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Abstract

We consider a moral hazard problem in which the principal has a slight uncer-

tainty about how the agent’s actions translate into output. An incentive contract

can be made robust against an ε amount of uncertainty, at the cost of a loss to the

principal on the order of
√
ε, by refunding a small fraction of profit to the agent.

We show that as ε goes to zero, this construction is essentially optimal, in the sense

of minimizing the worst-case loss, among all modifications to the contract that do

not depend on the details of the environment.
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1 Introduction

Economic models tend to assume that agents have perfect knowledge of the environment

in which they operate. What happens to the predictions, qualitatively, when a small

amount of uncertainty is introduced? If models with perfectly specified environments are

used to derive policy prescriptions, what is the best way to make these policies robust

against a small amount of uncertainty that inevitably occurs in the real world?

We consider a standard principal-agent model, in which an agent can privately choose

one of several effort levels, producing a stochastic output, and the principal can write a
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contract specifying payment as a function of output, in order to incentivize the agent to

exert effort. The principal, in designing a contract, has a model in mind that describes the

probability distribution over output that results from each of the agent’s possible effort

levels. But she also knows that her model might be mistaken by some small amount ε,

meaning that the actual probability of any output, for any given effort level, might be up

to ε larger or smaller than the model assumes.

If the principal simply evaluates a possible contract based on its performance in her

model (for example, she might solve the model for the optimal contract), then its actual

performance might be precipitously worse than she expects. For example, in a textbook

model with just two effort levels (e.g. [7, Section 1.3]), the optimal contract implementing

high effort will have the incentive constraint exactly bind. Then, if the principal’s model

is off by an arbitrarily small amount, the incentive constraint may actually be violated

and the agent may choose to exert low effort instead.

A moment’s reflection suggests the principal can make the contract robust by adding

slack to the incentive constraints. But how much slack should she add, and how would

the resulting contract look different from the one derived in the model? To put it more

sharply, if the principal evaluates a contract using the idealized model, what is a simple

recipe for modifying the contract to make it robust to the ε uncertainty?

We show that the principal can make the contract robust by giving a share τ of

her profit back to the agent, where τ is on the order of
√
ε. We show that, in any

actual environment that is within ε of the principal’s model, the profit from this modified

contract falls short of the model profit by at most an amount of order
√
ε. Intuitively,

the modified contract pads the incentive constraints in favor of effort levels that are more

profitable for the principal; and the
√
ε factor optimally trades off the padding with the

principal’s desire not to have to make large extra payments to the agent. This construction

draws on the work of Madarász and Prat [10] who apply a similar construction to provide

local robustness in a multidimensional screening problem. (A very similar approximation

argument also appears in Chassang [4, Lemma A.1].)

We then further show that this construction is optimal, for ε → 0: there is no other

recipe for modifying a given contract that guarantees a significantly smaller worst-case

loss relative to the model. More precisely, for any given contract, if the principal considers

any “black-box” modification to make it robust — one that does not depend on the details

of her model — then the construction above asymptotically attains the smallest possible

value for the worst-case loss. If the principal does take into account the details of the

model in modifying the contract, then it may be possible to do better, indeed attaining
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a loss of order ε rather than
√
ε. However, there is no such guarantee that is uniform

across all models; the best possible uniform guarantee is back to order
√
ε (although it

may improve on the black-box construction by a constant factor). We also note that none

of our results actually make any reference to the original contract being optimal for the

model; the results start from any arbitrary contract, and compare the actual profit from

the modified contract against the model profit from the original contract.

For notational simplicity, we state first in a model in which the principal and agent are

risk-neutral, and payments to the agent are constrained from below by limited liability.

We then show that the arguments carry over to a setting with risk-aversion and with a

participation constraint; now the principal modifies the contract by increasing the agent’s

utility level by an amount equal to share τ of her profit. In Section 4, we also show how

a version of our construction generalizes much more broadly beyond our simple static

hidden-action model, although the optimality result does not generalize as readily.

This paper contributes to a small but growing literature on robust moral hazard con-

tracting in uncertain environments, such as [4], [6], [3], [2]. Much of that literature allows

for a large space of uncertainty. Most closely related is the smaller literature on local

robustness in mechanism design, in which the principal has only a small amount of un-

certainty about the correctness of her model. Positive results in this area include the

screening paper of Madarász and Prat [10] mentioned above, which inspired our study;

as well as Meyer-ter-Vehn and Morris [11], on higher-order belief perturbations. Negative

results include Jehiel, Meyer-ter-Vehn, and Moldovanu [9] on Bayesian incentive compati-

bility with interdependent values, and Chung and Ely [5] and Aghion, Fudenberg, Holden,

Kunimoto, and Tercieux [1], both on almost-complete-information implementation.

2 The basic model

2.1 Setup

We present here the basic model. This is a standard principal-agent model — the agent

exerts costly effort, leading to a stochastic output, and only output can be contracted

on. For this section, the principal and agent are both risk-neutral, and there is a limited

liability constraint; the principal can never pay less than zero.

We consider a discrete setup: There are K ≥ 2 possible levels of effort that the

agent can exert, which we will simply call 1, . . . , K; and N ≥ 2 possible values of output

that may be realized, y = (y1, . . . , yN). We assume that the values of K and the yi are
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commonly known. What is not perfectly known is the environment, which describes the

cost of each level of effort and the corresponding probability distributions over output.

Thus, an environment E = (c1, . . . , cK ; f1, . . . , fK) consists of K real numbers representing

the costs of effort, along with K probability distributions f1, . . . , fK , each of which may

be represented as a vector of N nonnegative numbers summing to 1.

A contract w is a vector of N nonnegative numbers, specifying what the agent is paid

for each possible level of output. The nonnegativity requirement captures the limited

liability constraint. If the environment is E and the agent is offered contract w, then his

payoff from taking any action k is his expected payment minus the effort cost, which can

be written using the dot product, as fk ·w−ck. Accordingly, the set of incentive-compatible

actions is

k∗(w|E) = argmaxk∈{1,...,K}(fk · w − ck).

The principal’s corresponding profit is the expected output minus wage paid,

V (w|E) = max
k∈k∗(w|E)

fk · (y − w).

(The max operator reflects the possibility that the agent is indifferent among multiple

optimal actions, in which case we assume he chooses the one that is best for the principal.

This approach is consistent with having incentive constraints bind in the optimal contract

for a particular E .)

We will assume that the principal has some model environment E in mind when

she contemplates a contract and predicts her resulting profit. But she allows that the

model may be slightly misspecified, and knows only that the true environment Ẽ =

(c̃1, . . . , c̃K ; f̃1, . . . , f̃K) is within ε of E . For our purposes, this means that the effort

costs are the same as in E but the output probabilities may be off by up to ε. (This is

just one of numerous ways that we could specify the set of possible true environments.

We follow this approach for simplicity, but many others would give qualitatively similar

results, as we discuss later in Section 5.)

Accordingly, we write Bε(E) for the set of all possible true environments satisfying this

condition:

Bε(E) = {(c̃1, . . . , c̃K ; f̃1, . . . , f̃K) | c̃k = ck for each k; |f̃k(i)− fk(i)| < ε for each k, i}.

We are interested in how best to modify a given contract w to make it robust to the

ε uncertainty. We express the principal’s desire for robustness by assuming that she does
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not have a prior over the possible true environments Ẽ ; instead, the modified contract w̃

is evaluated by its worst-case performance over all such environments. We are concerned

with how this performance compares to the “ideal” profit that the original contract w

would give in the model environment; thus, we focus on the discrepancy

D(w, w̃, E , ε) = V (w|E)− inf
Ẽ∈Bε(E)

V (w̃|Ẽ). (2.1)

Throughout, we will treat K,N, y and w as fixed, and constant factors in the re-

sults below may depend on them (except where explicitly stated). However, we will not

necessarily treat E as fixed, because we will sometimes be interested in “black-box” modi-

fications to the contract, which can be performed without knowing the environment. (This

can be motivated as a simplicity restriction on the possible modifications; they cannot

depend too much on the principal’s knowledge of the environment. Alternatively, we can

imagine that the principal does not know the environment, and was handed the contract

w by a designer who claims to know E , but the principal is not entirely confident that

the designer’s model is correct.) Note that in this black-box approach it makes sense to

take w as given — and N, y which are prerequisite for defining w — since otherwise the

principal’s problem is not well-defined.1

We also will not take ε as fixed; we are interested in the situation where uncertainty

is small, which we represent by taking limits as ε→ 0.

Finally, we make some assumptions to simplify exposition. Notice that we may as

well assume the initial contract w satisfies miniwi = 0, since otherwise the principal can

clearly reduce each wi by the amount miniwi and save money without affecting the agent’s

incentives for effort. We also can reorder the output values to assume w1 = miniwi and

y1 = mini:wi=w1 yi. Also, if we shift all yi by a constant, the quantity D(w, w̃, E , ε) is

invariant, so we can normalize y1 = 0 without loss of generality. Thus, we henceforth

assume that y and w satisfy two conditions: 1) w1 = y1 = 0 and 2) if wi = 0, then yi ≥ 0.

2.2 Results

Consider the given contract w. The argument in the introduction shows that the per-

formance of the contract may fail to be robust to arbitrarily small uncertainty: if we

1The exception is K, which this motivation suggests treating as part of E . For the black-box results
the assumption of known K is actually never needed. It is only used to give stronger bounds in the
non-black-box result, Theorem 2.5: if we wanted bounds valid for all K, then (2.2) would collapse to
Corollary 2.3 since hK → 2 as K →∞; and (2.3) would disappear since h2 = 0.
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simply take w̃ = w, then for some E , the quantity D(w, w̃, E , ε) stays large as ε → 0. In

particular, this happens when E is such that an incentive constraint binds in w, so will

typically happen if (for example) the principal came up with w by solving for the optimal

contract in her model E .

We show how to optimally modify the contract w to make it robust, for small ε. For

any positive real number τ , define the contract w(τ) as w + τ · (y − w): pay a fraction τ

of the principal’s profit back to the agent. The contract w(τ) satisfies the limited liability

constraint for small enough τ (because yi ≥ 0 whenever wi = 0). We show that the

contract w(τ) is robust for appropriately chosen τ .

To state our results, we define a constant C∗ as follows. Let A = {a ∈ [−1, 1]N | a1 +

· · · + aN = 0}, and for any N -dimensional vector v = (v1, . . . , vN), define maxdiff(v) =

maxa∈A(a · v): it is not hard to check that maxdiff(v) is the total difference between the

bN/2c largest and bN/2c smallest components of v. Then, put

C∗ = 2
√

2 ·maxdiff(w) · max
i=1,...,N

(yi − wi).

This quantity is known to the principal, since y and w are given.

Theorem 2.1. Let C > C∗ be fixed. For all sufficiently small ε, there exists a τ (depending

on ε), such that for any environment E, we have

D(w,w(τ), E , ε) < C
√
ε.

Theorem 2.1 demonstrates that the contract w(τ) successfully approximates the ideal

profit V (w|E) in spite of the uncertainty about the environment, and the possible discrep-

ancy in profit is on the order of
√
ε. Intuitively, the discrepancy comes from two sources.

The first source is the change in payment from contract w to w(τ), which is proportional

to τ . The second source is the potential change in the agent’s effort choice (from k∗(w|E)

to k∗(w(τ)|Ẽ)), and this effect turns out to be proportional to ε
τ
. Therefore, if we pick τ

on the order of
√
ε, then we can attain a total discrepancy on the order of

√
ε.

Note that the construction in Theorem 2.1 is a black-box recipe for modifying the

contract w: it does not depend on the specifics of the environment E .

A natural follow-up question is whether our construction is optimal: Is there a different

way of modifying the contract that would ensure a significantly smaller discrepancy? If we

are interested specifically in black-box constructions, the next theorem shows that there

is no such construction.
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Theorem 2.2. Let C < C∗ be fixed. Then, for small enough ε, for any contract w̃, we

have

sup
E
D(w, w̃, E , ε) > C

√
ε.

To express the comparison more clearly, we rearrange the results of Theorems 2.1 and

2.2 as follows:

Corollary 2.3. The following limit holds:

lim
ε→0

(
inf
w̃

(
sup
E

D(w, w̃, E , ε)√
ε

))
= C∗.

This corollary follows immediately from the two theorems. It shows that our con-

struction of w(τ) is optimally robust, for small ε: among black-box constructions, the

best possible discrepancy guarantee is approximately C∗
√
ε, and our construction of w(τ)

attains this asymptotic optimum.

However, we can also consider non-black-box constructions of w̃; after all, the principal

in our model presumably knows E , so she might wish to use this knowledge in writing the

robust contract w̃. In this case, as ε→ 0, the principal can attain a discrepancy of order

ε instead of
√
ε. Moreover, she can do so using linear profit-sharing modifications to the

contract, just as in Theorem 2.1.

