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This supplement contains additional materials for the main paper. Section B con-
tains proofs of auxiliary results not included in the main paper. Section C details how
the generalized virtual values coincide with traditional (ironed) virtual values in the
single-good monopoly problem. Theorems, equations, and sections in the main paper
are referenced using the original numbering.

APPENDIX B: ADDITIONAL PROOFS

PROOF OF LEMMA 4.3 (ADAPTED FROM MADARÁSZ AND PRAT (2012)): It is easy to
see that statement (b) of the lemma follows from (a) by integrating over each Sk in the
partition; so it suffices to prove (a).

As in the proof of Lemma 4.2, we can take � = maxx�θ u(x�θ) − minx�θ u(x�θ), and
then in any mechanism, any two types’ payments can differ by at most �. Also, put τ =
min{ε/6��1}.

By Lipschitz continuity, there exists δ such that whenever θ�θ′ are two types with
d(θ�θ′) < δ, then |u(x�θ) − u(x�θ′)| < τε/6 for all x. We show this δ has the desired
property.

Let (x� t) be any given mechanism. Let t = minθ t(θ). Let S ⊆ �(X) × R be the set of
values (x(θ)� τt + (1 − τ)t(θ)) for θ ∈Θ and let S be its closure, which is compact (by the
above observation on payments). Then define (x̃� t̃) by simply assigning to each type θ ∈ Θ

the outcome in S that maximizes its payoff, Eu(x�θ)− t. This exists by compactness. This
(x̃� t̃) is a mechanism: IC is satisfied by definition and IR is satisfied since the payments
have only been reduced relative to those in (x� t), so each type θ has the option of getting
allocation x(θ) for a payment of less than t(θ), which gives nonnegative payoff.

Now let d(θ�θ′) < δ. We know that the outcome chosen by θ′ in the new mechanism
can be approximated arbitrarily closely by an element of S corresponding to some type θ′′;
in particular, there exists θ′′ such that∣∣Eu(

x̃
(
θ′)� θ) −Eu

(
x
(
θ′′)� θ)∣∣< τε

6
and

∣∣̃t(θ′) − [
τt + (1 − τ)t

(
θ′′)]∣∣< τε

6
	 (B.1)

Now, we know from IC for the original mechanism that

Eu
(
x(θ)�θ

) − t(θ) ≥Eu
(
x
(
θ′′)� θ) − t

(
θ′′) (B.2)

and by the definition of the new mechanism (x̃� t̃) that

Eu
(
x̃
(
θ′)� θ′) − t̃

(
θ′) ≥Eu

(
x(θ)�θ′) − [

τt + (1 − τ)t(θ)
]
	

Using (twice) the fact that d(θ�θ′) < δ, the latter inequality turns into

Eu
(
x̃
(
θ′)� θ) − t̃

(
θ′) ≥Eu

(
x(θ)�θ

) − [
τt + (1 − τ)t(θ)

] − τε

3
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Now combining with (B.1) we get

Eu
(
x
(
θ′′)� θ) − [

τt + (1 − τ)t
(
θ′′)] >Eu

(
x(θ)�θ

) − [
τt + (1 − τ)t(θ)

] − 2τε
3

	 (B.3)

Adding (B.2) and (B.3), and canceling common terms, we get

τt
(
θ′′)> τt(θ)− 2τε

3
or

t
(
θ′′)> t(θ)− 2ε

3
	

Hence, from (B.1),

t̃
(
θ′) > t

(
θ′′) − τ

(
t
(
θ′′) − t

) − τε

6

>

(
t(θ)− 2ε

3

)
− τ�− τε

6

≥ t(θ)− 2ε
3

− ε

6
− ε

6
�

which is the desired statement (a). Q.E.D.

