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ROBUSTNESS AND SEPARATION IN MULTIDIMENSIONAL SCREENING

BY GABRIEL CARROLL1

A principal wishes to screen an agent along several dimensions of private informa-
tion simultaneously. The agent has quasilinear preferences that are additively separable
across the various components. We consider a robust version of the principal’s problem,
in which she knows the marginal distribution of each component of the agent’s type, but
does not know the joint distribution. Any mechanism is evaluated by its worst-case ex-
pected profit, over all joint distributions consistent with the known marginals. We show
that the optimum for the principal is simply to screen along each component separately.
This result does not require any assumptions (such as single crossing) on the structure
of preferences within each component. The proof technique involves a generalization
of the concept of virtual values to arbitrary screening problems. Sample applications
include monopoly pricing and a stylized dynamic taxation model.

KEYWORDS: Bundling, generalized virtual value, mechanism design, multidimen-
sional screening, robustness, separation.

1. INTRODUCTION

MULTIDIMENSIONAL SCREENING stands out among current topics in economic theory as
a source of problems that are simple to write down, yet analytically intractable. Whereas
the canonical one-dimensional screening model is well understood, its multidimensional
analogue, as traditionally formulated, is much more complex and unruly.

Consider, for example, the simplest (and most widely studied) version of the problem:
A monopolist has two goods, 1 and 2, to sell to a buyer. Marginal costs are zero; the
buyer’s preferences are quasilinear and additively separable in the two goods. The mo-
nopolist has a prior belief about the joint distribution of the buyer’s values for the two
goods, (θ1� θ2). She wants to find a mechanism for selling the goods so as to maximize ex-
pected revenue. She may simply post a price for each good separately; she may also wish
to set a price for the bundle of both goods, which may be greater or less than the sum of
the two separate prices. But she can also offer probabilistic combinations of goods, say,
a 2/3 chance of getting good 1 and also a 3/4 chance of good 2, for yet another price.

The single-good version of the problem is simple: even if probabilistic mechanisms are
allowed, the optimum is simply to post a single, take-it-or-leave-it price (Riley and Zeck-
hauser (1983)). Not so in the two-good problem. In the natural case where the values
for each good are independent uniform on [0�1], the optimal mechanism is relatively
simple (prices for each good plus a price for the bundle), but known proofs of optimal-
ity are involved (Manelli and Vincent (2006)). In other cases, the optimum may involve
probabilistic bundling, and may even require a menu of infinitely many such bundles
(Thanassoulis (2004), Manelli and Vincent (2007), Daskalakis, Deckelbaum, and Tzamos
(2013)). Moreover, revenue can be nonmonotone: moving the distribution of buyer’s
types upward (in the stochastic dominance sense) may decrease optimal revenue (Hart
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and Reny (2015)). These phenomena are not just artifacts of the possibilities for corre-
lation in the multidimensional problem, since there are examples even when the values
for the two goods are independently distributed. Furthermore, if the values are allowed
to be correlated, then it can happen that restricting the seller to any fixed number k of
bundles can lead to an arbitrarily small fraction of the optimal revenue (Hart and Nisan
(2013)), and finding the optimal mechanism is computationally intractable (Conitzer and
Sandholm (2002), Daskalakis, Deckelbaum, and Tzamos (2014)). With these challenges
arising even for the simple monopoly problem, the prospects for more complex screening
problems seem even more daunting.

This paper puts forward an alternative and general framework for writing models that
may offer a new and complementary perspective by avoiding these complexities. We con-
sider a principal screening an agent with quasilinear preferences, who has several com-
ponents of private information. For each component g = 1� � � � �G, the agent will be as-
signed a (possibly random) allocation xg, from which he derives a value that depends
on his corresponding type θg. His total payoff is additively separable across components,∑

g u
g(xg�θg). Unlike the traditional model, in which the principal maximizes her ex-

pected profit according to a prior distribution over the full type θ = (θ1� � � � � θG), here we
assume that the principal only has beliefs about the marginal distribution of each compo-
nent θg, but does not know how the various components are correlated with each other.
She wishes for a guarantee on her average profit that is robust to this uncertainty. More
precisely, she evaluates any possible mechanism according to the worst-case expected
profit over all possible joint distributions that are consistent with the known marginals.