Proposition 2.4. Let E be given. Then there exists a constant C(E) such that, for all

small enough ε > 0, there is some τ > 0 satisfying

D(w,w(τ), E , ε) < C(E) · ε.

However, the constant factor C(E) depends on the model environment E . If we are

interested in a quantitative bound that is uniform over environments, then we are back

to order
√
ε, even though the principal is allowed to make w̃ depend on E .

Theorem 2.5. Assume that wi > 0 for all i > 1. For every K, there exists a constant

hK < 2, depending only on K (and not on y or w), such that the following bounds hold:

lim sup
ε→0

(
sup
E

(
inf
w̃

D(w, w̃, E , ε)√
ε

))
≤ hK

√
2 ·maxdiff(w) ·max

i
(yi − wi) (2.2)

and

lim inf
ε→0

(
sup
E

(
inf
w̃

D(w, w̃, E , ε)√
ε

))
≥ hK

√
2 ·max

i
(wi · (yi − wi)). (2.3)
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Our statement of Theorem 2.5 parallels Corollary 2.3, but now the principal can choose

w̃ based on knowledge of E , as indicated by the appearance of the infw̃ quantifier inside

the supE instead of outside it. Since the principal can now use information about E , we

should expect the optimal discrepancy to be smaller than it was in the black-box case,

and this is indeed the case, as the fact that hK < 2 indicates.

Theorem 2.5 gives tight bounds if there are just two output levels; but for more than

two outputs, there is a gap between our upper and lower bounds. The difficulty is that a

tight lower bound rests on the premise that w is optimal or near-optimal for E — indeed,

otherwise we could build w̃ based on the optimal contract for E , and the discrepancy might

even be negative. Proving a lower bound thus requires constructing an environment E for

which the given contract w is optimal. Our proof is based on a particular construction

that focuses on just two output levels. We suspect a sharper bound may be obtainable

by a subtler construction.

2.3 Arguments for the black-box results

We begin by proving Theorem 2.1. Here, and subsequently, we use standard “big O”

notation: for any function g(ε), we write O(g(ε)) to mean a quantity that is bounded

above by C · g(ε) as ε → 0, where C is a constant that depends only on the primitives

(K,N,w, y).

The intuition for the theorem is as described previously: in going from contract w in

environment E to w(τ) and Ẽ , the profit discrepancy due to increased payment is on the

order of τ , and the discrepancy due to any possible change in effort is on the order of ε/τ ;

choosing τ on the order of
√
ε optimally balances these two.

Proof of Theorem 2.1. We claim that there exists a τ > 0 such that the following inequal-

ity holds for sufficiently small ε and for all Ẽ ∈ Bε(E):

V (w|E)− V (w(τ)|Ẽ) ≤ C∗
√
ε+O(ε).

It suffices to prove this inequality because as ε goes to 0, the term O(ε) is dominated by
√
ε.

We first explicitly write out V (w|E) and V (w(τ)|Ẽ). Suppose contract w induces effort

k in environment E . We have V (w|E) = fk ·(y−w). Suppose w(τ) induces effort l in some

environment Ẽ ∈ Bε(E). Then V (w(τ)|Ẽ) = f̃l ·(y−w(τ)). Since y−w(τ) = (y−w)(1−τ),
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we have

V (w|E)− V (w(τ)|Ẽ) = fk · (y − w)− f̃l · (y − w(τ))

= fk · (y − w)− f̃l · (y − w)(1− τ)

= (f̃k − f̃l) · (y − w) + τ · f̃l · (y − w) + (fk − f̃k) · (y − w).

In the last expression, the second term is bounded above by τ · maxi(yi − wi), and the

third term is bounded by O(ε) because all components of (fk − f̃k) lie in the interval

[−ε, ε]. Therefore we get

V (w|E)− V (w(τ)|Ẽ) ≤ (f̃k − f̃l) · (y − w) + τ ·max
i

(yi − wi) +O(ε). (2.4)

We are left with bounding the first term (f̃k − f̃l) · (y−w). We consider the incentive

constraints in environments E and Ẽ . In environment E , the agent prefers effort k over l,

so we have

fk · w − ck ≥ fl · w − cl. (2.5)

In environment Ẽ , the agent prefers effort l over k, so we have

f̃l · w(τ)− cl ≥ f̃k · w(τ)− ck. (2.6)

Summing up inequalities (2.5) and (2.6), we obtain that

fk · w + f̃l · w(τ)− ck − cl ≥ fl · w + f̃k · w(τ)− cl − ck,

which implies that

fk · w + f̃l · w(τ) ≥ fl · w + f̃k · w(τ).

The above inequality rearranges into (f̃k − f̃l) · (w(τ)− w) ≤ (fk − f̃k − fl + f̃l) · w. The

vector (fk − f̃k − fl + f̃l) has components that sum to 0, and all components lie within

[−2ε, 2ε]. Thus (fk − f̃k − fl + f̃l) ·w ≤ 2ε ·maxdiff(w). Since w(τ)−w = τ · (y −w), we

have τ · (f̃k − f̃l) · (y − w) = (f̃k − f̃l) · (w(τ)− w) ≤ 2ε ·maxdiff(w). It follows that

(f̃k − f̃l) · (y − w) ≤ 2ε

τ
·maxdiff(w).
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Plug this bound into expression (2.4), we deduce that

V (w|E)− V (w(τ)|Ẽ) ≤ 2ε

τ
·maxdiff(w) + τ ·max

i
(yi − wi) +O(ε). (2.7)

If C∗ > 0, then let τ =
√

2·maxdiff(w)
maxi(yi−wi) ε. For small enough ε, contract w(τ) satisfies the

limited liability constraint, and the upper bound given by (2.7) is equal to C∗
√
ε+O(ε).

If C∗ = 0, then either maxdiff(w) = 0 or maxi(yi − wi)=0. If maxdiff(w) = 0, then

let τ = ε. We have τ · maxi(yi − wi) = O(ε). If maxi(yi − wi) = 0, then let τ be a

small enough constant such that w(τ) satisfies the limited liability constraint. We have
2ε
τ
· maxdiff(w) = O(ε). In either case, we get V (w|E) − V (w(τ)|Ẽ) = O(ε). Note also

that throughout, the value of τ depends only on ε (and w, y), not on E , as promised.

For the corresponding lower bound on discrepancy, Theorem 2.2, the intuition is as

follows. Given the contract w and the modified contract w̃, we construct an environment

E to satisfy two incentive constraints: the agent should prefer high effort under w and

E , but low effort under w̃ and a nearby environment Ẽ . We would like to design E such

that this change in effort harms the principal by making a high output level i∗ less likely

in Ẽ than in E . This just requires having high effort be more productive than low effort.

Note however that we cannot make high effort too much more productive: If w̃ pays much

more for high output than w does, and the agent prefers high effort under w, then he

strongly prefers high effort under w̃. The ε wiggle room in going from E to Ẽ is enough

to offset this preference only if the initial difference in productivity between high and low

effort is small. More specifically, the maximum possible difference in output probabilities

between high and low effort (while satisfying the two incentive constraints) is at most

order ε · maxdiff(w)/(w̃i∗ − wi∗). The denominator of this fraction reflects how much

more strongly w̃ incentivizes high effort compared to w in a given environment, while the

numerator reflects the maximum extent to which the ε uncertainty can offset this effect.

Now, the discrepancy between w and w̃ comes from two main sources: the difference

between payments wi∗ and w̃i∗ for a high output i∗, and the difference in the probability

of high output due to the change in effort. The first term is on the order of w̃i∗ −wi∗ ; the

second term, following the above calculations, is on the order of (yi∗ −wi∗) ·maxdiff(w) ·
ε/(w̃i∗ − wi∗). Summing these two terms for an optimally chosen w̃ gives the theorem.

The formal proof is a bit tedious, and is deferred to the appendix.
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2.4 Arguments for non-black-box results

The proof techniques for the non-black-box results are similar to those for the black-box

results. We describe the intuition of Proposition 2.4 and Theorem 2.5 and defer the proofs

to the appendix.

Proposition 2.4 states that there exists a w(τ) for which the discrepancy is on the

order of ε. Recall from the proof of Theorem 2.1 that there are two sources of discrepancy:

the change in the payment amount and the change in the effort choice. If we hold the

environment E fixed and only allow ε to vary, then we can pick τ on the order of ε, such

that the contract w(τ) in any Ẽ will induce the same effort choice k as in the original

model. Consequently, the discrepancy coming from effort choice disappears, and only the

change in payment — which is on the order of ε — remains.

Why does this work? Any incentive constraint that was non-binding in the original

model will remain non-binding for small ε and τ , so we only need to worry about incentive

constraints that originally were binding, where the agent was indifferent between effort

choice k and some other l. In this case, adding ε uncertainty may make the incentive

constraint be violated by an amount of order ε. On the other hand, adding a fraction

τ(y − w) back to payment will relax the incentive constraint by an amount on the order

of τ (and this does make the incentive constraint looser, not tighter; this is because k was

better than l for the principal). Therefore, we only need τ on the same order as ε to undo

the violation.

We illustrate this argument in the following example.

Example 2.6. Suppose there are K = 3 effort levels and N = 2 output levels. We have

0 = y1 < y2. Let x be a positive real number smaller than y2. Consider the following

environment E :

f1 =

(
3

4
,
1

4

)
, c1 = 0; f2 =

(
1

2
,
1

2

)
, c2 =

1

4
· x; f3 = (0, 1), c3 =

3

4
· x.

The optimal contract w for this environment is w1 = 0 and w2 = x. Under contract

w, the agent is indifferent between all three effort levels, so he picks the one best for the

principal. The agent picks effort 3, and the principal’s profit is equal to V (w|E) = y2−w2.

Now suppose there is ε-uncertainty. The argument for Proposition 2.4 goes as follows.

The principal uses a contract w(τ) that induces effort 3 in any environment Ẽ ∈ Bε(E).

To achieve this goal, the principal needs to consider the worst-case environment, namely,

f̃2 = (1
2
− ε, 1

2
+ ε) and f̃3 = (ε, 1− ε). This environment is indeed the most adversarial for
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the principal, because it maximally makes effort 3 both less productive than before, and

also harder to incentivize than before, due to effort 2 being more appealing to the agent.

(We ignore effort 1 for now.)

The principal wishes to construct w(τ) so as to incentivize effort 3 in the adversarial

environment. She solves for w(τ)2 from the incentive constraint

(1− ε) · w(τ)2 − c3 ≥ (
1

2
+ ε) · w(τ)2 − c2.

After solving, and then extracting τ using w(τ)2 = w2 + τ(y2 − w2), we get

τ ≥ 2w2 · ε
(1

2
− 2ε)(y2 − w2)

.

The important observation is that this minimum τ is on the same order as ε. Therefore,

choosing this τ ensures that the agent still chooses effort 3 in all possible environments

Ẽ , and as outlined above, this ensures a discrepancy of order ε.

A similar argument applies even if there are multiple effort levels and multiple binding

incentive constraints.

In Example 2.6, we note that, although τ varies linearly in ε, the coefficient depends on

the parameters of E , so that the upper bound on discrepancy also depends on E . Moreover,

this coefficient may be arbitrarily large. Indeed, if f2 is close to f3 (e.g. if we change the

example so that f2 = (0.01, 0.99), and set c2 so that the agent is again indifferent in the

model environment), then the principal needs to make τ be a large multiple of ε in order

to still induce effort 3 in every possible environment.

To get any upper bound on discrepancy that holds uniformly across all environments,

we must instead consider contracts that may induce a lower effort choice. We know already

from Theorem 2.1 that once we allow this, we can get an upper bound on the order of
√
ε. In order to make this argument tight, we need to carefully examine all possibilities

for such contracts: For each effort level l, we consider a modified contract w(τ) that may

induce effort l or higher. Picking the best of these contracts now gives us a discrepancy on

the order of
√
ε. Why

√
ε? This works just as in Theorem 2.1, where the discrepancy may

come from two sources (changed effort and increased payment), and the
√
ε comes from

choosing τ to optimally balance them. Going through this argument carefully gives us

the upper bound (2.2) of Theorem 2.5, which has a better constant factor than Theorem

2.1.

Example 2.7. We modify the setting of Example 2.6 as follows: keep efforts 1 and 3 as in
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the example, but now suppose more generally that f2 = (δ, 1 − δ) for some δ ∈ (0, 3/4),

and c2 = (3/4− δ) · x. The optimal contract is still w1 = 0 and w2 = x. Under contract

w, the agent is again indifferent among all three effort levels in the model environment.

Example 2.6 shows how to construct a contract w(τ), with τ as small as possible, that

always induces effort 3 in any Ẽ . The resulting value of τ depends linearly on ε, but with

a coefficient that is proportional to 1/δ.

Suppose the principal also writes another contract w(τ ′) that induces effort 2 or better

in any Ẽ .