PROOF OF PROPOSITION 5.1: Write θg = min(Θg) and θ
g = max(Θg). Consider first

the pricing problem in each component separately. The profit from setting price pg is
pg(1−Fg(pg)), where Fg is the cumulative distribution function for θg. Since the optimal
price p∗g is in the interior of Θg, the first-order condition must hold there:

1 − Fg
(
p∗g) −p∗gf g

(
p∗g) = 0	

Now, for sufficiently small ε > 0, we must have

−ε
(
1 − F 1

(
p∗1))(1 − F 2

(
p∗2))

+ (
p∗1 − ε

)(
F 1

(
p∗1) − F 1

(
p∗1 − ε

))(
1 − F 2

(
p∗2)) (B.4)

+ (
p∗2 − ε

)(
F 2

(
p∗2) − F 2

(
p∗2 − ε

))(
1 − F 1

(
p∗1))> 0	

Indeed, when ε = 0, this expression equals 0, and its derivative with respect to ε is

−(
1 − F 1

(
p∗1))(1 − F 2

(
p∗2)) +p∗1f 1

(
p∗1)(1 − F 2

(
p∗2)) +p∗2f 2

(
p∗2)(1 − F∗(p∗1))

= (
1 − F 1

(
p∗1))(1 − F 2

(
p∗2))

− (
1 − F 2

(
p∗2))[1 − F 1

(
p∗1) −p∗1f 1

(
p∗1)]

− (
1 − F 1

(
p∗1))[1 − F 2

(
p∗2) −p∗2f 2

(
p∗2)]

= (
1 − F 1

(
p∗1))(1 − F 2

(
p∗2))

> 0	
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FIGURE B.1.—Buyer behavior under separate sales and bundling.

(Here the second equality comes from the first-order condition for each p∗g.) Write � for
the left-hand side of (B.4) (which depends on ε). Let ε be a small value for which (B.4)
holds.

Consider the behavior of various buyer types under the separate-price mechanism, il-
lustrated in Figure B.1. Buyer types in region A buy both goods; those in regions B and
D buy only good 2, while those in regions C and E buy only good 1.

Now consider the change in expected profit when the mechanism is changed to offering
either separate prices (p∗1�p∗2) or p∗1 + p∗2 − ε for the bundle. Buyers whose value for
both goods g is above p∗g (region A in the figure) now buy the bundle, paying ε less
than before. Buyers with θ1 ∈ [p∗1 − ε�p∗1) and θ2 ≥ p∗2 (region B) formerly bought
only good 2 but now buy the bundle, paying p∗1 − ε more than before. And buyers with
θ2 ∈ [p∗2 − ε�p∗2) and θ1 ≥ p∗1 (region C) switch to buying the bundle, paying p∗2 − ε
more than before. These changes constitute a lower bound on the net change in profit. (In
addition, some types who formerly bought nothing now buy the bundle; we ignore them.)

Thus, writing π(A), π(B), and π(C) for the measures of these regions under joint
distribution π, our change in profit is at least

−επ(A)+ (
p∗1 − ε

)
π(B)+ (

p∗2 − ε
)
π(C)	 (B.5)

Now, for any negatively affiliated π, we have

π(B) ≥ π
([
p∗1 − ε�p∗1] ×Θ2

)
π

([
p∗1� θ

2] ×Θ2
) ×π(A)

= F 1
(
p∗1) − F 1

(
p∗1 − ε

)
1 − F 1

(
p∗1) ×π(A)

and similarly

π(C) ≥ F 2
(
p∗2) − F 2

(
p∗2 − ε

)
1 − F 2

(
p∗2) ×π(A)	
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Plugging in to (B.5), our change in profit in going to the bundled mechanism is at least

π(A)×
[
−ε+ (

p∗1 − ε
)F 1

(
p∗1) − F 1

(
p∗1 − ε

)
1 − F 1

(
p∗1) + (

p∗2 − ε
)F 2

(
p∗2) − F 2

(
p∗2 − ε

)
1 − F 2

(
p∗2) ]

= π(A)× �(
1 − F 1

(
p∗1))(1 − F 2

(
p∗2)) �

with � given by the left-hand side of (B.4).
Take ε = ε in the bundled mechanism. Recall that in this case, the corresponding value

of � was positive; call this value �. This shows that the bundling mechanism, with price
p∗1 +p∗2 −ε for the bundle, earns expected profit at least as high as the R∗ from separate
sales, proving part (a).