Our main result says that the optimal mechanism separates: for each component g, the
principal simply offers the optimal mechanism for that marginal distribution. In the sim-
ple monopolist example above, this means that the optimal mechanism is to post a price
for each good separately, without any bundling. But the result also allows, for example,
that each component g represents a price discrimination problem in which different qual-
ities of product may be offered at different prices, as in Mussa and Rosen (1978). In fact,
our result is much more general: In the above examples, each component g represents
a standard one-dimensional screening problem, satisfying (for example) single-crossing
conditions, but we do not actually require this. Ours is a general separability result, in
which the structure of preferences within each component can be totally arbitrary. Fur-
ther applications will be discussed ahead.

Much of the literature on multidimensional mechanism design has emphasized the ad-
vantages of bundling (to use the monopolist terminology) or, more generally, of creating
interactions between the different dimensions of private information. In this context, our
result expresses the following simple counterpoint: If you do not have enough information
to know how to bundle, then avoid bundling.

Indeed, a simple intuition behind the result is as follows: The solution to a maxmin
problem (such as the principal’s problem that we set up here) often involves equalizing
payoffs across many possible environments. In this case, the separate screening mecha-
nism does exactly that; since the principal knows the marginal distribution of each θg,
she can calculate her expected profit without needing to know anything about how the
different components are correlated, whereas any bundling mechanism would be sensi-
tive to the correlation structure. However, this intuition is incomplete. Hypothetically,
there could be some bundling mechanism whose exact profit depends on the correlation
structure yet is always better than separate screening.

Our proof here works instead by explicitly constructing a joint distribution for which
no mechanism performs better than separate screening. The approach first develops a
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generalization of the concept of virtual values, applicable to any screening problem: as in
traditional one-dimensional problems, a type’s virtual value for an allocation represents
the actual value minus the shadow costs from the incentives of other types to imitate it,
and the optimal mechanism assigns each type the allocation for which its virtual value is
the highest. Our joint distribution in the multidimensional type space is then chosen so
that the (generalized) virtual value of an allocation equals the sum of the virtual values
of its components. This condition is expressed as a system of linear equations that the
distribution should satisfy. We show that the system indeed has a solution, and we can give
this solution at least a mathematical interpretation, if not an economic one; we derive it
as the stationary distribution of a particular Markov process over types.

The main purpose of this paper is as a methodological contribution in an area where
new models seem to be called for. Screening problems are now pervasive in many areas of
economic theory, and in many applications, agents have private information that cannot
be conveniently expressed along a single dimension. In a Mirrlees-style tax model, work-
ers may have multiple dimensions of ability, for example, ability in different kinds of jobs
(Rothschild and Scheuer (2013, 2014)). In regulation of a monopolist with unknown cost
structure (Baron and Myerson (1982)), it is natural for the costs to be described by more
than one parameter, for example, fixed and marginal costs. In a model of insurance with
adverse selection (Rothschild and Stiglitz (1976)), consumers may have different proba-
bilities of facing different kinds of adverse events. The survey of Rochet and Stole (2003,
p. 150) (which also describes more applications) puts the point more forcefully: “In most
cases that we can think of, a multidimensional preference parameterization seems criti-
cal to capturing the basic economics of the environment.” In addition, there is a recent
growth of interest in dynamic mechanism design, in which information arrives in each pe-
riod; even if each period’s information is single-dimensional, this field presents some of
the same analytical challenges as static multidimensional mechanism design (Battaglini
and Lamba (2015)).

This range of applications highlights the need for general and tractable theory in mul-
tidimensional screening. Now, typically, the ultimate interest is in interaction across the
dimensions of private information, which is exactly what our model here rules out. But
this paper offers a very general way to write down a model where no interactions in the
problem formulation lead to no interactions in the solution. Arguably, it is helpful for the-
ory to work from such a baseline, as a way to understand why and when such interactions
do arise in other models and, perhaps, as a blank canvas on which future research can
systematically add interactions without losing tractability.

Aside from this methodological contribution, it is also possible to interpret our result
more directly as a positive description of behavior. We defer this interpretation and dis-
cussion of related issues to the conclusion.