If δ is small, i.e. efforts 2 and 3 are close together, then τ will need to be very large,

since τ is of order ε/δ. On the other hand, this means that the discrepancy from w(τ ′)

due to the change from effort 3 to 2 is small, so the principal is more willing to use w(τ ′)

in this case.

This reasoning and a bit of calculation leads us to

D(w,w(τ), E , ε) ≤ τ · (y2 − w2) +O(ε) = O
( ε
δ

)
+O(ε) (always induce effort 3)

and

D(w,w(τ ′), E , ε) ≤ O(δ) +O(ε) (induce effort 2 or 3)

where the O(ε) terms are independent of δ.

Now, for any values of δ and ε, we can construct two contracts w(τ) and w(τ ′) as

above. Between these two contracts, we pick whichever gives the smaller right-hand side

above. We can see that this minimum is always at most O(
√
ε) +O(ε) = O(

√
ε). A more

careful computation gives the constant factor in (2.2).

In Example 2.7 we see that the O(
√
ε) upper bound cannot be improved: by choosing

δ adversarially, namely on the order of
√
ε, it is tight. The proof of the lower bound

(2.3) follows this observation. We construct an environment E for which the bounds are

tight throughout the proof of the upper bound (2.2). This may at first seem impossible,

because the lower bound in the theorem statement is supposed to apply to any possible

modified contract w̃, whereas our reasoning above only considers particular contracts

w(τ). However, we construct E in which only two output levels occur (with nonnegligible

probability). When there are only two output levels, any candidate contract w̃ is of the

form w(τ) for some τ (ignoring peripheral cases), and the proof of (2.2) identifies all the

potentially relevant values of τ . We then construct an adversarial environment E to make

the smallest of these discrepancies as large as possible, as sketched in the example.

This also elucidates why our upper and lower bounds in Theorem 2.5 do not coincide:
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our proof of the lower bound depends on narrowing the possible modified contracts w̃ to

a one-parameter family, which we do by focusing on just two output levels, but we may

be throwing out useful information in doing so.

3 Risk aversion and a participation constraint

We now turn our attention to risk averse agents. We will assume a formulation in which the

agent’s preferences are additively separable between money and the disutility of effort ck.

So, suppose the agent has utility u for money, which is twice continuously differentiable,

strictly increasing, and strictly concave. Assume that u(0) = 0, and the range of u is the

entire real line. For the ease of notation, let u(w) denote the vector (u(w1), . . . , u(wN)).

We also replace the limited liability constraint with a participation constraint. We

redefine an environment as a collection of effort costs, probability distributions, and an

outside option for the agent. We write E = (c1, . . . , cK ; f1, . . . , fK ; Ū), where Ū is the

agent’s outside option. Like in the baseline model, we assume that the principal is un-

certain about the fk’s, but not about the ck’s or Ū . An environment Ẽ in Bε(E) has the

following form: (c1, . . . , cK ; f̃1, . . . , f̃K ; Ū), where |f̃k(i)− fk(i)| < ε for all k and i.

A wrinkle relative to our baseline model is that the principal may be unsure whether

a given contract satisfies the participation constraint, since it may be satisfied in some

possible environments but not others. Thus, we assume there is some exogenous value V0

that the principal gets from the outside option. A contract w satisfies the participation

constraint in E if maxk(fk · u(w)− ck) ≥ Ū . We define k∗(w|E) = argmaxk(fk · u(w)− ck)
and then V (w|E) = maxk∈k∗(w|E)(fk · (y − w)) as before if w satisfies the participation

constraint in E , and V (w|E) = V0 otherwise. We then define the discrepancy by (2.1) as

before.

As before, we take the parameters N,K, y, w as fixed throughout, and we also take u

and V0 as fixed, but continue to allow E and ε to vary.

We assume that the given contract w satisfies V0 < mini(yi − wi). This ensures that

if the contract w satisfies the participation constraint in E , then for small ε, the principal

wants the modified contract w̃ to satisfy the participation constraint for all Ẽ ∈ Bε(E):

Otherwise, the discrepancy is at least V (w|E)− V0, which is a positive constant.

For risk averse agents, we can no longer normalize w, but we can still normalize y

while keeping the discrepancy unchanged. We normalize y such that mini(yi − wi) = 0,
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and assume that V0 < 0. After this normalization, define

C∗ = 2 ·
√

2 ·maxdiff(u(w)) ·max
i

yi − wi
u′(wi)

.

Notice that C∗ is well-defined because u′(wi) > 0 for all i. Also note that this definition

of C∗ is consistent with the C∗ from the previous section; setting u(w) = w gives the

C∗ in the risk-neutral case. We can obtain the black-box results in Theorems 2.1 and

2.2 for risk-averse agents with this new definition of C∗. The following summarizes the

conclusions, analogously to Corollary 2.3:

Theorem 3.1. The discrepancy satisfies the following limit:

lim
ε→0

(
inf
w̃

(
sup
E

D(w, w̃, E , ε)√
ε

))
= C∗.

The proof follows the same strategy as the risk-neutral case. For the upper bound on

discrepancy, the principal considers contracts of the following form:

u(w̃i) = u(wi) + τ · (yi − wi) + ε ·maxdiff(u(w)) + ε ·maxdiff(y − w).

This contract is similar to the one from the risk neutral case. The principal now increases

the agent’s utility level (instead of payment amount) by a fraction of the profit. Moreover,

she attaches an extra term of order ε to the agent’s utility level. This extra term ensures

that the contract satisfies the participation constraint in all possible environments Ẽ ∈
Bε(E).

Like in the risk-neutral case, the discrepancy comes from the change in payment and

the change in effort choice. The change in effort choice contributes to the discrepancy by

an amount proportional to ε
τ
, just like in the risk-neutral case. The change in payment

requires a little extra work. The change in payment for each output level is equal to

w̃i − wi, which can be approximated by 1
u′(wi)

· (u(w̃i)− u(wi)) for small enough τ . Since

the principal treats the factor 1
u′(wi)

as a constant (it is determined by w), the change in

payment is on the order of τ . Therefore, our approach from the risk-neutral case applies

to this setting as well.

For the lower bound, we consider any possible w̃, and first show that w̃ pays at least

as much as w for any output. Indeed, if w̃ ever pays less than w, then the principal can

construct an environment E such that w satisfies the participation constraint, but w̃ fails

to satisfy it. As a result, we can focus on contracts w̃ that always pay at least as much
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as w. The rest of the proof follows the same approach as Theorem 2.2: The principal

constructs an environment E such that the agent prefers high effort under w and E , and

low effort under w̃ and a nearby environment Ẽ . Everything goes through, as long as we

approximate w̃i − wi with 1
u′(wi)

· (u(w̃i)− u(wi)).

4 A general model

Given the ideas of this paper so far and of Madarász and Prat [10], it is natural to

formulate an abstract, and much more general, framework, in which the idea of “returning

a share of the principal’s profit to the agent” can be expressed more broadly. This general

framework allows us, first, to avoid having to take a specific stand on which environments

are considered to be within ε of the model environment, and second, to envision applying

the same ideas in other contexts beyond our simple one-shot hidden-action model, to

settings that may be dynamic and may involve hidden actions, hidden information, or

both in combination. The disadvantage is that only our upper bound result generalizes

transparently; it is not clear how to formulate a lower bound result without putting more

structure on the possible environments.

These points can be made most clearly after writing out the general framework, so let

us do so now, and then we comment on the interpretation.

There is a set S of strategies the agent can follow. We assume nothing about S
except that it is a compact subset of some metric space. There is a compact set Y ⊆ R
of possible payoffs for the principal; assume max(Y ) > 0 so that it is possible for the

principal to make a profit. An environment E = (u, f) consists of two things: a function

u : S → R specifying the agent’s expected utility from following each strategy; and a

function f : S → ∆(Y ) specifying a probability distribution over principal’s payoffs from

each strategy. We assume that u is upper semi-continuous, and f is continuous (using

the weak topology on ∆(Y )). In parallel with our earlier model, we think of S and Y as

given and fixed, while E is variable, as is the uncertainty ε. We also take as given two

constants α, β ≥ 0, which describe how the set of possible environments varies with the

uncertainty parameter ε, as detailed below.

Unlike the moral hazard framework of the previous sections, here we implicitly assume

that the environment (u, f) already incorporates the effects of whatever model contract

w the principal has been considering. Thus, the interpretation is that u(s) is the agent’s

payoff from following strategy s, including whatever payment the principal is planning on

making according to w; and likewise f(s) is the distribution over principal’s payoff net of
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her payments specified by w.

Consequently, we will write w̃ here for possible adjustments to the contract. We focus

on adjustments which are functions of the realized payoff y ∈ Y . (Thus, we effectively

assume that the principal can observe her payoff. She may also be able to observe other

things.) An adjustment, then, is a continuous function w̃ : Y → R.

Given w̃, the agent’s set of incentive-compatible actions in environment E is

s∗(w̃|E) = argmaxs∈S(u(s) + Ef(s)[w̃(y)])

which is nonempty and compact due to the continuity assumptions. The principal’s

corresponding profit is

V (w̃|E) = max
s∈s∗(w̃|E)

Ef(s)[y − w̃(y)].

We imagine that there is some model environment E , and for any ε > 0, there is a set

of possible true environments, Bε(E). We make no explicit specification of what Bε(E) is.

Instead, we make only two assumptions about its “closeness” to the model E : For any

Ẽ = (ũ, f̃) ∈ Bε(E), we have

(i) |ũ(s)− u(s)| ≤ αε for all s ∈ S, and

(ii) |Ef̃(s)[y]− Ef(s)[y]| ≤ βε for all s ∈ S,

where α, β are the constants mentioned above.

For any constant τ ≥ 0, let us write w̃[τ ] for the adjustment given by w̃(y) = τy. (We

use square brackets here, since w̃ is a function in this general model, to make clear that

τ is a parameter of w̃ and not its argument.)

The principal’s default, if there were no uncertainty about the environment, would be

to use whatever contract is implicitly represented in the model environment E , so that

the adjustment is w̃[0]. With uncertainty, she can create robustness to the environment

by using w̃[τ ] for small τ . This is expressed in our general result below. Let y = max(Y ).

Theorem 4.1. There exists a τ that depends on ε (and on the fixed parameters), but not

on the model E, such that for any E and any Ẽ ∈ Bε(E), we have

V (w̃[τ ]|Ẽ) ≥ V (w̃[0]|E)− (
√

2αyε+ βε).

Thus, in this very general setup, the principal can still attain a discrepancy on the

order of
√
ε, for small ε. The proof is a straightforward adaptation of Theorem 2.1, and

is given below.
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We can now discuss how the specific applications fit into this general model.

• In the moral hazard model of Section 2, S consists of the K possible effort levels.

For each effort level s, u(s) would be the agent’s net expected payoff under contract

w — that is, the expected payment he receives minus the cost of effort. f(s) would

be the distribution over the principal’s net payoff, which was called y−w(y) in the

original model. Our adjustment w̃ here corresponds to the difference w̃(y) − w(y)

in the original model.

It is easy to see that our specification of the set of close environments, Bε(E), satisfies

conditions (i) and (ii) for suitable α, β. Moreover, the relevant α, β depend only on

w and y, not on the output distributions or costs of each effort level.

• In the screening model of Madarász and Prat [10], the agent has a privately known

type, which specifies his value for each of various objects (“alternatives”) he can

purchase. The principal offers a menu of alternatives and corresponding prices.

The principal’s model specifies a prior distribution over the agent’s types, and the

uncertainty is about this distribution: the principal may have misspecified each

type’s location in preference space by up to ε.

To map this into our model, we assume the principal’s model menu is a part of the

environment (analogous to w in the moral hazard model). A strategy s ∈ S is now

a function mapping the agent’s type to the alternative he chooses from the menu.

Then u(s) is the agent’s ex-ante expected net utility from this strategy; utility is

random because of the uncertainty about the agent’s type. f(s) is the distribution

over the principal’s revenue, which is random for the same reason.

In this case, there is no uncertainty about the principal’s revenue from any given

strategy, i.e. β = 0, since each strategy specifies exactly the probability that any

given menu item will be purchased. The uncertainty is all about the agent’s utilities.

• One can extend this to imagine plenty of other applications: the agent may take

several actions in succession, and may receive information (publicly or privately)

at various stages along the way. In any such interpretation, we would assume that

S is the space of all possible strategies for the agent in this game, and that some

contract to which the principal has committed has been implicitly fixed, so that

u(s) and f(s) represent the payoffs from strategy s net of any incentives specified in

this contract. The important assumption for interpreting w̃ is that the principal’s

total payoff y ∈ Y can be contracted on.
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We can also elaborate on the strengths and weaknesses of presenting our ideas in this

general model, compared to a specific application, such as the moral hazard model we have

used in the earlier sections. The main advantage of the general model is the obvious gain

in generality. The main disadvantage is that it is not clear how to formulate a lower-bound

result such as Theorem 2.2. Giving such a result requires some assumption about the set

of possible environments E (as well as the corresponding set of possible true environments

Bε(E)), since we would in general not want to assume that every possible pair of functions

u : S → R, f : S → ∆(Y ) represents an allowable environment, but instead would want

to define environments in a way that reflects the structure of the application we had in

mind (moral hazard, screening, etc.). Similarly, the set Bε(E) should be defined in a

way that is tailored to the application. A lower bound result on the profit discrepancy

evidently requires some richness assumption on the space of possible model environments

E (and true environments Ẽ), and it is not clear how this richness assumption would be

formulated in the abstract.