All of this basically follows McAfee, McMillan, and Whinston (1989) (who consid-
ered the independent case). In our case, we obtain only a weak improvement from this
bundling, because with negative affiliation, π(A) may be zero, or arbitrarily close. This is
why we must randomize the bundle price to obtain a strict improvement; we now detail
this adjustment.

Take ε = min{p∗1 − θ1�p∗2 − θ2}; without loss of generality, ε = p∗2 − θ2. Then, in the
mechanism with bundle price p∗1 +p∗2 −ε, region E in Figure B.1 disappears, and regions
A and C constitute all of the area to the right of the line θ1 = p∗1, implying

π(C)= (
1 − F 1

(
p∗1)) −π(A)	

Therefore, expression (B.5) is at least

−επ(A)+ (
p∗2 − ε

)[(
1 − F 1

(
p∗1)) −π(A)

]
= θ2(1 − F 1

(
p∗1)) −p∗2π(A)	

Consequently, if ε is chosen to equal ε with probability q and ε with probability 1 −q, the
expected gain in profit relative to separate prices is at least

q
�(

1 − F 1
(
p∗1))(1 − F 2

(
p∗2))π(A)+ (1 − q)

(
θ2(1 − F 1

(
p∗1)) −p∗2π(A)

)
= (1 − q)θ2(1 − F 1

(
p∗1)) +π(A)

[
q

�(
1 − F 1

(
p∗1))(1 − F 2

(
p∗2)) − (1 − q)p∗2

]
	

Evidently, if q is chosen close enough to 1, the expression in brackets on the right will be
positive. Then, for any negatively affiliated distribution π, the profit from the randomized
bundling mechanism will be at least R∗ +(1−q)θ2(1−F 1(p∗1)), which is strictly above R∗,
proving part (b). Q.E.D.

PROOF OF LEMMA 5.2: We first prove the lemma in the special case where each Θg con-
sists of at most two values. Write them as Θg = {θg

1� θ
g
2} with θ

g
1 < θ

g
2 (or {θg

1} if there is just
one value), and write (x∗� t∗) for the optimal mechanism that sells each good separately.
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In the standard analysis of the one-good problem (as detailed in Appendix C below),
the virtual values associated to these two types are

θ
g
1 − πg

(
θ
g
2

)
πg

(
θ
g
1

) × (
θ
g
2 − θ

g
1

)
and θ

g
2 	

If the former virtual value is negative, then the optimal price for the single good g is θg
2 ; if

it is positive, the optimal price is θg
1 . The virtual value cannot be zero, because there would

then not be a unique optimal price, contrary to assumption. In either case, the constraints
that receive positive weight in the dual problem are the IR constraint for θ

g
1 and the IC

constraint for θ
g
2 to imitate θ

g
1 . (If there is just one type θ

g
1 , then its virtual value is the

positive number θg
1 and its IR constraint is binding.)

The distribution π constructed in Lemma 4.4 has full support on Θ. This also implies
that all of the multipliers on the adjacent downward constraints constructed in the proof
of Theorem 2.1, that is to say all of the λ[(θg

2� θ
−g) → (θ

g
1� θ

−g)], are strictly positive, in
view of their definition (4.17). Likewise, the lowest type θ1 = (θ1

1� 	 	 	 � θ
G
1 ) has a strictly

positive weight on its IR constraint (namely κ[θ1] = 1).
Now, we saw in the proof of Theorem 2.1 that any mechanism (x� t) must satisfy∑

