoly pricing, auctions, and public projects. Seminal works include Mussa and

Rosen (1978), Green and Laffont (1979), Myerson (1981), Myerson and Satterthwaite

(1983), Maskin and Riley (1984), Jehiel and Moldovanu (2001), and Jehiel, Meyer-ter-

Vehn, Moldovanu, and Zame (2006). It is generally assumed that agents can report

a cardinal valuation for each outcome. We show that local incentive-compatibility,

suitably formulated, implies full incentive-compatibility whenever the space of agents’

cardinal types is convex (Proposition 5). (We should note that this result also has

some relevance to the no-transfers literature, as some authors there also allow agents

to report cardinal preferences, e.g. Barberà, Bogomolnaia, and van der Stel (1998),

Hylland (1980), Zhou (1990).)

Our results on the sufficiency of local incentive constraints are relevant for several

reasons. One is that they provide a technical tool to facilitate the researcher’s task

of analyzing mechanism design problems. This is particularly relevant to the trans-

fers branch of the literature, where analysis typically begins by using local incentive

constraints and the envelope theorem to obtain an integral formula for the utility

attained by each type of agent (as in e.g. Myerson (1981, Lemma 2)); our sufficiency

results provide a general tool to help assure researchers that this reduction of the

problem has not neglected important nonlocal constraints. They also can streamline

proofs of incentive-compatibility for newly designed mechanisms, since it is enough

to show local incentive-compatibility and then invoke sufficiency.

Moreover, our analysis casts light on the form of local incentive constraints needed.

It is not sufficient to specify only that each type of agent should be unable to profitably

misreport as any nearby type; one must also specify that each type cannot serve as a

profitable misreport for any nearby type. (See the discussion in Subsection 3.1.)

A separate reason our results are relevant is that one may have more literal rea-

sons to impose only a subset of incentive constraints. For example, there may be a

monitoring technology that makes it possible to detect and punish reports far away

from an agent’s true type, in which case the mechanism designer does not need to

worry about such misreports (as in Green and Laffont (1986)). One might hope that

this would provide an operational way to circumvent impossibility results such as the
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Gibbard (1973)-Satterthwaite (1975) theorem, which are pervasive in the no-transfers

literature; or, in a setting with transfers, one might hope, say, to obtain higher rev-

enue than would be possible with fully incentive-compatible mechanisms. If agents

are to report truthfully, then our sufficiency results show that in many settings, hav-

ing access to such a monitoring technology does not enlarge the space of effective

mechanisms.

Relatedly, when designing a mechanism for boundedly rational agents, one might

consider that agents are not capable of contemplating every possible misreport of

their preferences, and again ask whether this provides an operational way to improve

on fully incentive-compatible mechanisms. If the designer believes that agents are at

least rational enough to be capable of imitating any nearby type, then in the settings

covered by our sufficiency results, imposing only the relevant subset of incentive

constraints actually does not enlarge the space of usable mechanisms at all.

In particular, for ordinal type spaces, this idea leads to “computational” versions

of many existing impossibility or characterization results. This gives a very general

reply to a literature that seeks ways around the Gibbard-Satterthwaite theorem by

devising voting mechanisms that are computationally difficult, but not impossible, to

strategically manipulate (e.g. Bartholdi, Tovey, and Trick (1989), Bartholdi and Orlin

(1991)). On the type spaces where our sufficiency results apply, they immediately

imply that any such mechanism is easy to manipulate in some instances, as long as

the outcome of the mechanism itself is easy to compute. (Here, as in the preceding

literature, we take “easy” to mean computable in polynomial time.) Namely, a ma-

nipulator can exhaustively consider each local manipulation — switching some two

candidates who are consecutive in the ranking — and compute the outcome of the

mechanism; this trial-and-error search is easy and will find an advantageous manip-

ulation in some instances. So a computational-complexity constraint, at least of the

naive form, cannot prevent agents from manipulating.1

More broadly, there is a tradition in social choice theory of looking for the weak-

est assumptions necessary to obtain a characterization or impossibility result. Our

results can be immediately applied to many axiomatic characterizations (such as

those cited in the third paragraph), showing that, say, an axiom requiring dominant-

1In the Gibbard-Satterthwaite context, stronger results extending this idea are already known
(e.g. Isaksson, Kindler, and Mossel (2010)). But our results lead more generally to computational
versions of many other existing characterization results by the same argument.
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strategy incentive-compatibility can be replaced by local incentive-compatibility with-

out changing the conclusion.

The aforementioned results show that, for many important type spaces, local

incentive-compatibility implies full incentive-compatibility. On the other hand, there

are type spaces where the implication does not hold. In particular, we show this for

domains of cardinal preferences that fail to be convex in a sufficiently strong way

(Proposition 6).

Our work connects with several previous papers on mechanism design under a

subset of incentive constraints. Green and Laffont (1986), mentioned above, consider

a general setup in which the space of messages that agents can send equals the space

of types, with exogenous restrictions as to which messages each type is capable of

sending, and study when the revelation principle applies. Celik (2006) and Sher and

Vohra (2010) consider specific mechanism design problems under subsets of incentive

constraints, though their subsets are not local in our sense.

There does not appear to be previously published work asking the broad question

of when local and full incentive-compatibility coincide. However, a contemporane-

ous paper by Sato (2010), independent of ours, does address this question. Sato

considers only deterministic mechanisms over ordinal type spaces. For such mecha-

nisms, Sato shows that local incentive constraints are sufficient on all of the ordinal

type spaces that we consider (type spaces with convex closure, single-peaked, and

successive single-crossing preferences), as well as some others.

This paper also bears some formal resemblance to recent work on general settings

with cardinal preferences and transfers. In such a setting, a rule mapping types to

outcomes is implementable if there exists some accompanying payment function (map-

ping types to transfers) that makes truthful revelation incentive-compatible. There

has recently been much interest in simple conditions ensuring that a rule is imple-

mentable, e.g. Saks and Yu (2005), Bikhchandani, Chatterji, Lavi, Mu’alem, Nisan,

and Sen (2006), Ashlagi, Braverman, Hassidim, and Monderer (2010). In particu-

lar, our work is somewhat reminiscent of a paper by Archer and Kleinberg (2008).

They show that local implementability (suitably defined) implies implementability,

on any convex space of cardinal types. However, we show that local implies full

incentive-compatibility for a given mechanism, consisting of an outcome rule and a

payment function together, whereas they show that local implementability by some

payment functions (possibly using different payment functions on different local neigh-
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borhoods) implies full implementability. Thus, both their hypothesis and their con-

clusion are weaker than ours. Moreover, their sets of local incentive constraints are

larger than ours, and their theorem would not hold using our constraint sets; this is

discussed in detail in Subsection 3.1. Accordingly, our results on cardinal type spaces

do not follow from the result of Archer and Kleinberg, nor vice versa.

2 Framework

We begin with the general framework. Ensuing sections will give the concrete results.