We complete this section by proving the general upper bound on discrepancy.

Proof of Theorem 4.1. Consider any positive number τ . Let s be the strategy chosen

under w̃[0] and environment E = (u, f), and let s̃ be the strategy chosen under w̃[τ ] and

nearby environment Ẽ = (ũ, f̃). We have

V (w̃[0]|E)− V (w̃[τ ]|Ẽ) = Ef(s)[y]− (1− τ)Ef̃(s̃)[y]

= (Ef̃(s)[y]− Ef̃(s̃)[y]) + (Ef(s)[y]− Ef̃(s)[y]) + τ · Ef̃(s̃)[y].

By assumption (ii), the second term on the right side is bounded by βε, and the third is

clearly bounded by τy. Thus

V (w̃[0]|E)− V (w̃[τ ]|Ẽ) ≤ (Ef̃(s)[y]− Ef̃(s̃)[y]) + βε+ τy. (4.1)

It remains to bound the first term on the right side.

If α = 0, then we can simply take τ = 0, and we can assume s̃ = s, since the agent’s

payoff from each strategy is the same in the two environments. Then this right-side term

is 0, and (4.1) simply collapses to V (w̃[0]|E) − V (w̃[0]|Ẽ) ≤ βε, the desired result. So

henceforth we assume α > 0.

We consider the agent’s preferences over strategies in each of the two environments.
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Because s is preferred in E under w̃[0], we have

u(s) ≥ u(s̃). (4.2)

Because s̃ is preferred in Ẽ under w̃[τ ], we have

ũ(s̃) + τ · Ef̃(s̃)[y] ≥ ũ(s) + τ · Ef̃(s)[y]

from which, using property (i),

u(s̃) + αε+ τ · Ef̃(s̃)[y] ≥ u(s)− αε+ τ · Ef̃(s)[y]. (4.3)

Adding inequalities (4.2) and (4.3) and canceling, we get

αε+ τ · Ef̃(s̃)[y] ≥ −αε+ τ · Ef̃(s)[y]

or

Ef̃(s)[y]− Ef̃(s̃)[y] ≤ 2αε/τ.

Hence, (4.1) turns into

V (w̃[0]|E)− V (w̃[τ ]|Ẽ) ≤ 2αε

τ
+ τy + βε.

Now taking τ =
√

2αε/y gives the result in the theorem statement.

Note that the τ we obtain is indeed independent of any details of the environment

E .

5 Discussion

We have considered the problem of how best to make contracts robust to a small amount

of uncertainty about the environment, using a canonical principal-agent model of moral

hazard. We have seen that the simple approach of refunding a small, fixed fraction of the

principal’s profit to the agent can make a contract robust to an ε amount of uncertainty,

and that among “black-box” adjustments that do not depend on the specifics of the model

environment, this approach is essentially optimal for small ε, in terms of minimizing the

possible loss in profits relative to the model. If the adjustment does make use of the

details of the environment, we can do slightly better — the discrepancy is still on the
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order of
√
ε, the same as in the black-box construction, but with an improved constant

factor; and this is the best we can hope for if we want a bound that does not itself depend

on the specific environment. We have also seen that at least our general upper bound on

profit discrepancy holds in a much larger, abstract class of contracting models, although a

corresponding lower bound does not seem to be obtainable without putting more structure

on the model.

We have made a number of specific modeling choices and assumptions in order to

formulate these results. This is as good a place as any to discuss the robustness of our

findings to possible variations of the model.

• Alternative definitions of nearby environments. We defined Bε(E) to con-

sist of all environments with exactly the same effort costs as in E , and all output

probabilities off by at most ε. This definition is meant to introduce uncertainty in

a minimal and parsimonious way. It implicitly reflects one possible metric on the

space of possible environments. But one could equally well consider many other

metrics. For example, we might measure the distance between two output distri-

butions by the maximum total difference in probability of any two events. The set

of possible true environments then consists of all (c̃1, . . . , c̃K ; f̃1, . . . , f̃K) such that

c̃k = ck for each k, and∣∣∣∣∣∑
i∈I

f̃k(i)−
∑
i∈I

fk(i)

∣∣∣∣∣ < ε for all k = 1, . . . , K and I ⊆ {1, . . . , N}.

We notate this set as B̂ε(E).

In this case, since B̂ε(E) ⊆ Bε(E), the upper-bound results on discrepancies (Theo-

rem 2.1, and (2.2) in Theorem 2.5) still hold. For lower bounds, note that Bε/N(E) ⊆
B̂ε(E), so applying Theorem 2.2, and (2.3) in Theorem 2.5, with ε/N gives corre-

sponding bounds. Thus we can immediately see that the optimal discrepancy bound

is still on the order of
√
ε.

Alternatively, we could allow both the output distributions and the costs to be

uncertain — say, allow any f̃k to differ from fk by up to ε probability for each

output level, as before, but also allow each c̃k to differ from ck by up to ε. In

this case, since this new set of possible realities includes the original set Bε(E), our

existing lower bounds apply unchanged. On the other hand, our general result,

Theorem 4.1, again gives us an upper bound on the order of
√
ε.
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It should be evident that there are thus many similar ways we could have written

down the definition of nearby environments, each of which would give the same

qualitative result — an optimal bound on discrepancy on the order of
√
ε.

• Screening. We have constrained the principal to consider a single modified con-

tract w̃, and examine the worst case over possible environments. However, since the

problem is one of asymmetric information — the agent knows the true environment

— it is natural to instead consider screening the agent, by offering a menu of con-

tracts, and letting the agent choose whichever one he prefers. The agent might then

choose different contracts from the menu depending on the environment.

Allowing screening of this form expands the principal’s options, but, in general,

it still cannot guarantee a discrepancy smaller than order
√
ε. Indeed, assume

K ≥ 3, and for any given w, consider the environment E from the proof of the

lower bound in Theorem 2.5. Let Ẽ denote the following alternative environment:

f̃1(i∗) = f1(i∗) = 0, f̃2(i∗) = f2(i∗) + ε, f̃k(i
∗) = fk(i

∗) − ε for all k > 2; moreover,

for all k ∈ [1, K], f̃k puts nonnegative weights only on y1 and yi∗ . We claim that

the optimal profit in this environment is V (w|E) − Ω(
√
ε).2 By a version of the

calculation in the proof of the lower bound in Theorem 2.5, if a contract w̃ induces

at least effort 2 in Ẽ , then V (w̃|Ẽ) = V (w|E) − Ω(
√
ε). If w̃ induces effort 1, then

V (w̃|Ẽ) ≤ 0. Thus maxw̃ V (w̃|Ẽ) = V (w|E) − Ω(
√
ε). So for this environment Ẽ ,

no matter what menu of contracts the principal offers, the profit cannot exceed

V (w|E)− Ω(
√
ε).

• Randomization. We could also allow the principal to hedge her uncertainty about

the environment by deliberately randomizing over contracts, instead of offering a

single w̃. Then, she would consider a distribution over µ contracts w̃, and then

define the resulting discrepancy V (w|E) − inf Ẽ(Eµ[V (w̃|Ẽ)]). However, in general,

such randomization once again cannot guarantee a discrepancy smaller than order
√
ε. The reason is the same as the argument for screening. Consider the example

given in the discussion for screening. We know that there is an Ẽ such that the

optimal profit in Ẽ is V (w|E) − Ω(
√
ε). No matter what distribution of contracts

the principal offers, for this environment we have Eµ[V (w̃|Ẽ)] ≤ V (w|E)− Ω(
√
ε).

• Regret minimization. We have assumed that the principal evaluates any possible

2Notation: Ω(·) is the opposite of O(·). That is, Ω(g(ε)) means a function that is bounded below by
C · g(ε), for some positive constant C.
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w̃ by its worst-case performance over the set of possible environments, and this worst

case is compared to the ideal profit from the original contract. An alternative is

that the principal wishes to minimize regret: for each possible true environment,

she considers the loss relative to the contract that would have been optimal for that

environment. Thus, the new “discrepancy” resulting from using contract w̃ is

D̂(w̃, E , ε) = sup
Ẽ∈Bε(E)

(
max
w′

(V (w′|Ẽ))− V (w̃|Ẽ)
)
.

(Note that this formulation no longer makes any reference to an original contract;

see discussion below.)

In this case, unlike the variations discussed above, the results are very different. In

particular, if fk(i) = 0 for some k and i, then the minimal discrepancy may fail to

converge to 0 as ε→ 0. Consider the following example with 3 output levels and 2

effort levels. Assume 0 = y1 < y2 < y3 and c2 − c1 < y3/4. Let

E = (c1, c2; f1 = (1/2, 0, 1/2), f2 = (0, 0, 1))

and

Ẽ = (c1, c2; f̃1 = (1/2, 0, 1/2), f̃2 = (0, ε, 1− ε)).

The optimal contract for E is w = (0, 0, 2(c2 − c1)), and V (w|E) = y3 − 2(c2 − c1).

The optimal contract for Ẽ is w′ = (0, (c2 − c1)/ε, 0), and V (w′|Ẽ) = (1 − ε)y3 +

εy2 − (c2 − c1). Clearly, as ε → 0, we have V (w′|Ẽ) ≈ V (w|E) + (c2 − c1). Now

suppose the principal offers a robust contract w̃. In order to have regret go to 0

for small ε, w̃ must induce effort 2 in both E and Ẽ . The incentive constraint for E
gives w̃3 ≥ 1

2
w̃1 + 1

2
w̃3 + c2 − c1, which implies that w̃3 ≥ 2(c2 − c1). However, this

means

V (w̃|Ẽ) ≤ (1− ε)(y3 − 2(c2 − c1)) + εy2.

In comparison, the optimal contract w′ gives V (w′|Ẽ) = (1− ε)y3 + εy2 − (c2 − c1).

Therefore the regret in Ẽ is at least V (w′|Ẽ) − V (w̃|Ẽ) ≥ (1 − 2ε)(c2 − c1), which

converges to a positive constant. The regret does not approach 0.

An alternative way to write down the model with a regret-minimization objective

would be to look at regret relative to the original contract w, in the true envi-

ronment: D̂(w, w̃, E , ε) = supẼ∈Bε(E)

(
V (w|Ẽ)− V (w̃|Ẽ)

)
. However, this approach

seems inappropriate: The whole reason for looking for robust contracts is that w
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may perform poorly in environments close to the model, so V (w|Ẽ) is not an appro-

priate benchmark. In any case, this alternative approach would give uninteresting

results, since the principal could achieve zero regret by taking w̃ = w.

Finally, we close by discussing some possible directions in which it is not immediate

how to extend our existing model, and which call for further study.

One natural direction of future study is to consider alternative instances of the gen-

eral model from Section 4, and look for corresponding lower bounds on discrepancy, in

particular to see how widely our simple profit-sharing construction remains black-box op-

timal. Another direction is to consider variants of our setup in which there is no particular

contract that is robust. For example, if we allow the set of possible output levels to be

unbounded above, then there can be environments where it is possible to obtain infinite

expected profit, yet for arbitrarily small ε there are nearby environments for which every

effort level yields finite expected profit; thus no robust guarantees in our sense are pos-

sible. (Imagine that each positive integer level of output y is generated with probability

proportional to 1/y2.) This raises the question of what the appropriate notion of local

robustness is in such an environment. More generally, it suggests that the model we have

put forward might not be the right one for thinking quantitatively about robustness even

when output is finite but potentially very large compared to the expectation.

A more challenging — but arguably more important — direction is to ask what hap-

pens when the principal cannot contract on output y directly, but only on some other

noisy signal z of the agent’s effort choice (as first introduced in Holmström [8]). It is

not clear how to formulate our quantitative bounds in such an environment, since con-

tracts would now be a function of the signal z, and it is unclear how to reproduce our

key construction — paying back a fraction τ of profit — in a way that makes it depend

only on z, particularly if this was to be done in a black-box way. However, incentives in

organizations often do depend on indirect signals (such as a boss’s written evaluation of

an employee’s performance) rather than being a function of individual contributions to

profit (which may be unobservable), and it is especially natural to believe that there is

uncertainty about how these indirect signals relate to actual production, so this seems a

particularly worthwhile setting in which to ask questions about robustness.
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A Omitted proofs in Section 2

Proof of Theorem 2.2. Fix w, w̃, and an ε < 1
N

. We begin by introducing two notations.