This work connects with several branches of literature. It is part of a growing body of
work in robust mechanism design, seeking to explain intuitively simple mechanisms as
providing guaranteed performance in uncertain environments, and formalizing this intu-
ition by showing how such mechanisms can arise as solutions to worst-case optimization
problems. This examination includes earlier work by this author on contracting problems
in uncertain environments (Carroll (2015a, 2015b), Carroll and Meng (2016)), as well as
several others (Bergemann and Morris (2005), Brooks (2013), Chung and Ely (2007),
Frankel (2014), Garrett (2014)). It also relates to a recent spurt of interest in multi-
dimensional screening, particularly in the algorithmic game theory world. Several re-
cent papers in this area have given conditions under which simple mechanisms can
be shown to be optimal (Haghpanah and Hartline (2015), Wang and Tang (2014));
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most relevant among these, Haghpanah and Hartline (2015) introduce a virtual value
maximization approach that is connected to ours. Others (Hart and Nisan (2012),
Li and Yao (2013), Babaioff et al. (2014), Rubinstein and Weinberg (2015), Yao (2015),
Cai, Devanur, and Weinberg (2016)) have argued that simple mechanisms for selling mul-
tiple goods are approximately optimal under broad conditions. Finally, there is a long-
standing, more applied literature on bundling in industrial organization (Stigler (1963),
Adams and Yellen (1976), McAfee, McMillan, and Whinston (1989), Chu, Leslie, and
Sorensen (2011)), to which we shall return periodically. In contrast to these approximate-
optimality and applied strands of literature, the present paper focuses on exact optimality
among all possible (deterministic or probabilistic) mechanisms. Still, all of these branches
share a common theme of offering models in which relatively simple mechanisms are
advantageous.

In the concluding section, we give a more detailed comparison of our proof techniques
with the closest previous approaches to multidimensional screening. In particular, the
concept of generalized virtual values, a key analytical tool here, appears to be relatively
new to the literature, even though it falls out straightforwardly from the Lagrangian of the
principal’s maximization problem. (Cai, Devanur, and Weinberg (2016) independently
introduce this same concept.)

2. MODEL AND RESULT

We shall first lay out the model and then describe a number of applications.
We will notate the metric on an arbitrary metric space by d; no confusion should re-

sult. For a compact metric space X , we write �(X) for the space of Borel probability
distributions on X , with the weak topology.

2.1. Screening Problems

We first formally define a (Bayesian) screening problem, the building block of our model.
We assume throughout that there is a single agent with quasilinear utility.

A screening environment (Θ�X�u) is defined by a type space Θ and an allocation space X ,
both assumed to be compact metric spaces endowed with the Borel σ-algebra, and a utility
function u :X ×Θ → R, which is assumed to be (jointly) Lipschitz continuous. We define
Eu : �(X)×Θ→ R as the extension of u by taking expectations over allocations. We will
use the variable x to denote either an element of X or of �(X); sometimes we will also
use a for elements of X to avoid ambiguity.

In such an environment, the agent may be screened by a mechanism. We allow for
arbitrary probabilistic mechanisms; thus, a mechanism is defined as a pair M = (x� t),
with x : Θ → �(X) and t : Θ → R, with t measurable, and satisfying the usual incentive
compatibility (IC) and individual rationality (IR) conditions2

Eu
(
x(θ)�θ

) − t(θ) ≥ Eu
(
x(θ̂)� θ

) − t(θ̂) for all θ� θ̂ ∈ Θ� (2.1)

Eu
(
x(θ)�θ

) − t(θ) ≥ 0 for all θ ∈ Θ� (2.2)

As usual, we are using the revelation principle to justify this formulation of mechanisms
as functions of the agent’s type; we will generally stick to this formalism, although the
verbal descriptions of mechanisms may use other equivalent formulations.

2Thus we further abuse notation by letting x denote either an allocation or the allocation-rule component
of a mechanism; this should not cause confusion in practice.
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Note that the formulation here of the IR constraints has assumed each type’s out-
side option is zero. This is essentially without loss of generality: even if there is a type-
dependent outside option, u(θ), we can renormalize by replacing u(x�θ) with ũ(x�θ) =
u(x�θ)− u(θ).

We write M for the space of all mechanisms.
A Bayesian screening problem—or screening problem for short3—consists of a screening

environment as above together with one more ingredient: a given probability distribution
over types, π ∈ �(Θ). Then the principal evaluates any mechanism by the resulting ex-
pected payment, Eπ[t(θ)]. We will refer to this objective interchangeably as revenue or
profit.

It is known from the literature (e.g., Balder (1996, Theorem 2.2)) that there exists a
mechanism maximizing expected payment. Indeed, if Θ is finite, then this is easy to see
by compactness arguments. The proof for general Θ is much more difficult and will not
be presented here. However, for the sake of self-containedness, we may point out that
we will not actually need to use the general existence result or its proof in what follows:
the statement and proof of our main result, Theorem 2.1, will still be valid using the
supremum over mechanisms (without needing to know whether it is attained).

Note that elsewhere in the screening literature, the principal often has preferences di-
rectly over the allocations (for example, costs of producing goods). Our model above
does not incorporate any such preferences. However, we can accommodate them, again
by renormalization: For example, if the agent’s payoff is given by u(x�θ) and producing
allocation x costs c(x) for the principal, then we can redefine allocation x to be “receiving
x and paying the production cost” instead of only “receiving x.” Explicitly, we apply the
original model with payoff function ũ(x�θ) = u(x�θ)− c(x).