2.1 Definitions

We will focus on incentives in a mechanism for an individual agent. In Subsection 2.2,

we will show how the ideas extend straightforwardly to multi-agent mechanisms with

private values. We begin by introducing the definitions for the no-transfers setting;

in Subsection 3.5 we will allow for transfers, and also for interdependence.

From the agent’s point of view, a mechanism takes the agent’s preferences as input

and determines an outcome, or a probability distribution over outcomes. We must be

explicit about the form of preferences that the agent can announce. In some settings,

it is standard practice to assume agents announce their cardinal valuation for each

of the possible outcomes. In others (specifically in the no-transfers literature), it is

assumed that agents only report an ordinal ranking of outcomes.

This latter assumption entails exogenously restricting the message space of the

mechanism to consist of the possible ordinal preferences. This restriction is widely

accepted, although it does not yet enjoy solid theoretical foundations. It is often

made for analytical tractability, and in practical market design applications it can

also be justified by the need to make the mechanism accessible to participants who

may have difficulty thinking about their preferences over lotteries. Bogomolnaia and

Moulin (2001) give a more detailed discussion on this last point.

Finally, in some settings, one might assume that agents report even coarser in-

formation than ordinal preferences (for example, they are required to rank only a

limited number of outcomes). We will first give a unified treatment that covers all

of the different specifications of preferences, then specialize to define local incentive-

compatibility in specific settings.
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Let X, the outcome space, be any finite set; m will denote its cardinality. Let

∆(X) denote the space of lotteries over X. The agent is assumed to have expected

utility preferences over lotteries. It will be convenient to think of both lotteries over

X and utility functions as elements of Rm. If the agent’s utility function is u, his

payoff from a lottery L is given by the inner product u · L.

For subsets of Rm, cl denotes the closure and ∂ the boundary operator. If u, v ∈

R
m, we write [u, v] for the line segment {(1− α)u+ αv | α ∈ [0, 1]}.

A type is a nonempty subset of Rm. A type space is a set of pairwise disjoint

types. We henceforth use the term type space in preference to domain: the latter

term suggests only an exogenous restriction of the set of utility functions the agent

may have, whereas our notion of a type space conveys both which utility functions

are possible and which ones the mechanism is required to treat identically.

Given a type space T , a mechanism is a function f : T → ∆(X). Thus, the

mechanism chooses a distribution over outcomes, based on the agent’s (reported)

type.

An incentive constraint is an ordered pair of types. The interpretation of the con-

straint (t, t′) is that a type t cannot benefit from misreporting as type t′. Accordingly,

we say that a mechanism f satisfies an incentive constraint (t, t′) if, for all u ∈ t,

u · f(t) ≥ u · f(t′); equivalently, u · (f(t)− f(t′)) ≥ 0. A mechanism satisfies a set of

incentive constraints if it satisfies every constraint in the set.

A mechanism that satisfies the full set of incentive constraints T × T is fully

incentive-compatible. This is exactly the usual meaning of incentive-compatibility.

A set S of incentive constraints is sufficient if every mechanism that satisfies S is

fully incentive-compatible.

We highlight several important kinds of type spaces and define local incentive

constraints in each case.

• A type space T is cardinal if every type is a singleton. In this case, abusing

notation, we will think of types as vectors and T as a subset of Rm. For example,

we write f(u) rather than f({u}).

For a cardinal T , a set S of incentive constraints will be called local incentive

constraints if every u ∈ T has an open neighborhood Nu in T (with the relative

topology) such that (u, u′) ∈ S and (u′, u) ∈ S for every u′ ∈ Nu.

• A type space is ordinal if every type is of the form t = {u | u(x1) > u(x2) >
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· · · > u(xm)} for some strict ordering x1 ≻ · · · ≻ xm of the elements of X. We

say that t represents this ordering. Note that our definition of an ordinal type

space does not require that all possible orderings be represented by types.

When types are ordinal, f satisfies a constraint (t, t′) if and only if the lottery

f(t) first-order stochastically dominates f(t′) with respect to the ordering on X

represented by t. (This is easy to show.)

Call two ordinal types t, t′ adjacent if the orderings they represent differ only by

a switch of two consecutive outcomes. On any ordinal type space T , the local

incentive constraints will refer to the set of all constraints (t, t′) such that t and

t′ are adjacent.

• More generally, we can consider polyhedral type spaces. In the space of utility

functions, R
m, an open half-space is a set of the form {u | u · λ > c} for

some nonzero λ ∈ R
m and some constant c. If H is such an open half-space,

its closure cl(H) = {u | u · λ ≥ c} is a closed half-space, and its boundary

∂H = {u | u · λ = c} is a hyperplane. Define an (open) polyhedron to be

a nonempty set that is the intersection of finitely many open half-spaces. A

polyhedral type space is a type space consisting of finitely many types that are

all polyhedra.

Say that two disjoint polyhedra t, t′ are adjacent if cl(l) ∩ cl(t′) contains a

nonempty, relatively open subset of a hyperplane. In simpler terms, t and t′ are

polyhedra that border along a face. We then let the local incentive constraints

on T be the set of constraints (t, t′) such that t and t′ are adjacent.

Any ordinal type space is polyhedral, and one can check that the definitions

of adjacency and local incentive constraints for ordinal types agree with those

for polyhedral types. (There exists previous literature in mechanism design

also using polyhedra to represent ordinal types, e.g. Duggan (1996).) For an-

other example, take the types implied by truncated rankings, i.e. {u | u(x1) >

· · · > u(xp) and u(xp) > u(y) for all y 6= x1, . . . , xp}, for any distinct outcomes

x1, . . . , xp with p < m — these are again polyhedral types. Such a type space is

natural for studying matching mechanisms in applications such as school choice,

where students may be asked to rank, say, 12 favorite schools out of more than

500 available (Abdulkadiroğlu, Pathak, and Roth (2005)).
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More generally, any mechanism with a finite message space gives rise to a poly-

hedral type space: for each message, the set of utility functions for which it

is optimal forms a polyhedron (ignoring boundary issues). Studying local in-

centives in these type spaces can be helpful for analyzing such mechanisms.

Gibbard (1978) gives a fairly complete analysis of dominant-strategy voting

mechanisms with arbitrary finite message spaces; much of the analysis focuses

on incentives to misreport locally.

We say that a mechanism is locally incentive-compatible if it satisfies some set

of local incentive constraints (in the cardinal case; or the canonical such set in the

polyhedral case).

We are interested in determining whether or not local incentive contraints are

sufficient, on various type spaces.

2.2 Mechanisms with multiple agents

As already mentioned, while we focus on single-agent mechanisms, our results apply

also with multiple agents, under private values. The extension is similar to arguments

in previous literature (Archer and Kleinberg (2008), Heydenreich, Müller, Uetz, and

Vohra (2008)), but we spell it out in detail here, as we will further build on it in

Subsection 3.5.

Define a mechanism with n agents, type space T = T1 × · · · × Tn, and outcome

spaceX to be a map f : T → ∆(X), specifying a (probabilistic) outcome as a function

of all the agents’ types. Suppose that, for some i, a set Si of incentive constraints is

sufficient for Ti.