First, let i∗ be an element of argmaxi(yi − wi). Second, let ~ε denote the vector in RN for

which the first bN/2c elements are equal to −ε and the last bN/2c elements are equal to

ε (if N is odd, the middle element is equal to 0). Without loss of generality, assume that

w1 ≤ w2 ≤ · · · ≤ wN . We have ~ε · w = ε ·maxdiff(w).

Now, we will construct environments E and Ẽ ∈ Bε(E) such that

V (w|E)− V (w̃|Ẽ) ≥ C∗
√
ε−O(ε).

It suffices to prove this inequality because D(w, w̃, E , ε) ≥ V (w|E)− V (w̃|Ẽ).

First, we consider the case of C∗ = 0. We simply assume that the agent can only

produce y1 with probability 1. More precisely, let E = Ẽ = (ck = 0 ∀ k; fk = f ∀ k),

where f(1) = 1. We have V (w|E) = y1 − w1 = 0 and V (w̃|Ẽ) = y1 − w̃1 = −w̃1. The

difference is V (w|E)− V (w̃|Ẽ) = w̃1 ≥ 0, so the lower bound trivially holds.

From now on, we assume that C∗ > 0, which means that maxdiff(w) > 0 and maxi(yi−
wi) > 0. We also assume that K = 2: the argument extends to K > 2 by simply defining

f1, f2, c1, c2 as below and then taking (fk, ck) = (f1, c1) for all k > 2.

We first construct Ẽ . Let δ be an arbitrarily small positive real number: we have δ > 0

and δ � ε. (The role of δ is to make the incentive constraints non-binding in order to

avoid any potential ambiguity on the agent’s effort choice.) Let t be a real number, to be

chosen later, which will satisfy the restriction

0 < t ≤ 1−Nε
wi∗ + δ

. (A.1)

Define f̃1 and f̃2 as follows:

f̃1(i) =


ε+ t(wi∗ + δ) if i = 1

1− (N − 1)ε− t(wi∗ + δ) if i = i∗

ε otherwise

, f̃2(i) =

1− (N − 1)ε if i = i∗

ε otherwise
.

Let f1 = f̃1−~ε and f2 = f̃2 +~ε. Restriction (A.1) ensures all the probabilities are between
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0 and 1. Let c1 = 0 and c2 = (f2−f1) ·w−δ. Define the environments E and Ẽ as follows:

E = (c1, c2; f1, f2), Ẽ = (c1, c2; f̃1, f̃2).

The agent chooses effort 2 in environment E because f2 ·w− c2 = f1 ·w− c1 + δ > f1 ·
w−c1. We next identify a t such that the agent chooses effort 1 in environment Ẽ : that is,

f̃1 ·w̃−c1 > f̃2 ·w̃−c2. This condition is equivalent to (f̃2−f̃1)·w̃ < c2−c1 = (f2−f1)·w−δ,
which rearranges into (f̃2 − f̃1) · (w̃ − w) < 2 · ~ε · w − δ. Plugging in the definition of f̃k,

we get

t(wi∗ + δ)(w̃i∗ − wi∗ − w̃1 + w1) < 2 · ~ε · w − δ. (A.2)

If condition (A.2) holds, then k∗(w̃|Ẽ) = {1}. It follows that

V (w|E)− V (w̃|Ẽ) = f2 · (y − w)− f̃1 · (y − w̃)

= f̃2 · (y − w)− f̃1 · (y − w̃) + ~ε · (y − w)

= (f̃2 − f̃1) · (y − w̃) + f̃2 · (w̃ − w) + ~ε · (y − w)

= t(wi∗ + δ)(yi∗ − y1 − w̃i∗ + w̃1) + (1−Nε)(w̃i∗ − wi∗)

+ε ·
∑
i

(w̃i − wi) + ~ε · (y − w)

≥ t(wi∗ + δ)(yi∗ − w̃i∗) + (1−Nε)(w̃i∗ − wi∗)−O(ε).

(The last step is due to the fact that y1 = 0 and w̃1 ≥ 0.)

We now turn to the choice of t. There are two cases.

If (1−Nε)(w̃i∗ −wi∗ − w̃1 +w1) < 2 ·~ε ·w− δ, then let t = 1−Nε
wi∗+δ

, which satisfies (A.1)

and (A.2). In this case, the result of the theorem trivially holds because the discrepancy

does not vanish as ε→ 0. Indeed, our choice of t yields V (w|E)−V (w̃|Ẽ) ≥ (1−Nε)(yi∗−
wi∗)−O(ε), which converges to a positive constant (yi∗ −wi∗), so for small enough ε it is

obviously greater than the lower bound given by C∗
√
ε.

The other case is when (1−Nε)(w̃i∗−wi∗− w̃1 +w1) ≥ 2 ·~ε ·w−δ. In this case, since δ

was chosen very small, the right side is positive, so w̃i∗−wi∗− w̃1 +w1 > 0, which implies

that w̃i∗ > wi∗ (because w1 = 0 and w̃1 ≥ 0). Then, we can define t = 2·~ε·w−2δ
(wi∗+δ)(w̃i∗−wi∗ )

,

and this value of t satisfies condition (A.2); it also satisfies (A.1) by assumption of this
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case. The discrepancy becomes

V (w|E)− V (w̃|Ẽ) ≥ t(wi∗ + δ)(yi∗ − w̃i∗) + (1−Nε)(w̃i∗ − wi∗)−O(ε)

=
2 · ~ε · w − 2δ

w̃i∗ − wi∗
· (yi∗ − w̃i∗) + (1−Nε)(w̃i∗ − wi∗)−O(ε)

=
2 · ~ε · w − 2δ

w̃i∗ − wi∗
· (yi∗ − wi∗)− (2 · ~ε · w − 2δ) + (1−Nε)(w̃i∗ − wi∗)−O(ε)

=
2 · ~ε · w − 2δ

w̃i∗ − wi∗
· (yi∗ − wi∗) + (1−Nε)(w̃i∗ − wi∗)−O(ε)

≥ 2
√

2(~ε · w − δ)(yi∗ − wi∗)(1−Nε)−O(ε).

(The last step is due to the inequality x+ y ≥ 2
√
xy.) Since

√
1−Nε > 1−Nε and δ is

arbitrarily small, we can further reduce the bound to

2
√

2(~ε · w − δ)(yi∗ − wi∗)(1−Nε) > 2
√

2(~ε · w)(yi∗ − wi∗) · (1−Nε) = C∗
√
ε · (1−Nε).

Therefore, we indeed have V (w|E)−V (w̃|Ẽ) ≥ C∗
√
ε ·(1−Nε)−O(ε) = C∗

√
ε−O(ε).

Proof of Proposition 2.4. We say that efforts k and l are equivalent if both k and l belong

to k∗(w|E), and fk · (y−w) = fl · (y−w) = V (w|E). Suppose the agent chooses effort k∗

in environment E . We claim that for small enough ε, there is a τ on the order of ε (though

the constant factor can depend on E), such that the agent chooses an effort equivalent to

k∗, under contract w(τ) in any environment Ẽ ∈ Bε(E).

To define τ , let S be the set of all effort levels k ∈ k∗(w|E) that are not equivalent to

k∗. For each ε, take τ > 0 such that

τ · (f̃k∗ − f̃k) · (y − w) > 2 · ε ·maxdiff(w) (A.3)

for each k ∈ S and all environments Ẽ ∈ Bε(E). Note that as long as ε is small, we can

indeed do this with τ on the order of ε, since (fk∗ − fk) · (y −w) > 0 for each k ∈ S (this

is the assumption of tie-breaking in favor of the principal) and

(f̃k∗ − f̃k) · (y − w) = (fk∗ − fk) · (y − w) +O(ε).

Now we check that this w(τ) works. For all k, if the agent strictly prefers k∗ over k in

environment E under contract w, then he will also do so in environment Ẽ under contract

w(τ), for small enough ε. Indeed, if fk∗ · w − ck∗ > fk · w − ck, then for small enough ε

and τ , we have f̃k∗ · w(τ) close to fk∗ · w and f̃k · w(τ) close to fk · w, so the incentive
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constraint still holds: f̃k∗ · w(τ)− ck∗ > f̃k · w(τ)− ck.
Suppose the agent is indifferent between k and k∗, under w and E . Suppose that k

and k∗ are not equivalent, i.e. k ∈ S. In any environment Ẽ , the agent prefers k∗ over k

if f̃k∗ · w(τ)− ck∗ > f̃k · w(τ)− ck. This constraint is equivalent to

(f̃k∗ − f̃k) · w(τ) > ck∗ − ck = (fk∗ − fk) · w

(f̃k∗ − f̃k) · (w + τ · (y − w)) > (fk∗ − fk) · w

τ · (f̃k∗ − f̃k) · (y − w) > (fk∗ − f̃k∗ − fk + f̃k) · w.

The right-hand side in the last inequality is at most 2 · ε ·maxdiff(w). So, by (A.3), the

constraint is indeed satisfied, and the agent will not choose effort k.

So, the agent chooses some effort k equivalent to k∗. Now, the profit in the original

model is equal to V (w|E) = fk∗ · (y − w) = fk · (y − w), and the profit in environment Ẽ
is equal to V (w(τ)|Ẽ) = f̃k · (y−w(τ)) = f̃k · (y−w)(1− τ). Since τ is on the order of ε,

the discrepancy is on the order of ε.

To prove Theorem 2.5, we need to define a sequence of constants hK . Let h2 = 0. For

K > 2, we define hK as follows. Let x3, x4, . . . , xK be positive real numbers that solve

the following equations:

1

x3

= x3 +
1

x4

= x4 +
1

x5

= · · · = xK−1 +
1

xK
= xK . (A.4)

Lemma A.1. The solution to (A.4) exists and is unique.

Proof. Consider minimizing the function

g(x3, . . . , xK) = max

{
1

x3

, x3 +
1

x4

, . . . , xK−1 +
1

xK
, xK

}
over all (K− 2)-tuples of positive numbers. The minimum exists, because g is continuous

and goes to ∞ uniformly as any xi goes to 0 or ∞. At the minimum, the values of the

K−1 components entering the max operator must all be equal: if not, it is easy to see that

we could perturb (x3, . . . , xK) slightly to reduce the values of all components attaining

the max, thereby reducing the value of g, a contradiction. Therefore, (A.4) is satisfied.

To see that the solution is unique, suppose x3, x4, . . . , xK and x′3, x
′
4, . . . , x

′
K are two

different solutions. Suppose they have different initial terms, say x3 < x′3. Then x3 + 1
x4

=
1
x3
> 1

x′3
= x′3 + 1

x′4
, which together with x3 < x′3 forces x4 < x′4. Similarly, by induction,
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we get xk < x′k for all k. But then 1
x3

= xK < x′K = 1
x′3

, contradicting x3 < x′3. Thus we

must have x3 = x′3. But then by induction xk = x′k for all k.

Let hK denote the value of xK in the solution to (A.4) — or, equivalently, the minimum

value of g in the proof above. Note that this proof implies that (1, 1, . . . , 1) is not the

minimum of g, hence hK < g(1, 1, . . . , 1) = 2, as claimed in Theorem 2.5.

Lemma A.2. For any positive real numbers a3, a4, . . . , aK, we have hK ≥ min{ 1
a3
, a3 +

1
a4
, . . . , aK−1 + 1

aK
, aK}. Moreover, equality only holds if ak = xk for each k.

Proof. For the first statement, suppose the desired conclusion is false. We have 1
a3

>

hK = 1
x3

, so a3 < x3. Next, we have a3 + 1
a4
> x3 + 1

x4
. Since a3 < x3, we have 1

a4
> 1

x4
,

so a4 < x4. Continuing this argument, we get aK < xK , but xK = hK , so aK < hK .

However, aK is in the set, contradiction.

For the second statement, an identical argument shows that a3 ≤ x3, a4 ≤ x4, . . ., and

if any one of these inequalities is strict then so are all subsequent inequalities. But the

final inequality aK ≤ xK = hK cannot be strict, so all inequalities are equalities.

Lemma A.3. We have hK is strictly increasing in K.

Proof. Suppose 1
x3

= x3 + 1
x4

= x4 + 1
x5

= · · · = xK−1 + 1
xK

= xK = hK . Let xK+1 = xK .

By Lemma A.2, we have hK+1 ≥ min{ 1
x3
, x3 + 1

x4
, . . . , xK + 1

xK+1
, xK+1}. Since all terms in

this set are at least xK , we deduce that hK+1 ≥ xK = hK . Moreover, equality cannot hold

because not all terms in the preceding set are equal. Therefore, we have hK+1 > hK .

Proof of Theorem 2.5, upper bound (2.2). We claim that for all sufficiently small ε, for

any environment E , there exists a w̃ such that

D(w, w̃, E , ε) ≤ hK ·
√

2 ·maxdiff(w) ·max
i

(yi − wi) · ε+O(ε). (A.5)

Without loss of generality, assume that f1·(y−w) ≤ f2·(y−w) ≤ · · · ≤ fK ·(y−w). Let

τ ∗ denote the maximal value of τ ≤ 1 for which w(τ) = w+ τ(y−w) satisfies the limited

liability constraint. The value of τ ∗ is determined by y and w only. Let L = max k∗(w|E).