θ

π(θ)t(θ) ≤
∑
θ

∑
g

π(θ)Eug
(
xg(θ)�θg

) ≤
∑
θ

∑
g

π(θ)ug
max

(
θg

) = R∗ (B.6)

with equality for the mechanism (x∗� t∗). Since the π(θ) are all strictly positive, a mecha-
nism can be optimal only if it satisfies Eug(xg(θ)�θg) = ug

max(θ
g) for every θ and every g,

that is, it maximizes the virtual value in every component for every type. Since the vir-
tual value from allocating good g is always positive or negative, never 0 (while the vir-
tual value from not allocating is 0), the virtual value maximizer is unique. Thus we must
have x(θ) = x∗(θ) for every θ. Moreover, we can see from the proof of Lemma 4.1 that
the first inequality in (B.6) can be an equality only if all the IC and IR constraints that
have positive multipliers hold with equality. Given that x and x∗ coincide, this equality
uniquely determines the payment of the lowest type t(θ1) by its IR, and then uniquely
determines the payment of each other type by upward induction using the ICs. Hence we
have t(θ) = t∗(θ) for every θ as well.

This shows that the only possible optimal mechanism is (x� t) = (x∗� t∗), proving the
lemma in the case where each Θg has at most two elements.

Now we can prove the lemma in general. For each good g, write Θg = {θg
1� 	 	 	 � θ

g
Jg},

with the values listed in increasing order, θg
1 < · · ·< θ

g
Jg . By assumption, the optimal price

to sell good g is unique, and clearly it must equal one of the values θ
g
j ; write j∗g for the

index, so that the optimal price is θ
g

j∗g . Write (x∗� t∗) for the mechanism that sells each
good g separately at price θ

g

j∗g .
Let Sg be the collection of all subsets of Θg that contain θ

g

j∗g . For each such subset
Θ̃g ∈ Sg, let πg[Θ̃g] be some distribution in the corresponding one-good problem whose
support is Θ̃g and for which the unique optimal mechanism is a posted price of θg

j∗g . (This
can be constructed, for example, by placing large enough probability mass on θ

g

j∗g .) Now,
by choosing a sufficiently small positive weight ηg[Θ̃g] for each Θ̃g ∈ Sg, we can write πg

as a convex combination of distributions

πg =
∑

Θ̃g∈Sg

ηg
[
Θ̃g

]
πg

[
Θ̃g

] +ηg[∅]πg�
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where πg is some distribution that still has full support on Θg and still has the property
that the unique optimal price is θg

j∗g . For convenience, write Sg = Sg ∪{∅} and πg[∅] = πg;
this allows us to write more simply

πg =
∑

Θ̃g∈Sg

ηg
[
Θ̃g

]
πg

[
Θ̃g

]
	 (B.7)

Let S = ×gS
g
. Consider any choice of Θ̃ = (Θ̃1� 	 	 	 � Θ̃G) ∈ S . We know that for each

separate good g, setting a price of θ
g

j∗g for each item is optimal against each marginal
distribution πg[Θ̃g]. Accordingly, let π[Θ̃] be the joint distribution constructed in Sec-
tion 4.2, so that its marginals are the distributions πg[Θ̃g] and such that (x∗� t∗) is an
optimal mechanism for distribution π[Θ̃].

Then we can define a joint distribution π on Θ by

π =
∑
Θ̃∈S

(
G∏
g=1

ηg
[
Θ̃g

])
π[Θ̃]	

It is straightforward to check, using (B.7), that π is a distribution on Θ whose marginal
on each Θg equals πg, and (x∗� t∗) is an optimal mechanism for distribution π. We claim
that in fact (x∗� t∗) is the unique optimal mechanism for π.

So let (x� t) be any optimal mechanism for π; we wish to show that it fully coincides
with (x∗� t∗). Since Eπ[Θ̃][t(θ)] ≤ Eπ[Θ̃][t∗(θ)] for each π[Θ̃], the only way t can obtain the
same expected profit as t∗ against π is to have equality for every π[Θ̃], that is, (x� t) must
be an optimal mechanism for every distribution π[Θ̃].