One possible notion of incentive-compatibility is to say that f satisfies the in-

centive constraint (ti, t
′
i) ∈ Ti × Ti for agent i if, for all t−i and all ui ∈ ti, we have

ui ·(f(ti, t−i)−f(t
′
i, t−i)) ≥ 0. If f satisfies every incentive constraint in Si for agent i,

then holding fixed any profile t−i, the single-agent mechanism ti 7→ f(ti, t−i) satisfies

Si and so (by sufficiency) is fully incentive-compatible. Thus, f is fully incentive-

compatible in dominant strategies (for agent i).

One can also consider Bayesian incentive-compatibility. Suppose we are given a

probability distribution ψj over Tj for each agent j, and assume f(ti, t−i) is measurable

in t−i for all ti. Then we can say that f satisfies incentive constraint (ti, t
′
i) for agent i

if, for all ui ∈ ti, we have ui · (Ei[f(ti, t−i)]−Ei[f(t
′
i, t−i)]) ≥ 0, where the expectation
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is over t−i with respect to the product distribution ×j 6=i ψj. Again, if f satisfies

each incentive constraint in Si, then the single-agent mechanism ti 7→ Ei[f(ti, t−i)]

satisfies Si and so is fully incentive-compatible for agent i. This is the standard notion

of Bayesian incentive-compatibility for f . Notice that this argument depends on the

agents’ types being independently distributed: the expectation Ei needs to be defined

in a way that does not depend on ti.

3 Sufficiency

In this section we show that local incentive constraints are sufficient on a variety of

common type spaces. All proofs absent from the main text are in Appendix A.

3.1 Cardinal type spaces

Recalling that a cardinal type space is identified with a subset of Rm, we can state

our first sufficiency result:

Proposition 1 On a convex cardinal type space T , any set of local incentive con-

straints is sufficient.

We present the proof in detail, since the proofs of most of our other sufficiency

results (Propositions 2, 3, 5) follow the same model. To prove that an agent of type

u never wants to misreport as type v, we restrict attention to types along the line

segment [u, v], effectively reducing to one dimension; we then break the segment into

short pieces for which local incentive constraints apply, and combine these local incen-

tive constraints into the incentive constraint (u, v) using the kind of supermodularity

or “revealed-preference” argument that is familiar elsewhere in the mechanism design

literature (see e.g. Myerson (1981, Lemma 2), Rochet (1987, Theorem 1)).

Proof: Let S be a set of local incentive constraints and f a mechanism satisfying

S. For types u, v, write u↔v if (u, v) and (v, u) are both in S. By definition, every

u ∈ T has some neighborhood Nu in T such that u↔v for all v ∈ Nu.

Fix arbitrary u, v ∈ T . We want to show that u · (f(u)− f(v)) ≥ 0.

For any α ∈ [0, 1], define uα = (1− α)u+ αv. Convexity implies uα ∈ T . Let

A = {α | there exist 0 = α0 < α1 < · · · < αr ≤ 1 with

uα0
↔uα1

↔· · ·↔uαr
and αr = α}.
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Clearly, if α ∈ A,α < α′ ≤ 1, and uα↔uα′ , then α′ ∈ A. Now let α = supA ≥ 0. If

α = 0 then α ∈ A. If α > 0, then for α sufficiently close to α we have uα↔uα; since

we can choose α ∈ A arbitrarily close, we again get α ∈ A. Moreover, if α < 1, then

uα↔uα for α just slightly larger than α; this implies α ∈ A, contradicting α = supA.

Therefore, we get α = 1 and 1 ∈ A.

So we have 0 = α0 < α1 < · · · < αr = 1 with uαk
↔uαk+1

for each k. Now write

out the local incentive constraints:

uαk
· (f(uαk

)− f(uαk+1
)) ≥ 0,

uαk+1
· (f(uαk+1

)− f(uαk
)) ≥ 0.

Multiplying by αk+1 and αk, respectively, and adding gives

[αk+1uαk
− αkuαk+1

] · (f(uαk
)− f(uαk+1

)) ≥ 0.

But one directly calculates that αk+1uαk
−αkuαk+1

= (αk+1−αk)u. Since αk+1−αk >

0, we can divide through to obtain

u · (f(uαk
)− f(uαk+1

)) ≥ 0.

Now we can sum over k = 0, 1, . . . , r − 1, and telescoping gives

u · (f(u)− f(v)) = u · (f(uα0
)− f(uαr

)) ≥ 0.

�

Proposition 1 applies to any convex cardinal type space. This includes, for exam-

ple, the full space of utility functions on X; or the space of utility functions that are

increasing with respect to some partial order on X; or the space of supermodular or

submodular utility functions, given a lattice structure on X; or the space of utility

functions satisfying some concavity conditions.

The proof of Proposition 1 clearly uses both parts of the definition of local incentive

constraints — that each u should have a neighborhood Nu with both (u, u′) ∈ S and

(u′, u) ∈ S for u′ ∈ Nu. A seemingly more natural way to define local incentive

constraints would only require (u, u′) ∈ S. Under this definition, Proposition 1 would

no longer hold. For example, suppose X = {x, y} and T is the full space of all cardinal
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types. Consider the mechanism f given by f(u) = x if u(x) < u(y) and f(u) = y

otherwise. This f meets the weaker definition of local incentive-compatibility, but is

not fully incentive-compatible. (Requiring only (u′, u) ∈ S would also not be enough:

with the same X and T , consider the mechanism f(u) = x if u(x) = u(y) − 1 and

f(u) = y otherwise.)2

By contrast, the local-to-global result of Archer and Kleinberg (2008, Corollary

3.7), on implementability in a quasilinear setting, effectively requires stronger local

incentive constraints. They assume implementability throughout each Nu — that is,

for each u, there should be some payment function pu (specifying a payment for each

agent type) so that the mechanism-with-transfers (f, pu) satisfies incentive constraints

(u′, u′′) for all u′, u′′ ∈ Nu. The analogue of our constraints in their setting would be to

merely require that (f, pu) should satisfy constraints (u, u′) and (u′, u) for all u′ ∈ Nu.

This requirement is a local form of weak monotonicity, which is not enough to imply

their implementability conclusion without further restrictions; see e.g. Bikhchandani,

Chatterji, Lavi, Mu’alem, Nisan, and Sen (2006, Example S1) or Saks and Yu (2005,

Section 7).

Unlike the local constraints of Archer and Kleinberg (2008), ours can be expressed

succinctly in terms of local maxima: f is locally incentive-compatible if every u ∈ T

is a local maximum of both the functions v 7→ u ·f(v) and v 7→ v ·(f(u)−f(v)). With

this interpretation, local incentive-compatibility can potentially be checked by first-

and second-order conditions at points where f is differentiable. This convenience is

relevant in making the reduction from global to local incentive-compatibility a useful

one: if one wishes to check incentive constraints directly, then even local incentive-

compatibility can require checking many constraints when T is high-dimensional,

since it is necessary to check constraints in every direction at each u.