For now assume that

(fL − fL−1) · (y − w) >
2 ·maxdiff(w)

τ ∗
· ε+ 2 ·maxdiff(y − w) · ε+ ε. (A.6)
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(At the end of the proof, we will discuss the case when this assumption fails.) Define

contracts w̃l as follows. For l = 2, 3, . . . , L, let

τl =
2 ·maxdiff(w) · ε

(fL − fl−1) · (y − w)− 2 ·maxdiff(y − w) · ε− ε
.

Our assumption implies that τl < τ ∗, so contracts w(τl) satisfies the limited liability

constraint.

For l = 2, 3, . . . , L, let w̃l = w(τl). Let w̃1 denote the zero-contract. We claim that

one of these L contracts we defined gives us the upper bound. We proceed in four steps

as follows. First, we show that contract w̃l induces at least effort l. Second, we provide

a bound for the discrepancy given by each of the L contracts. Third, we analyze w̃1 and

discuss its implications for the upper bound (A.5). Finally we prove that one of these L

discrepancies satisfies this upper bound.

We comment that the proof here is similar to that of Theorem 2.1 in that we modify

the contract w by a linear sharing rule, w(τ); but here, because we are able to tailor the

choice of τ to the environment, we can obtain a better worst-case constant.

Step 1 We first prove that all elements of k∗(w̃l|Ẽ) are at least l for all 1 ≤ l ≤ L and

for all Ẽ ∈ Bε(E). We show that for all k < l, the agent would never choose effort k in

any environment Ẽ . It suffices to show that for all k < l we have

f̃k · w̃l − ck < f̃L · w̃l − cL

in all possible environments, because this constraint means that the agent would always

prefer effort L to any k < l. Since L ∈ k∗(w|E), we have (fL− fk) ·w ≥ cL− ck. We only

need to show that (f̃L − f̃k) · w̃l > (fL − fk) · w, which is equivalent to

(f̃L − f̃k) · τl · (y − w) > (fL − f̃L − fk + f̃k) · w.

The right hand side is at most 2 ·maxdiff(w) ·ε. We are left to show that τl >
2·maxdiff(w)·ε
(f̃L−f̃k)·(y−w)

.

This inequality holds because the denominator of the right hand side is greater than the
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denominator of τl. Indeed, we have

(f̃L − f̃k) · (y − w) ≥ (fL − fk) · (y − w)− 2 ·maxdiff(y − w) · ε

≥ (fL − fl−1) · (y − w)− 2 ·maxdiff(y − w) · ε

> (fL − fl−1) · (y − w)− 2 ·maxdiff(y − w) · ε− ε.

Therefore, under contract w̃l, the agent always prefers effort L over any k < l, so the

agent always exerts an effort at least l.

Step 2 We now bound the discrepancy given by each of the L contracts. For l = 2, . . . , L,

let Dl = D(w, w̃l, E , ε). We claim that

Dl ≤ fL · (y − w)− fl · (y − w̃l) +O(ε).

Since contract w̃l induces at least effort l in any environment, we need to show that for

all k ≥ l, in any environment Ẽ , we have f̃k · (y − w̃l) ≥ fl · (y − w̃l)−O(ε). We have

f̃k · (y − w̃l) = [(f̃k − fk) + (fk − fl)] · (y − w̃l) + fl · (y − w̃l)

= (f̃k − fk) · (y − wl) · (1− τl) + (fk − fl) · (y − wl) · (1− τl) + fl · (y − w̃l).

The first term on the right side is ≥ −O(ε), and the second term is ≥ 0, so the needed

inequality does indeed hold, and the claim is true for all l > 1.

For l = 2, 3, . . . , L, we have

Dl ≤ fL · (y − w)− fl · (y − w̃l) +O(ε)

= fL · (y − w)− fl · (y − w) · (1− τl) +O(ε)

= (fL − fl) · (y − w) + τl · fl · (y − w) +O(ε).

Recall that τl = 2·maxdiff(w)·ε
(fL−fl−1)·(y−w)−2·maxdiff(y−w)·ε−ε . For l = 2, 3, . . . , L− 1, we have

Dl ≤
2 ·maxdiff(w) · ε

τl+1

+ τl · fl · (y − w) +O(ε).

Moreover, we have

DL ≤ τL · fL · (y − w) +O(ε).
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Finally, since w̃1 is the zero-contract, for some k we have

D1 ≤ fL · (y − w)− fk · y +O(ε).

We are left to show that one of w̃l satisfies the upper bound.

Step 3 We analyze D1. We know that D1 ≤ fL · (y−w)− fk · y+O(ε) for some k. We

claim that either D1 = O(ε) or τk+1 · fk+1 · (y − w) = O(ε). If k ≥ L, then D1 ≤ O(ε).

Assume that k < L. To prove our claim, we observe that

τk+1 · fk+1 · (y − w) =
2 ·maxdiff(w) · ε · fk+1 · (y − w)

(fL − fk) · (y − w)− 2 ·maxdiff(y − w) · ε− ε

≤ 2 ·maxdiff(w) · ε · fL · (y − w)

(fL − fk) · (y − w)− 2 ·maxdiff(y − w) · ε− ε
.

(The denominator is positive, due to (A.6).)

Now, for d > 1 that is close enough to 1, we know that the vector (1−d) · y+d ·w has

all nonnegative components, because wi > 0 for all i > 1. Fix some such d, independent

of ε or E .

For any ε and E , one of the following two cases holds:

• Case (i): fk ·(y−w) < 1
d
·fL ·(y−w)−2 ·ε ·maxdiff(y−w)−ε. Then the denominator

on the right side above is greater than
(
1− 1

d

)
· fL · (y − w), and therefore

τk+1 · fk+1 · (y − w) <
2 ·maxdiff(w) · ε

1− 1
d

= O(ε).

• Case (ii): fk · (y−w) ≥ 1
d
· fL · (y−w)− 2 · ε ·maxdiff(y−w)− ε. This implies that

D1 ≤ fL · (y − w)− fk · y +O(ε)

≤ d · (fk · (y − w) + 2 · ε ·maxdiff(y − w) + ε)− fk · y +O(ε)

= d · fk · (y − w)− fk · y +O(ε)

= −fk · ((1− d) · y + d · w) +O(ε).

By construction of d, the first term on the right is ≤ 0. Hence, we have D1 = O(ε)

in this case.
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Step 4 We are finally ready to prove the upper bound. We claim that there exists an

l ∈ {1, 2, . . . , L} such that

Dl ≤ hK ·
√

2 ·maxdiff(w) ·max
i

(yi − wi) · ε+O(ε).

If either the zero-contract induces effort at least L or case (ii) of step 3 holds, then we

have shown that D1 ≤ O(ε) and we are done. Otherwise, case (i) of step 3 holds, and

we know that τk+1 · fk+1 · (y − w) = O(ε), where k is the effort level identified in Step 3.

Apply the bounds from Step 2, we find that

Dk+1 ≤ 2 ·maxdiff(w) · ε
τk+2

+O(ε)

Dk+2 ≤ 2 ·maxdiff(w) · ε
τk+3

+ τk+2 · fk+2 · (y − w) +O(ε)

≤ 2 ·maxdiff(w) · ε
τk+3

+ τk+2 ·max
i

(yi − wi) +O(ε)

Dk+3 ≤ 2 ·maxdiff(w) · ε
τk+4

+ τk+3 ·max
i

(yi − wi) +O(ε)

Dk+4 ≤ 2 ·maxdiff(w) · ε
τk+5

+ τk+4 ·max
i

(yi − wi) +O(ε)

· · ·

DL−1 ≤ 2 ·maxdiff(w) · ε
τL

+ τL−1 ·max
i

(yi − wi) +O(ε)

DL ≤ τL ·max
i

(yi − wi) +O(ε).

(These equations assume that k+ 1 < L. If k+ 1 = L, then we simply have Dk+1 = O(ε).

For example, if K = L = 2 and k = 1, then D2 = O(ε), which is consistent with the

desired upper bound as h2 = 0.)

We now ignore the O(ε) terms and compare the other terms in Dk+1, Dk+2, . . . , DL.

Applying Lemma A.2 with al =
√

maxi(yi − wi)/2 ·maxdiff(w) · ε · τk−1+l, and then mul-

tiplying through by
√

2 ·maxdiff(w) ·maxi(yi − wi) · ε, and applying Lemma A.3, we see

that

min{2 ·maxdiff(w) · ε
τk+2

,
2 ·maxdiff(w) · ε

τk+3

+ τk+2 ·max
i

(yi − wi), . . . ,

2 ·maxdiff(w) · ε
τL

+ τL−1 ·max
i

(yi − wi), τL ·max
i

(yi − wi)}

≤ hL−k+1 ·
√

2 ·maxdiff(w) ·max
i

(yi − wi) · ε ≤ hK ·
√

2 ·maxdiff(w) ·max
i

(yi − wi) · ε.
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Therefore, there exists an l such that

Dl ≤ hK ·
√

2 ·maxdiff(w) ·max
i

(yi − wi) · ε+O(ε).

We have thus established the upper bound.

Final case Throughout this proof, we have maintained assumption (A.6). What if this

assumption fails? We have two cases to consider. The first case is when (fL−f1)·(y−w) ≤
2·maxdiff(w)

τ∗
· ε+ 2 ·maxdiff(y − w) · ε+ ε. In this case, we have (fL − f1) · (y − w) = O(ε),

so the discrepancy is bounded by O(ε).

The second case to consider is the complementary case. We ignore all effort levels l for

which (fL−fl) ·(y−w) ≤ 2·maxdiff(w)
τ∗

·ε+2 ·maxdiff(y−w) ·ε+ε. Suppose we have ignored

n such effort levels, l = L − n, . . . , L − 1. We then define contracts w̃1, w̃2, . . . , w̃L−n as

in this proof; we can check that each such contract is w(τl) with 0 < τl < τ ∗. We then

repeat the proof almost exactly as before. At the end of step 2, instead of showing an

upper bound on DL, we show an upper bound on DL−n, namely

DL−n ≤ τL−n · fL−n · (y − w) +O(ε).

This follows in the same way as the bounds for the other Dl once we notice that (fL −
fL−n) · (y−w) = O(ε) by assumption. At the start of step 3, we split into cases k ≥ L−n
and k < L − n, instead of k ≥ L and k < L. Similarly at the start of step 4. Then we

apply the procedure of step 4 to upper bounds on Dk+1, Dk+2, . . . , DL−n to conclude that

the maximum discrepancy is at most hL−n−k+1 ·
√

2 ·maxdiff(w) ·maxi(yi − wi) · ε. From

Lemma A.3, we know hL−n−k+1 < hK , so the upper bound still holds.

To prove the lower bound (2.3), we need another lemma on hK .

Lemma A.4. Suppose 1
x3

= x3 + 1
x4

= x4 + 1
x5

= · · · = xK−1 + 1
xK

= xK. Then we have

x3 < x4 < · · · < xK.

Proof. Since xK = xK−1 + 1
xK

, we have xK > xK−1. Next we see that xK−1 + 1
xK

=

xK−2 + 1
xK−1

. Since xK > xK−1, we have 1
xK

< 1
xK−1

, and it follows that xK−1 > xK−2.

Continuing this argument, we get xK > xK−1 > · · · > x4 > x3.

Now we can prove the lower bound. Note that we cannot use a construction similar

to that of the black-box bound, Theorem 2.2, because we no longer have w̃ given; instead

we must construct a single E for which any contract w̃ may have a large discrepancy. In
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this construction, we are guided by the proof of the upper bound above; we try to make

the crucial bounds, in Step 4 of that argument, tight.

Proof of Theorem 2.5, lower bound (2.3). We claim that for all sufficiently small ε, there

exists an environment E , such that the following inequality holds for all contracts w̃:

D(w, w̃, E , ε) ≥ hK ·
√

2 ·max
i

(wi · (yi − wi)) · ε−O(ε). (A.7)

First off, if maxi(wi · (yi − wi)) = 0, then construct E such that the agent can only

produce y1 with probability 1. For all k, we have fk(1) = 1 and fk(i) = 0 for all i > 1.

In this case, we have V (w|E) = 0 and V (w̃|Ẽ) = O(ε) for all w̃ and Ẽ . Thus the lower

bound trivially holds.

Suppose that maxi(wi · (yi−wi)) > 0. Let i∗ denote an index in argmaxi(wi(yi−wi)).
We now construct positive numbers τ3, τ4, . . . , τK to make the argument in Step 4 in the

proof of (2.2) tight. Specifically, let xk be as given by the solution to (A.4), and put

τk = xk ·
√

2wi∗ε/(yi∗ − wi∗). Then we have

2wi∗ · ε
τ3

= τ3 · (yi∗ −wi∗) +
2wi∗ · ε
τ4

= · · · = τK−1 · (yi∗ −wi∗) +
2wi∗ · ε
τK

= τK · (yi∗ −wi∗)

= hK ·
√

2wi∗(yi∗ − wi∗) · ε.