Consider in particular any Θ̃ where each Θ̃g consists of θg

j∗g and at most one other type.
For these sets, the special case of the lemma we have already proven shows that we must
have (x(θ)� t(θ)) = (x∗(θ)� t∗(θ)) for each θ ∈ ×gΘ̃

g.
But every type θ ∈ Θ belongs to some such subspace of types, for appropriate Θ̃. There-

fore, the optimal mechanism (x� t) must coincide with (x∗� t∗) everywhere. Q.E.D.

PROOF OF COROLLARY 5.3: As argued in the proof of Lemma 4.2 in the main paper,
when looking for optimal mechanisms, we can restrict to those whose payments are all in
[−t� t] for some sufficiently high constant t. Then the effective space of mechanisms M′

becomes a convex polytope, since it is a compact set of |Θ| · (G+ 1)-dimensional vectors
defined by certain linear constraints. Therefore, it is the convex hull of its vertices (see,
e.g., Ziegler (1995, Theorem 1.1)), that is, there exist some mechanisms M1� 	 	 	 �MK such
that every mechanism in M′ equals some convex combination of them.

By Lemma 5.2, there exists some particular π∗ ∈ Π for which the separate-sales mech-
anism earns strictly higher expected profit than any other mechanism. Since expected
profit is a linear function on M′, it is maximized at one of the corners, so the separate-
sales mechanism must be one of these corners, say M1. By continuity, for any sufficiently
nearby π, M1 still gives strictly higher expected profit than M2� 	 	 	 �MK , and so remains
higher than any convex combination, that is, no mechanism attains higher profit than R∗.

Q.E.D.
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APPENDIX C: GENERALIZED VIRTUAL VALUES IN THE MONOPOLY PROBLEM

In this appendix we demonstrate in detail how the generalized virtual values we have
defined in Section 4.1 reduce to the traditional ironed virtual value in the one-dimensional
case. We focus on the benchmark monopoly problem with a single good (and a finite set
of types). We could allow for a convex cost of production and the calculations would be
virtually identical, but for simplicity we do not do so here.

Suppose that the set of possible values for the good is {θ1� 	 	 	 � θJ}, with 0 ≤ θ1 < θ2 <
· · ·< θJ , and that π is the distribution. Recall the notation for allocations: X = {0�1} and
u(x�θ) = xθ. Also write Rj = θj × ∑J

j′=j π(θj′), the profit from setting a price of θj ; write
R∗ = maxj Rj , with j∗ as the index attaining the maximum (if there are several, pick the
lowest). It will also be convenient to put RJ+1 = 0.

The traditional analysis of the problem begins by defining the virtual value of type θj as

θ̃j = θj −
∑

j′>j
π(θj′)

π(θj)
(θj+1 − θj)� or θ̃j = θj if j = J	

(This is the discrete-type analogue of the classical formula from Myerson (1981); see, e.g.,
Vohra (2011, p. 118).)

Consider first the no-ironing case, where θ̃1 ≤ · · · ≤ θ̃J . In this case, the traditional solu-
tion uses just the IR constraint of the lowest type θ1 and the adjacent downward IC con-
straints θj → θj−1 to show that no mechanism can earn more than R∗, which is achieved
by allocating the goods to the types θj with nonnegative virtual value.

This method corresponds to a solution to the dual problem that puts positive weights
only on these constraints. To fully illustrate the connection, we will explicitly write out
what this dual solution is and then check that our generalized virtual values defined by
(4.9) correspond to the virtual values θ̃j . Recall that in a typical screening problem, there
may be many possible generalized virtual values, depending on the choice of dual solution.
However, once we have decided to use a dual solution that puts weight only on the lowest
IR and the adjacent downward IC constraints, an easy induction using (4.7) shows that
these weights are uniquely determined. Thus it makes sense to talk about the generalized
virtual values representing this approach to the screening problem.