3.2 Polyhedral type spaces

Next we consider polyhedral type spaces. Our main result here is:

2A referee points out that a mechanism on a cardinal type space is fully incentive-compatible
if and only if the indirect utility function u 7→ u · f(u) is convex, with f(u) belonging to the
subdifferential at each point u. Our two local conditions can be viewed loosely as local forms of
these requirements: the subdifferential condition at u is equivalent to satisfying (u′, u) for all u′ ∈ T ,
so our requiring this for all u′ ∈ Nu gives a local form of the subdifferential condition, and then
imposing the additional constraints (u, u′) ensures convexity.
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Proposition 2 Let T be a polyhedral type space such that ∪t∈T cl(t) is convex. Then

the set of local incentive constraints is sufficient.

The argument is essentially the same as for Proposition 1. For utility functions u

and v, we consider the line segment [u, v]; this segment passes through various types

in succession. By jiggling v a bit if necessary, we can ensure that any two successive

types along this line segment are adjacent polyhedra, and then we can just add up

the corresponding local incentive constraints as before.

A particular case of Proposition 2 is that on the full space of all ordinal types over

a given X, the local incentive constraints are sufficient.3 (The union of the closures

of all types is simply all of Rm.) Proposition 2 also applies when T consists of all

ordinal types that respect a given partial ordering on X. For example, Bogomolnaia

and Moulin (2002) consider an allocation problem with real objects and a null object;

all types have the same preference ordering on the real objects, but rank the null

object differently relative to the real objects.

3.3 Single-peaked preferences

The preceding results have focused on essentially convex type spaces. One important

nonconvex type space is that of single-peaked preferences.

Fix an ordering x1, . . . , xm of the outcomes in X. A strict preference ordering

≻ over X is single-peaked if there exists some outcome xp∗ such that, whenever

q < p ≤ p∗ or q > p ≥ p∗, we have xp ≻ xq. An ordinal type is single-peaked if

it represents a single-peaked ordering.

Single-peaked preferences have been popular in voting theory ever since Black’s

(1948) observation that the rule choosing the median of the voters’ favorite outcomes

is dominant-strategy incentive-compatible. Single-peaked preferences are also impor-

tant in economic applications because single-peakedness is the same as quasiconcavity

of the utility function (aside from issues of indifference). Moulin (1980) characterizes

dominant-strategy incentive-compatible deterministic voting systems under single-

peaked preferences. (Moulin assumes the outcome space is the whole real line, but

his proofs carry through almost unchanged for a finite outcome space.) Ehlers, Peters,

and Storcken (2002) extend this work to probabilistic mechanisms. Sprumont (1991),

3An analogous result also holds if we allow indifferences — so that for each weak order on X, the
set of utility functions representing it constitutes a type — with an appropriate definition of local
incentive constraints. We omit the details here.
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Barberà, Jackson, and Neme (1997), and Ehlers and Klaus (2003) study rationing

problems when consumers have single-peaked preferences over quantities.

The space of single-peaked ordinal types does not meet the convexity condition of

Proposition 2. However, we still have the result:

Proposition 3 Fix an ordering x1, . . . , xm of the elements of X. On the space of

single-peaked ordinal types, the set of local incentive constraints is sufficient.

The argument is a slight extension of that used for Proposition 2. In general, in

an ordinal type space, say that a utility function v is accessible from another utility

function u if the segment [u, v] is contained in the union of the closures of all types.

In this case we can apply the argument of adding up local incentive constraints from

Propositions 1 and 2. Now, in the single-peaked ordinal type space, it is no longer

true (as it was for Proposition 2) that all v in a given type t′ are accessible from u ∈ t,

but we actually only need to be able to find some such v for each u. Lemma 5 in the

appendix shows that this can be done.

One can also consider the space of single-dipped ordinal types (Klaus, Peters, and

Storcken (1997)), or of single-peaked ordinal preferences on a tree (Demange (1982),

Danilov (1994)). It is straightforward to extend the proof to cover each of these cases,

showing that the local incentive constraints are again sufficient.

3.4 Single-crossing preferences

Besides single-peaked preferences, another economically important class of ordinal

type spaces is given by single-crossing preferences. These are defined as follows: Fix

an ordering x1, . . . , xm of the elements of X. A sequence ≻1, . . . ,≻r of distinct strict

preference orderings is a single-crossing preference domain if the following holds:

whenever p < q and xq ≻k xp for some k, we also have xq ≻l xp for all l > k.

Single-crossing ordinal preferences arise in economic models such as the redistributive

taxation models of Roberts (1977) and Meltzer and Richard (1981) (see Saporiti

(2009) for references to other applications). Just as with single-peaked preferences,

preferences coming from any single-crossing domain satisfy a median voter property

— the voting scheme that chooses the outcome most preferred by the voter with

the median preference is dominant-strategy incentive-compatible. More generally,

Saporiti (2009) characterizes dominant-strategy incentive-compatible voting schemes

on any maximal single-crossing preference domain.
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For any strict preference ordering ≻ onX, let V (≻) = {(p, q) | p < q, xp ≺ xq}. By

definition, a sequence of preference orderings ≻1, . . . ,≻r is a single-crossing preference

domain if and only if V (≻1) ⊆ · · · ⊆ V (≻r). In fact, these inclusions must all be

strict, since any ordering ≻ can be uniquely reconstructed from V (≻). Therefore

|V (≻1)| < · · · < |V (≻r)|. Call the domain a successive single-crossing preference

domain if |V (≻k+1)| = |V (≻k)|+ 1 for each k = 1, . . . , r − 1.

This covers the domains considered in Saporiti (2009) — any maximal single-

crossing preference domain ≻1, . . . ,≻r is successive. For suppose that |V (≻k+1)| −

|V (≻k)| > 1 for some k. There must be some two alternatives xp, xq that are ranked

consecutively by ≻k, with xp ≻k xq but xq ≻k+1 xp. Single-crossing ensures p < q. By

switching the positions of xp and xq in ≻k, we get a new ordering ≻′ with V (≻′) =

V (≻k) ∪ {(p, q)}, and hence V (≻k) ⊂ V (≻′) ⊂ V (≻k+1). This means that ≻1

, . . . ,≻k,≻
′,≻k+1, . . . ,≻r is again a single-crossing preference domain, contradicting

maximality.

For any successive single-crossing preference domain ≻1, . . . ,≻r, call the corre-

sponding space of ordinal types T = {t1, . . . , tr} a successive single-crossing ordinal

type space. In this case, the local incentive constraints are precisely those of the

form (tk, tk+1) or (tk+1, tk). We shall show that on such a type space, the local in-

centive constraints are sufficient. This result may be surprising, since these incentive

constraints are especially parsimonious — each type is adjacent to just two other

types.

Proposition 4 On any successive single-crossing ordinal type space, the local incen-

tive constraints are sufficient.