Each quantity in the above equation represents a lower bound for the discrepancy given

by a contract that induces certain effort levels. We show that no matter what effort

levels a contract induces, the discrepancy must be (asymptotically) bounded by hK ·√
2wi∗(yi∗ − wi∗) · ε.
In our construction, we focus on output levels 1 and i∗ — effectively assuming that

there are just two output levels. We construct an environment E as follows.

f1(i) =

1 if i = 1

0 otherwise
, fK(i) =

1 if i = i∗

0 otherwise
.

For k = 2, . . . , K − 1, let

fk(i) =


2wi∗ ·ε

τk+1(yi∗−wi∗ )
if i = 1

1− 2wi∗ ·ε
τk+1(yi∗−wi∗ )

if i = i∗

0 otherwise

.
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(This construction of fk gives a valid probability distribution for small enough ε. Indeed,

since τk+1 is on the order of
√
ε by definition, we know that fk(1) is on the order of

√
ε,

so for small enough ε, all components of fk are between 0 and 1.)

By Lemma A.4, we know that τ3 < · · · < τK , so f1(i∗) < f2(i∗) < · · · < fK(i∗).

Next, we let c1 = 0, and for all k > 1, let ck = (fk − f1) · w. The agent is indifferent

between all effort levels, so he picks effort K under contract w. Therefore, we obtain that

V (w|E) = yi∗ − wi∗ .
Let w̃ denote any contract. Let k∗ denote the minimal effort the agent exerts in any

environment Ẽ ∈ Bε(E) under contract w̃. In other words, the agent exerts at least effort

k∗ in every environment Ẽ ∈ Bε(E), and there exists an environment in which the agent

exerts k∗.

If k∗ = 1, then there exists an Ẽ in which the agent chooses effort 1 under contract

w̃. Consequently, we have D(w, w̃, E , ε) ≥ (yi∗ − wi∗) − O(ε), which is greater than the

desired lower bound (A.7) for small enough ε (since the latter goes to 0). Thus, for small

ε, we may assume k∗ > 1. In particular, in the original environment E , the agent chooses

an effort l greater than 1. Hence, we deduce that for some l > 1 we have

(fl − f1) · w̃ ≥ cl − c1.

The left hand side is equal to (fl(i
∗)− f1(i∗)) · (w̃i∗ − w̃1), and the right hand side is equal

to (fl−f1) ·w = (fl(i
∗)−f1(i∗)) ·wi∗ . Since fl(i

∗) > f1(i∗), we obtain that w̃i∗− w̃1 ≥ wi∗ .

Since w̃1 ≥ 0, we have w̃i∗ ≥ wi∗ .

From now on, we assume that k∗ > 1 and w̃i∗ ≥ wi∗ . We claim that

D(w, w̃, E , ε) ≥ (1− fk∗(i∗)) · (yi∗ − wi∗) + (fk∗(i
∗)− ε) · (w̃i∗ − wi∗)−O(ε) (A.8)

To see why this inequality holds, recall that there is an environment Ẽ ∈ Bε(E) for which

V (w̃|Ẽ) = f̃k∗ · (y − w̃). We deduce that

D(w, w̃, E , ε) ≥ (yi∗ − wi∗)− f̃k∗ · (y − w̃)

= (yi∗ − wi∗)− f̃k∗ · y + f̃k∗ · w̃

≥ (yi∗ − wi∗)− fk∗ · y + f̃k∗(i
∗) · w̃i∗ −O(ε)

= (yi∗ − wi∗)− fk∗(i∗) · yi∗ + f̃k∗(i
∗) · w̃i∗ −O(ε)

= (1− fk∗(i∗)) · (yi∗ − wi∗) + f̃k∗(i
∗) · (w̃i∗ − wi∗)−O(ε)

≥ (1− fk∗(i∗)) · (yi∗ − wi∗) + (fk∗(i
∗)− ε) · (w̃i∗ − wi∗)−O(ε).
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Therefore, we have established inequality (A.8). Since fk∗(i
∗) converges to 1 as ε→ 0 for

all k∗ > 2, we can assume that fk∗(i
∗)− ε > 0. If k∗ = 2, then we have

D(w, w̃, E , ε) ≥ (1− f2(i∗)) · (yi∗ − wi∗) + (f2(i∗)− ε) · (w̃i∗ − wi∗)−O(ε)

≥ (1− f2(i∗)) · (yi∗ − wi∗)−O(ε)

=
2wi∗ · ε
τ3

−O(ε)

= hK ·
√

2wi∗(yi∗ − wi∗) · ε−O(ε).

Therefore the desired lower bound is valid for k∗ = 2. If k∗ > 2, then we need to bound

the term w̃i∗−wi∗ . We know that the agent exerts effort at least k∗ in every environment,

so consider the following modifications to E : Let

f̃k∗−1(i) =


fk∗−1(1)− ε if i = 1

fk∗−1(i∗) + ε if i = i∗

0 otherwise

.

(This probability distribution is well-defined for small enough ε because fk∗−1(1) is on the

order of
√
ε. For small enough ε we have fk∗−1(1)− ε > 0.) Moreover, for all k ≥ k∗, let

f̃k(i) =


fk(1) + ε if i = 1

fk(i
∗)− ε if i = i∗

0 otherwise

.

(These probability distributions are well-defined because fk(i
∗) converges to 1, so for small

enough ε we have fk(i
∗)− ε > 0.) And for k < k∗ − 1, let f̃k = fk.

Suppose the agent exerts effort l in the above environment. We know that l > k∗− 1,

so we have (f̃l − f̃k∗−1) · w̃ ≥ cl − ck∗−1 = (fl − fk∗−1) ·w. This inequality is equivalent to

(fl(i
∗)− fk∗−1(i∗)− 2ε) · (w̃i∗ − w̃1) ≥ (fl(i

∗)− fk∗−1(i∗)) · wi∗

w̃i∗ − w̃1 − wi∗ ≥
2wi∗ · ε

fl(i∗)− fk∗−1(i∗)− 2ε

w̃i∗ − w̃1 − wi∗ >
2wi∗ · ε

1− fk∗−1(i∗)

w̃i∗ − w̃1 − wi∗ > τk∗ · (yi∗ − wi∗).
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We now finish the proof as follows. Inequality (A.8) tells us that

D(w, w̃, E , ε) ≥ (1− fk∗(i∗)) · (yi∗ − wi∗) + (fk∗(i
∗)− ε) · (w̃i∗ − wi∗)−O(ε)

≥ (1− fk∗(i∗)) · (yi∗ − wi∗) + (fk∗(i
∗)− ε) · τk∗ · (yi∗ − wi∗)−O(ε)

= (1− fk∗(i∗)) · (yi∗ − wi∗) + τk∗ · (yi∗ − wi∗)

−(1− fk∗(i∗) + ε) · τk∗ · (yi∗ − wi∗)−O(ε).

Let’s analyze the third term in the above expression. We know that τk∗ is on the order

of
√
ε. We also know at (1 − fk∗(i∗) + ε) is at most on the order of

√
ε: if k∗ = K, then

1 − fk∗(i∗) + ε = ε; if k∗ < K, then 1 − fk∗(i∗) + ε is on the order of
√
ε. Therefore the

term (1 − fk∗(i∗) + ε) · τk∗ · (yi∗ − wi∗) is bounded by O(ε). We can drop this term and

further reduce the bound to

D(w, w̃, E , ε) ≥ (1− fk∗(i∗)) · (yi∗ − wi∗) + τk∗ · (yi∗ − wi∗)−O(ε).

If k∗ = K, then the first term is 0; the second term is equal to hK ·
√

2wi∗(yi∗ − wi∗) · ε.
If k∗ < K, then the first term is equal to 2wi∗ ·ε

τk∗+1
, so the sum of the first two terms (by the

definition of τk∗) is equal to hK ·
√

2wi∗(yi∗ − wi∗) · ε. Therefore, the lower bound (A.7)

holds for all possible values of k∗.

B Omitted proofs in Section 3

First, a note on notation: In Section 2, the notation O(g(ε)) was used for a quantity

bounded by C · g(ε) where the constant C could depend on (K,N,w, y); we now allow C

to depend on u as well.

Now, we split Theorem 3.1 into two parts, an upper bound and a lower bound:

(a) For any C > C∗, for all sufficiently small ε, there exists a contract w̃ such that, for

any environment E , we have D(w, w̃, E , ε) < C
√
ε.

(b) For any C < C∗, for all sufficiently small ε, for any contract w̃, we have supE D(w, w̃, E , ε) >
C
√
ε.

We prove part (a) by considering contracts w(τ) of the following form:

u(w(τ)i) = u(wi) + τ · (yi − wi) + ε · (maxdiff(u(w)) + maxdiff(y − w)).
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We use this notation for convenience. We first show that as long as τ ∈ (0, 1), the contract

w(τ) satisfies the participation constraint in all possible environments.

Lemma B.1. Fix E. If w satisfies the participation constraint for E, then for all τ ∈
(0, 1), the contract w(τ) satisfies the participation constraint in every environment Ẽ ∈
Bε(E).

Proof. Suppose w induces effort k∗ in environment E . We have fk∗ · u(w) − ck∗ ≥ Ū .

We show that for every environment Ẽ ∈ Bε(E), the agent’s maximal expected utility

maxk f̃k · u(w(τ)) − ck is at least Ū . It suffices to prove that f̃k∗ · u(w(τ)) ≥ fk∗ · u(w),

because under this condition the agent gets at least Ū by exerting effort k∗. We observe

that

f̃k∗ · u(w(τ)) = f̃k∗ · u(w) + τ · f̃k∗ · (y − w) + ε · (maxdiff(u(w)) + maxdiff(y − w))

= [f̃k∗ · u(w) + ε ·maxdiff(u(w))] + τ · f̃k∗ · (y − w) + ε ·maxdiff(y − w)

≥ fk∗ · u(w) + τ · f̃k∗ · (y − w) + ε ·maxdiff(y − w).

We know that fk∗ · (y − w) = V (w|E) ≥ mini(yi − wi) = 0. Since 0 < τ < 1, we deduce

that

τ · f̃k∗ · (y − w) ≥ τ · (f̃k∗ − fk∗) · (y − w) ≥ −ε ·maxdiff(y − w).

Therefore, we indeed have f̃k∗ · u(w(τ)) ≥ fk∗ · u(w), and the participation constraint

holds in every environment Ẽ ∈ Bε(E) under contract w(τ).

For the proof of part (a), we have already established the result on the participation

constraint. We only need to choose the appropriate τ that gives the upper bound.

Proof of Theorem 3.1, part (a). We will assume that w satisfies the participation con-

straint in E . At the end, we will address the possibility that this participation constraint

may not be satisfied.

Fix C > C∗. We claim that there exists a τ > 0 independent of E , such that for all

Ẽ ∈ Bε(E) the following inequality holds for sufficiently small ε:

V (w|E)− V (w(τ)|Ẽ) ≤
√
C · C∗ ·

√
ε+O(ε).

We first explicitly write out V (w|E) and V (w(τ)|Ẽ). Suppose contract w induces effort

k in environment E . We have V (w|E) = fk · (y − w). Suppose w(τ) induces effort l in
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some environment Ẽ ∈ Bε(E). Then V (w(τ)|Ẽ) = f̃l · (y − w(τ)). We have

V (w|E)− V (w(τ)|Ẽ) = fk · (y − w)− f̃l · (y − w(τ))

= (f̃k − f̃l) · (y − w) + f̃l · (w(τ)− w) +O(ε)

≤ (f̃k − f̃l) · (y − w) + max
i

(w(τ)i − wi) +O(ε).

We claim that the first term is bounded by 2·maxdiff(u(w))·ε
τ

. We consider the incentive

constraints in environments E and Ẽ . In environment E , the agent prefers effort k over l,

so we have

fk · u(w)− ck ≥ fl · u(w)− cl. (B.1)

In environment Ẽ , the agent prefers effort l over k, so we have

f̃l · u(w(τ))− cl ≥ f̃k · u(w(τ))− ck. (B.2)

Summing up inequalities (B.1) and (B.2), we obtain that

fk · u(w) + f̃l · u(w(τ)) ≥ fl · u(w) + f̃k · u(w(τ)).

The above inequality rearranges into (f̃k−f̃l)·(u(w(τ))−u(w)) ≤ (fk−f̃k−fl+f̃l)·u(w).

The vector (fk− f̃k−fl+ f̃l) has components that sum to 0, and all components lie within

[−2ε, 2ε]. Thus (fk − f̃k − fl + f̃l) · u(w) ≤ 2ε ·maxdiff(u(w)). As for the left-hand side,

recall that

u(w(τ)i)− u(wi) = τ · (yi − wi) + ε · (maxdiff(u(w)) + maxdiff(y − w)).