In our proposed dual solution, the IR and IC multipliers are

κ[θ1] = 1� λ[θj → θj−1] =
J∑

j′=j

π(θj′)�

and all other λ and κ variables are zero. Also, for each θj , we define

μ0[θj] = max
{
π(θj)θ̃j�0

}
� μ1[θj] = max

{
0�−π(θj)θ̃j

}
�

ν[θj] = −max
{
π(θj)θ̃j�0

}
	

Let us check that this is indeed an optimal solution. It is immediate that all the λ, κ,
and μ variables are nonnegative. It is also immediate that (4.6) holds with a = 0 (this
means not allocating the good) since all the u(a�θ) terms are zero. For a = 1 (allocating
the good), the first three terms in (4.6) add up to −π(θj)θ̃j , while the last two add up to
−(max{0�−π(θj)θ̃j} − max{π(θj)θ̃j�0}) = π(θj)θ̃j . So (4.6) is satisfied. It is straightfor-
ward to check that (4.7) is satisfied as well.
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And for (4.8), note that

π(θj)θ̃j = Rj −Rj+1

for each j = 1� 	 	 	 � J. Since j∗ is the (lowest) index for which Rj attains the maximum,
this implies θ̃j∗−1 < 0 (if j∗ > 1) and θ̃j∗ ≥ 0. So since the θ̃j are increasing, we have θ̃j ≥ 0
precisely when j ≥ j∗. Consequently, we have

J∑
j=1

ν[θj] = −
∑
j≥j∗

π(θj)θ̃j = −
∑
j≥j∗

(Rj −Rj+1)= −R∗	

So (4.8) is satisfied, and we do indeed have an optimal solution to the dual program.
Now consider the generalized virtual value of type θj as defined in (4.9) with these dual

variables. Certainly u(a�θj) = 0 when a = 0 (all the u(a�θ) terms are zero); the relevant
case is a = 1. For each θ = θj we only have one nonzero term λ[θ̂ → θ], namely θ̂ = θj+1

(if j = J there are no such terms), and then it is clear that u(1� θj) is indeed equal to the
traditional virtual value θ̃j .

Now we turn to the general case, where the θ̃j are not necessarily increasing so there
will be ironing. We follow the ironing procedure in Myerson (1981) (with adjustments for
discrete types). Consider the set of points in the plane,

S =
{(∑

j′<j

π(θj′)�Rj

) ∣∣∣ j = 1� 	 	 	 � J + 1
}
�

and define the function G : [0�1] → R to be the upper boundary of the convex hull of
this S, that is, the lowest concave function such that G(x) ≥ y for each point (x� y) ∈ S.
Then define the ironed revenue

Rj =G

(∑
j′<j

π(θj′)

)

for each j = 1� 	 	 	 � J + 1. We immediately have Rj ≤ Rj ≤ max(x�y)∈S y = R∗ for all j, with
equality for j = j∗. Define also

θ̃j = Rj −Rj+1

π(θj)

for each j = 1� 	 	 	 � J. These are the ironed virtual values. Concavity of G implies they are
increasing, θ̃1 ≤ · · · ≤ θ̃J .

Also, as in the no-ironing case, Rj∗ = maxj Rj implies that θ̃j∗−1 ≤ 0 (if j∗ > 1) and
θ̃j∗ ≥ 0.

Now we describe how to translate the ironing approach into a solution to the dual prob-
lem. The usual colloquial description of ironing is that it maximizes revenue subject only
to the adjacent downward IC constraints (and IR of the lowest type) plus a monotonic-
ity constraint, x(θj) increasing in j. However, monotonicity is itself obtained as a conse-
quence of the adjacent downward and upward IC constraints. So in fact the corresponding
dual solution will put weight on both the downward and upward adjacent ICs.
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For the IR constraints, we put κ[θ1] = 1 and κ[θj] = 0 otherwise, as before. For the IC
constraints, we put the following weights on the adjacent incentive constraints:

λ[θj → θj−1] =
J∑

j′=j

π(θj′)+ Rj −Rj

θj − θj−1
� λ[θj−1 → θj] = Rj −Rj

θj − θj−1

(and all other λ[· · · ] multipliers equal to zero). Notice that these weights are nonnegative,
since Rj ≥Rj . Put also

μ0[θj] = max
{
π(θj)θ̃j�0

}
� μ1[θj] = max

{
0�−π(θj)θ̃j

}
�

ν[θj] = −max
{
π(θj)θ̃j�0

}
	

In particular, the μ’s are nonnegative as well.
Let us check that this is an optimal dual solution. First let us check (4.6) (in the case

a = 1, since a = 0 is easy). We will do the case 1 < j < J here. Then the first three terms
on the left side of (4.6) are

λ[θj+1 → θj] θj+1 + λ[θj−1 → θj]θj−1 − (
λ[θj → θj+1] + λ[θj → θj−1]

)
θj

=
J∑

j′=j+1

π(θj′)θj+1 −
J∑

j′=j

π(θj′)θj + Rj+1 −Rj+1

θj+1 − θj

θj+1 + Rj −Rj

θj − θj−1
θj−1

− Rj+1 −Rj+1

θj+1 − θj

θj − Rj −Rj

θj − θj−1
θj

= (Rj+1 −Rj)+ Rj+1 −Rj+1

θj+1 − θj

(θj+1 − θj)− Rj −Rj

θj − θj−1
(θj − θj−1)

= (Rj+1 −Rj)+ (Rj+1 −Rj+1)− (Rj −Rj)

=Rj+1 −Rj

= −π(θj)θ̃j	

The other two terms on the left side of (4.6) equal −(μ1[θj] + ν[θj]) = π(θj)θ̃j . Thus,
(4.6) is satisfied. (This is the case 1 < j < J, but the remaining cases are similar, using the
identities R1 =R1 and RJ+1 =RJ+1 to account for the missing terms.)

It is straightforward to see that (4.7) is satisfied as well: the only difference from the
no-ironing case is the addition of the (Rj+1 −Rj+1)/(θj+1 − θj) and (Rj −Rj)/(θj − θj−1)
terms, which each appear once with a + sign and once with a − sign on the left side, and
so they cancel out.

And because θ̃1 ≤ · · · ≤ θ̃j∗−1 ≤ 0 ≤ θ̃j∗ ≤ · · · ≤ θ̃J , we have ν[θj] = 0 for j < j∗ and
= −π(θj)θ̃j for j ≥ j∗. Therefore,

J∑
j=1

ν[θj] = −
∑
j≥j∗

π(θj)θ̃j = −
∑
j≥j∗

(Rj −Rj+1)= −Rj∗ = −R∗	

Thus (4.8) holds as well, and we indeed have an optimal solution to the dual problem.
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With this choice of dual variables, the generalized virtual value for allocating the object
to type θj , as defined in (4.9), equals

u(1� θj) = θj −
(
λ[θj+1 → θj]

π(θj)
(θj+1 − θj)+ λ[θj−1 → θj]

π(θj)
(θj−1 − θj)

)

= θj −
∑J

j′=j+1
π(θj′)

π(θj)
(θj+1 − θj)−

(
Rj+1 −Rj+1

θj+1 − θj

)
π(θj)

(θj+1 − θj)

−

(
Rj −Rj

θj − θj−1

)
π(θj)

(θj−1 − θj)

= θ̃j − Rj+1 −Rj+1

π(θj)
+ Rj −Rj

π(θj)

= (Rj −Rj+1)− (Rj+1 −Rj+1)+ (Rj −Rj)

π(θj)

= Rj −Rj+1

π(θj)

= θ̃j	

(Again, this is for 1 < j < J, but the calculation for j = 1� J is almost identical.)
Thus, as promised, the generalized virtual values are equal to the ironed virtual values

as traditionally defined.
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