The strategy of proof is a little different from that used for the previous proposi-

tions. Instead of breaking a single line segment into short pieces, we find a sequence

of parallel line segments, each connecting two consecutive types tk, tk+1, but such that

each segment need not begin where the previous one ended. (As pointed out by a

referee, this method has some precedent in Gibbard (1977, Lemma 2), where a similar

argument is applied to the full ordinal type space; and the argument can be applied

to the space of single-peaked ordinal types as well.)

Proof: Suppose the mechanism f satisfies the local incentive constraints. Fix

any two types tl, tl′ , and let u ∈ tl. We wish to show that u · (f(tl)− f(tl′)) ≥ 0. We

will show this for l′ > l; the proof for l′ < l is similar.
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In fact it suffices to show that

u · (f(tk)− f(tk+1)) ≥ 0 for k ≥ l, (1)

since then we can sum up (1) for k = l, l+1, . . . , l′−1 to obtain u · (f(tl)−f(tl′)) ≥ 0.

So fix k ≥ l, and also define M = maxx u(x) − minx u(x). Write V (≻k+1) \

V (≻k) = {(p, q)} by successiveness; then p < q, and ≻k ranks xp just above xq.

Because u ∈ tl with l ≤ k, single-crossing implies that u(xp) > u(xq) also. Let v

be any utility function representing ≻k such that v(xp) − v(xq) < u(xp) − u(xq),

and |v(x) − v(y)| > M for all distinct outcomes x, y ∈ X other than xp and xq.

Because ≻k ranks xp and xq consecutively, we can do this. Then the utility function

v− u ranks every pair of outcomes in the same way as v does, except {xp, xq}. Since

V (≻k+1) = V (≻k) ∪ {(p, q)}, this means that v − u represents ≻k+1.

So, v ∈ tk and v − u ∈ tk+1. The local incentive constraints give

v · (f(tk)− f(tk+1)) ≥ 0,

[v − u] · (f(tk+1)− f(tk)) ≥ 0.

Adding these two gives exactly (1), and this completes the proof. �

The hypothesis of successiveness in Proposition 4 cannot be dropped, even if the

set of local incentive constraints is modified in the natural way. That is, it is not the

case that, for any single-crossing ordinal type space {t1, . . . , tr}, the set consisting of

the incentive constraints (tk, tk+1) and (tk+1, tk), for 1 ≤ k < r, is sufficient. For a

counterexample, consider the three orderings

≻1: x1 ≻1 x2 ≻1 x3 ≻1 x4

≻2: x2 ≻2 x1 ≻2 x3 ≻2 x4

≻3: x4 ≻3 x2 ≻3 x1 ≻3 x3

and the corresponding ordinal types t1, t2, t3. Let f map the types to lotteries over

(x1, x2, x3, x4) as follows:

f(t1) = (1/4, 1/4, 1/2, 0); f(t2) = (0, 1/2, 1/2, 0); f(t3) = (1/2, 0, 0, 1/2).

Then f satisfies the incentive constraints (t1, t2), (t2, t1), (t2, t3), (t3, t2), but not (t1, t3),
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so it is not fully incentive-compatible. (The line of the proof of Proposition 4 that

fails is the statement V (≻k+1) \ V (≻k) = {(p, q)} in the third paragraph. More

broadly, the approach of the proof fails because if we take, say, the utility function

u representing ≻1 with u(x1) = 4, u(x2) = 3, u(x3) = 2, u(x4) = 1, then we cannot

find any v such that v represents ≻2 and v − u represents ≻3.)

3.5 Transfers and interdependent preferences

We now return to the setting of cardinal preferences. However, we generalize in two

new directions. First, we consider the transfers setting, in which agents have quasi-

linear utility in outcomes and money, and a mechanism specifies both a lottery over

outcomes and a transfer for each agent. Second, we allow for the possibility of inter-

dependent preferences, where each agent’s utility for each outcome depends on the

other agents’ types. Numerous recent works prove possibility and impossibility results

with transfers and interdependence (Jehiel and Moldovanu (2001), Jehiel, Meyer-ter-

Vehn, and Moldovanu (2010), Jehiel, Meyer-ter-Vehn, Moldovanu, and Zame (2006),

Bikhchandani (2006)), and it is natural to ask to what extent our methods apply

here.

We adopt new notations and terminology, for this subsection only, in order to de-

scribe these extensions. For clarity, it will help to explicitly write out the dependence

of the mechanism on all n agents’ types, as in Subsection 2.2. (Of course, a single agent

is a special case.) Each agent i’s type space Ti is now assumed to be a subset of an arbi-

trary finite-dimensional Euclidean space, not necessarily R
m. Write T = T1×· · ·×Tn.

Agent i’s utility is now represented by a function ui : T → R
m specifying his utility

for each outcome as a function of the entire type profile. (The private-values case

discussed previously is the special case where Ti ⊆ R
m and ui(t1, . . . , tn) = ti.)

To allow for transfers, a mechanism is now a pair (f, p), where f : T → ∆(X)

specifies a lottery over outcomes for each type profile, and p : T → R
n is a payment

function specifying the net transfer each agent receives. We write pi(t) for the ith

component of p(t), representing agent i’s transfer.

If the true type profile is t and the agents report profile t′, then agent i’s realized

utility is ui(t)·f(t
′)+pi(t

′). An incentive constraint for agent i is again a pair (ti, t
′
i) ∈

Ti × Ti. We will emphasize here the Bayesian notion of incentive-compatibility, so

assume a distribution ψj on each agent’s type space Tj is given. The mechanism (f, p)
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satisfies the incentive constraint (ti, t
′
i) if

Ei[ui(ti, t−i) · f(ti, t−i) + pi(ti, t−i)] ≥ Ei[ui(ti, t−i) · f(t
′
i, t−i) + pi(t

′
i, t−i)].

Here the expectations are with respect to the product distribution ×j 6=i ψj on other

agents’ types; it is presupposed that the expressions inside the expectations are mea-

surable in t−i, and both expectations are finite. (As in Subsection 2.2, the assumption

of independently distributed types is crucial.)

A set Si of incentive constraints will again be called local incentive constraints if

every ti ∈ Ti has an open neighborhood Nti in Ti such that (ti, t
′
i) ∈ Si and (t′i, ti) ∈ Si

for all t′i ∈ Nti . Si is sufficient for agent i if every mechanism that satisfies it must

satisfy the full set of incentive constraints Ti × Ti.

Dominant-strategy incentive-compatibility has an analogue in the interdepen-

dent setting, namely ex post incentive-compatibility (Chung and Ely (2006), Jehiel,

Meyer-ter-Vehn, Moldovanu, and Zame (2006)), which demands Bayesian incentive-

compatibility for all probability distributions simultaneously. Our result (Proposition

5 below) is expressed in terms of Bayesian incentive-compatibility, but an immediate

corollary is that the same result holds using ex post incentive-compatibility instead.

To obtain a sufficiency result, we need to restrict interdependence by assuming

that, for each fixed t−i, the utility function ui(·, t−i) : Ti → R
m is linear in ti. Under

this restriction, we have:

Proposition 5 In the setting with transfers and interdependent utility linear in own

type, if agent i has a convex type space Ti, then every set of local incentive constraints

is sufficient for agent i.