We know that
∑N

i=1 f̃k(i) =
∑N

i=1 f̃l(i) = 1, so we obtain that

N∑
i=1

(f̃k(i)− f̃l(i)) · ε · (maxdiff(u(w)) + maxdiff(y − w)) = 0.

As a result, we have

τ · (f̃k − f̃l) · (y − w) = (f̃k − f̃l) · (u(w(τ))− u(w)) ≤ 2ε ·maxdiff(u(w)).
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It follows that

V (w|E)− V (w(τ)|Ẽ) ≤ 2ε

τ
·maxdiff(u(w)) + max

i
(w(τ)i − wi) +O(ε).

We now need to bound maxi(w(τ)i−wi). Let i∗ denote an index in argmaxi(w(τ)i−wi).

If C∗ > 0, let τ =
(

maxi
yi−wi
u′(wi)

)−1/2

·
√

C∗

C
· 2 ·maxdiff(u(w)) · ε. For small enough ε, we

have

w(τ)i∗ − wi∗ <
C

C∗
· u(w(τ)i∗)− u(wi∗)

u′(wi∗)

= τ · C
C∗
· yi

∗ − wi∗ + ε · (maxdiff(u(w)) + maxdiff(y − w))

u′(wi∗)

= τ · C
C∗
· yi

∗ − wi∗
u′(wi∗)

+O(ε)

≤ τ · C
C∗
·max

i

yi − wi
u′(wi)

+O(ε).

We conclude that

V (w|E)−V (w(τ)|Ẽ) ≤ 2ε

τ
·maxdiff(u(w))+τ · C

C∗
·max

i

yi − wi
u′(wi)

+O(ε) =
√
C · C∗·

√
ε+O(ε).

If C∗ = 0, then either maxdiff(u(w)) = 0 or maxi(yi − wi) = 0. If maxdiff(u(w)) = 0,

set τ = ε. If maxi(yi − wi) = 0, set τ = 0.5. In either case, for small ε, we have

w(τ)i∗ − wi∗ < 2 · u(w(τ)i∗)− u(wi∗)

u′(wi∗)

= 2τ · yi
∗ − wi∗ + ε · (maxdiff(u(w)) + maxdiff(y − w))

u′(wi∗)

= 2τ · yi
∗ − wi∗
u′(wi∗)

+O(ε)

≤ 2τ ·max
i

yi − wi
u′(wi)

+O(ε).

We conclude that

V (w|E)− V (w(τ)|Ẽ) ≤ 2ε

τ
·maxdiff(u(w)) + 2τ ·max

i

yi − wi
u′(wi)

+O(ε).

If maxdiff(u(w)) = 0, then τ = ε, so 2τ · maxi
yi−wi
u′(wi)

= O(ε). If maxi(yi − wi) = 0, then

τ = 0.5, so 2ε
τ
·maxdiff(u(w)) = O(ε). In either case, the discrepancy is bounded by O(ε).
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And in every case, the value of τ depends on ε, w, y, u but not on the environment E , as

promised.

Finally, all of the above analysis assumed that w satisfied the participation constraint

in E (and hence w(τ) did so in Ẽ , by Lemma B.1). What if w violates the participation

constraint in E? We have w(τ) still defined as above. If w(τ) also violates the participation

constraint in Ẽ , then V (w|E)− V (w(τ)|Ẽ) = V0− V0 = 0. This leaves only the possibility

that w violates the participation constraint in E but w(τ) satisfies it in Ẽ .

Suppose this occurs. Our computations above showed that maxi(w(τ)i−wi) is bounded

above by a quantity that tends to 0 as ε → 0. Consequently, the assumption V0 < 0 =

mini(yi − wi) implies V0 < mini(yi − w(τ)i) when ε is small enough. Hence, for small ε,

the principal’s ex-post payoff under w(τ) for any output realization is higher than V0. So

we get V (w|E)−V (w(τ)|Ẽ) ≤ V0−V0 = 0, which again satisfies the desired upper bound.

For the proof of the lower bound, part (b), we assume that y1−w1 = mini(yi−wi) = 0.

We also redefine two notations. First, let i∗ denote an element of argmaxi
yi−wi
u′(wi)

. Second,

let ~ε be the vector in RN whose ith component is −ε if wi is one of the bN/2c lowest

components of w, and is ε if wi is one of the bN/2c highest components (and is 0 if N is

odd and wi is the middle component); thus ~ε · u(w) = ε ·maxdiff(u(w)).

Proof of Theorem 3.1, part (b). Fix w, w̃, and C < C∗. Assume that ε is small enough

so that C < (1−Nε) · C∗. To prove the lower bound, we construct environments E and

Ẽ ∈ Bε(E) such that

V (w|E)− V (w̃|Ẽ) ≥
√
C · C∗ ·

√
ε−O(ε).

First, we show that we can assume wi ≤ w̃i ≤ wi + 1 for all i. Suppose this condition

fails for some i. Let E = Ẽ = (ck = 0 ∀ k; fk = f ∀ k; Ū = wi), where f(i) = 1. The

participation constraint binds for w and E , so we get V (w|E) = yi − wi. If wi > w̃i, then

the participation constraint fails for w̃ and Ẽ , so v(w̃|Ẽ) = V0, and the discrepancy is a

positive constant. If w̃i > wi + 1, then V (w|E) = yi − w̃i, so the discrepancy is w̃i − wi,
which is greater than 1. In both cases, the discrepancy does not vanish as ε → 0, so the

lower bound that we are trying to prove trivially holds.

Next, suppose that C∗ = 0. We use the same construction as before: pick any i, and

let E = Ẽ = (ck = 0 ∀ k; fk = f ∀ k; Ū = wi), where f(i) = 1. Since wi ≤ w̃i, we have

V (w|E) = yi −wi and V (w̃|E) = yi − w̃i, so the difference is equal to w̃i −wi, which is at
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least 0.

From now on, we assume that C∗ > 0 and wi ≤ w̃i ≤ wi + 1 for all i. We also assume

that K = 2. (If K > 2, we can use exactly the same argument: we make fk = f1 and

ck = c1 for all k > 2.) We construct environments E and Ẽ such that the agent exerts high

effort in E and low effort in Ẽ . The agent’s change of effort engenders a large discrepancy

in profit.

We first construct Ẽ . Let δ be a small positive real number such that 2 ·~ε ·u(w)−2δ >

2 · ~ε · u(w) · C
C∗·(1−Nε) . In particular, we have 2 · ~ε · u(w) − 2δ > 0. (The role of δ is to

make the incentive constraints non-binding in order to avoid any potential ambiguity on

the agent’s effort choice.) Let x be a real number, to be chosen later, which will satisfy

the restriction

0 < x ≤ 1−Nε. (B.3)

Define f̃1 and f̃2 as follows:

f̃1(i) =


ε+ x if i = 1

1− (N − 1)ε− x if i = i∗

ε otherwise

, f̃2(i) =

1− (N − 1)ε if i = i∗

ε otherwise
.

Let f1 = f̃1 −~ε and f2 = f̃2 +~ε. Because of (B.3), all the probabilities are between 0 and

1. Let c1 = 0 and c2 = (f2 − f1) · u(w)− δ. Define the environments E and Ẽ as follows:

E = (c1, c2; f1, f2; Ū), Ẽ = (c1, c2; f̃1, f̃2; Ū),

where Ū is small enough such that participation constraints always hold for w and w̃ in

E and Ẽ .

The agent chooses effort 2 in environment E because f2 ·u(w)−c2 = f1 ·u(w)−c1 +δ >

f1 · u(w)− c1. We next identify an x such that the agent chooses effort 1 in environment

Ẽ : that is, f̃1 ·u(w̃)− c1 > f̃2 ·u(w̃)− c2. This condition is equivalent to (f̃2− f̃1) ·u(w̃) <

c2−c1 = (f2−f1) ·u(w)−δ, which rearranges into (f̃2− f̃1) ·(u(w̃)−u(w)) < 2 ·~ε ·u(w)−δ.
Plugging in the definition of f̃k, we get

x · (u(w̃i∗)− u(wi∗)− u(w̃1) + u(w1)) < 2 · ~ε · u(w)− δ. (B.4)
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If condition (B.4) holds, then k∗(w̃|Ẽ) = {1}. It follows that

V (w|E)− V (w̃|Ẽ) = f2 · (y − w)− f̃1 · (y − w̃)

= f̃2 · (y − w)− f̃1 · (y − w̃) + ~ε · (y − w)

= (f̃2 − f̃1) · (y − w̃) + f̃2 · (w̃ − w) + ~ε · (y − w)

= x · (yi∗ − y1 − w̃i∗ + w̃1) + (1−Nε)(w̃i∗ − wi∗)

+ε ·
∑
i

(w̃i − wi) + ~ε · (y − w)

≥ x · (yi∗ − w̃i∗) + (1−Nε)(w̃i∗ − wi∗)−O(ε).

(The last step is due to the fact that y1 = w1 ≤ w̃1 and w̃i − wi ≥ 0 for all i.)

We now turn to the choice of x. There are two cases.

If (1−Nε) · (u(w̃i∗)− u(wi∗)− u(w̃1) + u(w1)) < 2 ·~ε · u(w)− δ, then let x = 1−Nε,
which satisfies (B.3) and (B.4). In this case, the lower bound of

√
C · C∗ ·

√
ε − O(ε)

trivially holds because the discrepancy does not vanish as ε → 0. Indeed, our choice of

x yields V (w|E) − V (w̃|Ẽ) ≥ (1 − Nε)(yi∗ − wi∗) − O(ε), which converges to a positive

constant (yi∗ − wi∗), so for small enough ε it is obviously greater than the lower bound

we are trying to prove.

Now suppose that (1 − Nε) · (u(w̃i∗) − u(wi∗) − u(w̃1) + u(w1)) ≥ 2 · ~ε · w − δ. By

the assumptions on δ, we know that u(w̃i∗) − u(wi∗) − u(w̃1) + u(w1) > 0. We have

u(w̃i∗) − u(wi∗) > u(w̃1) − u(w1) ≥ 0. Therefore, we derive that w̃i∗ > wi∗ . We define

x = 2·~ε·u(w)−2δ
(u(w̃i∗ )−u(wi∗ ))

, and this value of x satisfies condition (B.4); it also satisfies (B.3) by

assumption of this case. Thus, the discrepancy becomes

V (w|E)− V (w̃|Ẽ) ≥ x(yi∗ − w̃i∗) + (1−Nε)(w̃i∗ − wi∗)−O(ε)

=
2 · ~ε · u(w)− 2δ

u(w̃i∗)− u(wi∗)
· (yi∗ − w̃i∗) + (1−Nε)(w̃i∗ − wi∗)−O(ε)

=
2 · ~ε · u(w)− 2δ

u(w̃i∗)− u(wi∗)
· (yi∗ − wi∗)− (2 · ~ε · u(w)− 2δ) · w̃i∗ − wi∗

u(w̃i∗)− u(wi∗)

+(1−Nε)(w̃i∗ − wi∗)−O(ε).

We claim that the term (2 ·~ε ·u(w)−2δ) · w̃i∗−wi∗
u(w̃i∗ )−u(wi∗ )

is on the order of ε. Indeed, we know

that 0 < w̃i∗ −wi∗ ≤ 1, so the ratio w̃i∗−wi∗
u(w̃i∗ )−u(wi∗ )

is bounded. Therefore we can reduce the
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discrepancy to

V (w|E)− V (w̃|Ẽ) ≥ 2 · ~ε · u(w)− 2δ

u(w̃i∗)− u(wi∗)
· (yi∗ − wi∗) + (1−Nε)(w̃i∗ − wi∗)−O(ε)

≥ 2 · ~ε · u(w)

u(w̃i∗)− u(wi∗)
· C

C∗ · (1−Nε)
· (yi∗ − wi∗) + (1−Nε)(w̃i∗ − wi∗)−O(ε)

≥ 2 ·

√
2 · ~ε · u(w)

u(w̃i∗)− u(wi∗)
· C

C∗ · (1−Nε)
· (yi∗ − wi∗) · (1−Nε)(w̃i∗ − wi∗)−O(ε)

= 2 ·

√
2 · ~ε · u(w) · C

C∗
· (yi∗ − wi∗) ·

w̃i∗ − wi∗
u(w̃i∗)− u(wi∗)

−O(ε)

≥ 2 ·

√
2 · ~ε · u(w) · C

C∗
· (yi∗ − wi∗) ·

1

u′(wi∗)
−O(ε)

=
√
C · C∗ ·

√
ε−O(ε).

The second to last step is to due the fact that w̃i∗−wi∗
u(w̃i∗ )−u(wi∗ )

> 1
u′(wi∗ )

. We have thus

established the desired lower bound stated in the beginning of the proof.
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