The proof is a straightforward extension of that for Proposition 1.

The linearity assumption warrants some comments. It is satisfied trivially in the

private-values case (hence, Proposition 1 is a special case of Proposition 5). It is

also satisfied by many concrete models appearing in the interdependent preferences

literature, including Dasgupta and Maskin (2000, Examples 2, 3, 4, 5); Jehiel and

Moldovanu (2001); Fieseler, Kittsteiner, and Moldovanu (2003) (under their assump-

tion A2); Bikhchandani (2006, Example 1); and Bergemann and Morris (2009, Section

3). On the other hand, it is quite restrictive, relative to the space of all well-behaved

utility functions ui : T → R
m an agent might have.
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The linearity assumption is crucial in our analysis, ensuring that the convexity

condition in Proposition 5 extends that of Proposition 1. To understand this, notice

(as observed also in Archer and Kleinberg (2008)) that we can think of each type

of agent i as specifying a utility function X × T−i → R, and given the priors ψj, a

mechanism induces a distribution over X × T−i for each ti. In order to apply the

argument from the proof of Proposition 1, we essentially need agent i’s type space to

be a convex subset of the linear space of all functions X × T−i → R. This is exactly

the combination of linearity and convexity assumptions we have made above.

The preceding paragraph does not show that sufficiency fails when the linearity

assumption is violated, only that the method of proof used here (adding up incentive

constraints along a line) cannot be used. The question of how much further sufficiency

can be generalized is taken up in more extensively in the online appendix, which

suggests that sufficiency results do not exist much beyond what can be proven with

the present method; as well as Section 4 below, which shows how sufficiency fails

under a condition somewhat stronger than nonconvexity.

We have here extended Proposition 1 to allow for transfers and/or interdependence

with utility linear in own type. The same extension can be applied to Propositions 2

and 3. Such results may potentially be useful, for example, in analyzing mechanism

design problems in such settings when the message spaces are constrained to be finite.

4 Insufficiency

The previous section gave numerous classes of type spaces on which local incentive

constraints are sufficient. The discussion is not complete without giving some cases

where local incentive constraints are not sufficient. We restrict ourselves here to

cardinal type spaces. Proposition 6 below identifies a large class of such type spaces

— roughly, those which violate convexity in a strong enough way — for which we

can construct mechanisms that are locally, but not fully, incentive-compatible. (Sato

(2010, Proposition 4.2) gives an analogous result for ordinal type spaces.)

It is unclear just how far Proposition 6 can be sharpened. Proposition 1 showed

that if the type space is convex, any local incentive constraints are sufficient, but

the converse is not true. The question of exactly characterizing those type spaces

T for which all local incentive constraints are sufficient appears to be subtle. This

topic is explored further in the online appendix. Proposition OA-2 of that document
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gives a nontrivial example of a nonconvex type space for which all local incentive

constraints are sufficient; on the other hand, Proposition OA-1 gives a kind of converse

to Proposition 1 for finite cardinal type spaces. The details are somewhat technical,

so we refer the reader to the online appendix, and for now proceed to give our simpler

result.

In the space R
m, let Π be the subspace of vectors whose sum of components is

zero. Let a fair open half-space be a set of the form H = {u | u · λ > 0} for some

nonzero λ ∈ Π. Say that a cardinal type space T is fairly separated if there is some

fair open half-space H such that the set T ∩H is not connected.

Proposition 6 Let T be a cardinal type space that is fairly separated. Then there

exists a set of local incentive constraints that is not sufficient.

Fair separatedness certainly implies nonconvexity. To further indicate the rela-

tionship between the two concepts, a little graphical intuition is in order.

For concreteness, suppose X has four elements. By additive and multiplicative

renormalization, we can map every utility function either to a point on the unit sphere

in the three-dimensional space Π, or to the origin. This sphere is illustrated in Figure

1. The upper hemisphere, whose boundary is shown dashed in the figure, corresponds

to a fair open half-space. If T contains the types labeled u and v, but does not contain

any type along the thick curve (or any type cardinally equivalent to it), then T is

fairly separated.

If T were to consist of all possible utility functions except 0 and w (and anything

cardinally equivalent to them), then T would be nonconvex. Nonetheless, on this

T , any local incentive constraints are sufficient; this is just Proposition OA-2 of the

online appendix. Excluding the whole curve from T , rather than just the one point

w, is enough for insufficiency, by Proposition 6.

Fair separatedness might not seem like a natural condition on a type space, so

we give one economically important example. Fix an ordering x1, . . . , xm of the

outcomes, and let T be the cardinal type space consisting of all quasiconcave utility

functions — a cardinal analogue of the single-peaked ordinal type space considered

in Section 3.3. Then T is fairly separated. For example, take any 1 ≤ p < p′ <

p′′ ≤ m, and let H = {u | u(xp) − 2u(xp′) + u(xp′′) > 0}. If u ∈ T ∩ H, then

either u(xp) > u(xp′) or u(xp′′) > u(xp′). So {u ∈ T ∩ H | u(xp) > u(xp′)} and

{u ∈ T ∩H | u(xp′′) > u(xp′)} are two open, nonempty subsets of T ∩H, whose union
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Figure 1: Illustration of fair separatedness

is all of T ∩ H, and whose intersection is empty (any u satisfying both inequalities

would violate quasiconcavity). Hence, T ∩ H is not connected. By Proposition 6,

there are local incentive constraints on T that are insufficient. Note that this result

for single-peaked cardinal types contrasts with our sufficiency result for the single-

peaked ordinal type space (Proposition 3). The accessibility argument underlying

that proposition (Lemma 5 in the appendix) fails with single-peaked cardinal types.

Proof of Proposition 6: Let H = {u | u · λ > 0} with λ ∈ Π. There exist

lotteries L,L′ on X such that H = {u | u · L > u · L′}. Indeed, let L be any lottery

with full support, and just let L′ = L − δλ, where δ > 0 is chosen small enough so

that all components of L′ are still positive.

Now write T ∩ H = Ta ∪ Tb, where Ta, Tb are open, disjoint, and nonempty.

Consider the mechanism f defined as follows: if u ∈ Ta, then f(u) = L; otherwise,

f(u) = L′.

Let S = (T × T ) \ (Tb × Ta). This is a set of local incentive constraints: If u ∈ Ta,

let Nu = Ta; if u ∈ Tb, let Nu = Tb; and if u ∈ T \ H, let Nu = T . In each case we

have (u, u′), (u′, u) ∈ S for all u′ ∈ Nu.

One readily checks that f satisfies the incentive constraints S, but does not satisfy

any incentive constraint in Tb × Ta and so is not fully incentive-compatible. Thus, S

is not sufficient. �

A similar construction can be applied in the context of Subsection 3.5, to generate

many examples with interdependent preferences, nonlinear in own type, for which
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local incentive constraints are not sufficient.

5 Conclusion

This paper has examined the question of whether or not a small set of local incentive

constraints is sufficient to ensure that all other incentive constraints are automati-

cally satisfied, allowing for probabilistic mechanisms. We have obtained affirmative

answers in many of the most common mechanism design settings. With convex spaces

of cardinal types, local incentive constraints are sufficient to imply full incentive-

compatibility. This result allows for monetary transfers under quasilinear utility, and

for interdependence so long as each agent’s utility is linear in his own type. Local

incentive constraints are also sufficient on polyhedral (including ordinal) type spaces

with convex closure, as well as single-peaked or successive single-crossing ordinal type

spaces. Our proofs follow a unified analytical approach based on a simple supermod-

ularity argument that applies across different settings. For cardinal type spaces that

are not convex, the argument does not apply, and with a strengthening of noncon-

vexity we have insufficiency — there are mechanisms that are locally but not fully

incentive-compatible.

The sufficiency results provide an immediate strengthening of many existing im-

possibility and characterization theorems, and a negative answer to a possible line of

inquiry as to whether one could obtain new mechanisms by ignoring nonlocal incen-

tive constraints on grounds of bounded rationality or monitoring technology. Most

importantly, they facilitate the technical analysis of mechanism design problems in

these settings by ensuring that one can focus on local incentive constraints without

any loss, avoiding the need for separate verifications of full incentive-compatibility.

Our analysis on cardinal type spaces in particular also sheds some light on the

form of local incentive constraints that should be considered in order to ensure full

incentive-compatibility. A naive formulation is not sufficient. On the other hand,

our local incentive constraints are still substantially weaker than requiring incentive-

compatibility throughout a neighborhood of each type (as required for the formally

similar result of Archer and Kleinberg (2008)), and arguably easier to verify in appli-

cations.
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A Omitted proofs

Here we present the proofs that were omitted from the main text. We begin with

some technical lemmas.

Lemma 1 Let the polyhedron t be written as an intersection of open half-spaces,

t = ∩r
k=1

Hk. Then the boundary of t is

∂t = cl(t) \ t =
⋃

∅6=K⊆{1,...,r}

[(
⋂

k∈K

∂Hk

)
∩

(
⋂

k/∈K

Hk

)]
.

Proof: Write cl(t) = ∩k cl(Hk) = ∩k(∂Hk∪Hk); distribute on the right side; then

remove t = ∩kHk from both sides. �

In particular, ∂t ⊆ ∪k ∂Hk.

Lemma 2 Suppose T is a polyhedral type space. Fix u ∈ R
m, and let t, t′ ∈ T be

distinct, nonadjacent types. Then there exist finitely many hyperplanes, each one

passing through u, whose union contains cl(t) ∩ cl(t′).

Proof: Since t, t′ are open and disjoint, neither one can intersect the closure of

the other, so cl(t) ∩ cl(t′) = ∂t ∩ ∂t′. Now suppose t = ∩r
k=1

Hk and t′ = ∩r′

k′=1
H ′

k′ .

Applying Lemma 1 to both t and t′, and then distributing the intersection operator,

we get

∂t ∩ ∂t′ =
⋃

∅6=K⊆{1,...,r}
∅6=K′⊆{1,...,r′}

B(K,K ′),

where

B(K,K ′) =

(
⋂

k∈K

∂Hk

)
∩

(
⋂

k/∈K

Hk

)
∩

(
⋂

k′∈K′

∂H ′
k′

)
∩

(
⋂

k′ /∈K′

H ′
k′

)
.

It therefore suffices to show that each set B(K,K ′) is contained in a hyperplane that

passes through u. We may assume B(K,K ′) is nonempty.

B(K,K ′) is a relatively open subset of P (K,K ′) = (∩k∈K ∂Hk) ∩ (∩k′∈K′ ∂H ′
k′).

The set P (K,K ′) is an affine set, that is, an intersection of hyperplanes. If P (K,K ′)

is itself a hyperplane, then since B(K,K ′) ⊆ cl(t) ∩ cl(t′), it follows that t and t′

are adjacent. This contradicts the hypothesis. Therefore P (K,K ′) is an affine set
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of dimension at most m − 2, and we can then find a hyperplane containing both

P (K,K ′) and u. �

Lemma 3 Let T be any polyhedral type space, and u ∈ R
m any utility function. Then

there exists a finite collection Z of hyperplanes such that

• for any t ∈ T , ∂t is contained in the union of the hyperplanes in Z;

• if t, t′ are distinct, nonadjacent types, and w ∈ cl(t)∩cl(t′), then some hyperplane

in Z passes through both u and w.

Proof: Immediate from Lemmas 1 and 2. �

As in the text, if T is a polyhedral type space and u, v two utility functions, we

say that v is accessible from u if [u, v] ⊆ ∪t∈T cl(t).

Lemma 4 Let T be any polyhedral type space, let u ∈ R
m, and let Z be the set

identified by Lemma 3. Let v ∈ R
m be any utility function not lying on any hyperplane

in Z. Suppose v is accessible from u. Let t0, t1, . . . , tr be the types intersecting the

segment [u, v] in order. Then tk and tk+1 are adjacent, for each k = 0, . . . , r − 1.

Note in the statement that the phrase “in order” makes sense, since each type tk

intersects the segment [u, v] in a subsegment, and these subsegments must be disjoint.

Proof: As in the proof of Proposition 1, define uα = (1− α)u+ αv for α ∈ [0, 1].

Any hyperplane in Z can contain at most one point of [u, v]: otherwise it would

contain the entire segment and in particular would contain u1 = v, contradicting the

choice of v.

As noted above, each type tk intersects [u, v] in a subsegment {uα | α ∈ Jk}, where

Jk is an open subinterval of [0, 1] — that is, Jk is of the form (γ, δ), [0, δ), or (γ, 1].

Write γk = inf Jk, δk = sup Jk. By the assumption that the tk are in order, we have

δk ≤ γk+1 for each k = 0, . . . , r − 1.

Next we show that in fact δk = γk+1 for each k. Suppose instead that δk < γk+1.

By assumption, the union of the closures of all types in T contains all of [u, v]. So

for any α with δk < α < γk+1, then, uα is in the closure of some type t̂. Such a point

uα cannot belong to t̂ proper, so it belongs to ∂t̂. Then uα belongs to one of the

hyperplanes in Z. But there are infinitely many choices of uα. Since Z is finite and

each hyperplane in Z meets [u, v] at most once, we have a contradiction.
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This establishes δk = γk+1. On the other hand, uδk ∈ cl(tk), and uγk+1
∈ cl(tk+1).

So, uδk ∈ cl(tk) ∩ cl(tk+1). If tk, tk+1 are not adjacent types, then some hyperplane of

Z passes through uδk and u. This again contradicts the fact that each hyperplane of

Z can intersect [u, v] only once. So tk, tk+1 are adjacent. �

Proof of Proposition 2: Suppose u ∈ t, for some type t ∈ T , and let t′ be any

other type. Suppose the mechanism f satisfies the local incentive constraints. We

wish to show that u · (f(t)− f(t′)) ≥ 0.

Let Z be given by Lemma 3. Because t′ is an open set, we can choose v ∈ t′ not

lying on any of the hyperplanes in Z. By convexity, v is accessible from u, so Lemma

4 applies, and the successive types tk, tk+1 identified in that lemma are adjacent for

each k.

Again define uα = (1 − α)u + αv. For each k = 0, . . . , r, pick any αk with uαk
∈

tk ∩ [u, v]. The local incentive constraints (tk, tk+1) and (tk+1, tk) for k = 0, . . . , r − 1

ensure that

uαk
· (f(tk)− f(tk+1)) ≥ 0,

uαk+1
· (f(tk+1)− f(tk)) ≥ 0.

From here we proceed exactly as in the proof of Proposition 1 to reach the conclusion

u · (f(t)− f(t′)) = u · (f(t0)− f(tr)) ≥ 0.

�

Lemma 5 Let T be the space of single-peaked ordinal types. Fix u ∈ t for some

t ∈ T . For any t′ ∈ T , there exists a nonempty open set contained in t′ such that

every v in the open set is accessible from u.

Proof: Let u, t′ be as in the lemma. We know that u is strict (i.e. gives different

values to different outcomes) since it belongs to an ordinal type. Then a sufficient

condition for v to be accessible from u is that (1−α)u+αv be single-peaked whenever

it is strict: the set {α ∈ [0, 1] | (1−α)u+αv is not strict} is finite, hence (1−α)u+αv

will be in the closure of some single-peaked ordinal type for each α.

We first construct some v that is accessible from u. Let xp be the outcome ranked

highest by u, and let xp′ be the outcome ranked highest by t′. If p′ = p, then any
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v ∈ t′ is accessible from u: since u(xq) and v(xq) are both increasing in q for q ≤ p

and decreasing for q ≥ p, the same is true of any weighted average (1− α)u+ αv, so

each such weighted average is single-peaked (as long as it is strict).

Now suppose p′ > p (the case p′ < p is similar). So u(xq) is decreasing and v(xq)

must be increasing in q for p ≤ q ≤ p′. Choose v(xp′) and v(xp′−1) arbitrarily, with

v(xp′−1) < v(xp′). If p < p′ − 1 then successively choose v(xq) for q = p′ − 2, p′ −

3, . . . , p′, such that
v(xq+2)− v(xq+1)

u(xq+1)− u(xq+2)
<
v(xq+1)− v(xq)

u(xq)− u(xq+1)
. (2)

This can be done by choosing v(xq) low enough at each step. Finally, we can choose

v(xq) for q > p′ or q < p so that v represents the ordering given by t′.

Now we will show that, for α ∈ [0, 1], (1− α)u+ αv is single-peaked whenever it

is strict. That is, we claim that (1 − α)u(xq) + αv(xq) is increasing in q for q up to

some peak, and decreasing after that. Both u(xq) and v(xq) are increasing in q for

q ≤ p, and decreasing in q for q ≥ p′, so we focus on the range p ≤ q ≤ p′. We will

show that there cannot exist any q ∈ {p, . . . , p′ − 2} such that

(1− α)u(xq) + αv(xq) > (1− α)u(xq+1) + αv(xq+1) (3)

and

(1− α)u(xq+1) + αv(xq+1) < (1− α)u(xq+2) + αv(xq+2) (4)

simultaneously hold; this will prove the claim.

Suppose (3) and (4) do both hold, for some q. (3) implies

1− α

α
>
v(xq+1)− v(xq)

u(xq)− u(xq+1)

while (4) implies
1− α

α
<
v(xq+2)− v(xq+1)

u(xq+1)− u(xq+2)
.

(Note we used the fact that u(xq) > u(xq+1) > u(xq+2) to make sure the signs don’t

switch when we divide. We know α > 0 since (4) is violated at α = 0.) Combining

these two inequalities gives a contradiction of (2), completing the proof of the claim.

At this point we have shown that any v ∈ t′ satisfying the inequalities (2) is

accessible from u. Since these inequalities carve out a nonempty open subset of t′,
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the lemma is proven. �

Proof of Proposition 3: Suppose that T is the space of single-peaked ordinal

types. Let u ∈ t, for some t ∈ T , and let t′ be any other type. We wish to show that

u · (f(t)− f(t′)) ≥ 0, for any f satisfying the local incentive constraints.

Let Z again be the set of hyperplanes promised to us by Lemma 3 (with respect

to T and u). By Lemma 5, we can choose a v ∈ t′ that is accessible from u and does

not lie on any of the hyperplanes in Z. Accessibility ensures that Lemma 4 applies.

From here onward we just repeat the argument used to prove Proposition 2. �

Proof of Proposition 5: Suppose that the mechanism (f, p) satisfies the set

Si of local incentive constraints for agent i. Consider any two types ti, t
′
i ∈ Ti. Write

tα = (1 − α)ti + αt′i. As in the proof of Proposition 1, we can find 0 = α0 < α1 <

· · · < αr = 1 with (tαk
, tαk+1

), (tαk+1
, tαk

) ∈ Si for each k = 0, . . . , r − 1. These local

incentive constraints give

Ei[ui(tαk
, t−i) · (f(tαk

, t−i)− f(tαk+1
, t−i)) + (pi(tαk

, t−i)− pi(tαk+1
, t−i))] ≥ 0,

Ei[ui(tαk+1
, t−i) · (f(tαk+1

, t−i)− f(tαk
, t−i)) + (pi(tαk+1

, t−i)− pi(tαk
, t−i))] ≥ 0.

Multiply by αk+1 and αk, respectively, and add:

Ei

[
[αk+1ui(tαk

, t−i)− αkui(tαk+1
, t−i)] · (f(tαk

, t−i)− f(tαk+1
, t−i)) +

[αk+1 − αk] · (pi(tαk
, t−i)− pi(tαk+1

, t−i))
]
≥ 0. (5)

Because utility is linear in own type, and tαk
is equal to the weighted average

(αk/αk+1)tαk+1
+ (1− αk/αk+1)ti, we know that for each realization of t−i,

ui(tαk
, t−i) =

αk

αk+1

ui(tαk+1
, t−i) +

(
1−

αk

αk+1

)
ui(ti, t−i).

Rearranging gives

αk+1ui(tαk
, t−i)− αkui(tαk+1

, t−i) = (αk+1 − αk)ui(ti, t−i).
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Applying this identity and dividing through (5) by the constant αk+1 − αk > 0 gives

Ei[ui(ti, t−i) · (f(tαk
, t−i)− f(tαk+1

, t−i)) + (pi(tαk
, t−i)− pi(tαk+1

, t−i))] ≥ 0.

Summing over k = 0, . . . , r − 1 gives

Ei[ui(ti, t−i) · (f(ti, t−i)− f(t′i, t−i)) + (pi(ti, t−i)− pi(t
′
i, t−i))] ≥ 0

which shows that the incentive constraint (ti, t
′
i) is satisfied.

�
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