2.2. Joint Screening

In our main model, the agent is to be screened according to G pieces of private in-
formation, g = 1� � � � �G, that enter separately into his utility function. Thus, we assume
a screening problem (Θg�Xg�ug�πg) for each g is given. We will refer to these as the
component screening problems.

These G component screening problems give rise to a joint screening environment
(Θ�X�u), where the type space is Θ =×G

g=1 Θ
g and the allocation space is X =×G

g=1 X
g,

with representative elements θ = (θ1� � � � � θG) and x = (x1� � � � � xG), and the utility func-
tion u :X ×Θ→ R is given by

u(x�θ)=
G∑
g=1

ug
(
xg�θg

)
�

(Admittedly, there is potential for confusion with the use of these same variables
(Θ�X�u) to refer to an arbitrary screening environment in the previous subsection. From
now on, they will refer specifically to this product environment except when stated other-
wise.)

We will use standard notation such as Θ−g for×h�=g Θ
h; θ−g for a representative ele-

ment of Θ−g; and (θg�θ−g) for an element of Θ with one component singled out.

3This latter name is not perfect, since it appears to presume that any screening problem should come with a
prior, which is contrary to the whole message of this paper! But we will stick with it for brevity.
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The combined utility function u can be extended to probability distributions over X
as before. Note however that if ρ is a probability distribution over X , then the expected
utility of the agent of type θ is

Eρ

[∑
g

ug
(
xg�θg

)] =
∑
g

EmargXg (ρ)

[
ug

(
xg�θg

)]
�

where margXg(ρ) denotes the marginal distribution over Xg. That is, the agent’s ex-
pected utility depends only on the marginal distribution over each Xg, and not the cor-
relation among them. So we can simplify by thinking of a random allocation as an el-
ement of ×g �(X

g) and define the expected utility Eu :×g �(X
g) → R accordingly.

A mechanism in this environment then can be defined as a pair of functions (x� t), with
x : Θ →×g �(X

g) and t : Θ → R measurable, satisfying conditions (2.1) and (2.2) as
before.

In the joint problem, unlike in Section 2.1, we assume that the principal does not know
the distribution of the agent’s full type θ. Instead, she knows only the marginal distri-
butions of each component, π1� � � � �πG, but not how these components are correlated
with each other. Our principal possesses non-Bayesian uncertainty about the correlation
structure; she evaluates any mechanism (x� t) by its worst-case expected profit over all
possible joint distributions. Formally, let Π be the set of all distributions π ∈ �(Θ) that
have marginal πg on Θg for each g. Then a mechanism (x� t) is evaluated by

inf
π∈Π

Eπ

[
t(θ)

]
� (2.3)

This describes the joint screening problem. The class of mechanisms we have allowed
is fully general: each component xg of the allocation can depend on the agent’s entire
type θ. (For example, in selling goods as a bundle, whether the agent receives good 1
depends on his values for the other goods.)

But one thing the principal can always do is to screen each component separately. In
particular, let us write R∗g for the optimal profit in screening problem (Θg�Xg�ug�πg)
and write (x∗g� t∗g) for the corresponding optimal mechanism. Then define R∗ = ∑

g R
∗g.

The separate-screening mechanism (x∗� t∗) corresponding to these component mecha-
nisms is given by

x∗(θ) = (
x∗1(θ1

)
� � � � � x∗G(

θG
))
�

t∗(θ) = t∗1(θ1
) + · · · + t∗G

(
θG

)
for each θ = (θ1� � � � � θG) ∈ Θ. It is immediate that this mechanism satisfies (2.1) and (2.2).
And its expected profit is predictable despite the principal’s uncertainty: for any possible
π ∈ Π, we always have

Eπ

[
t∗(θ)

] =
∑
g

Eπ

[
t∗g

(
θg

)] =
∑
g

Eπg

[
t∗g

(
θg

)] =
∑
g

R∗g = R∗�

Our main result says that, with the robust objective, separate screening is optimal.

THEOREM 2.1: For any mechanism, the value of the objective (2.3) is at most R∗.
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We show this by constructing a specific distribution π on which the value is at most R∗.
More precisely, in the text we give the proof for the finite setting (both Θ and X finite),
and in that setting we construct a specific π; in the Appendix, we show how the result then
extends to the continuous case using an approximation argument. Some discussion about
possible approaches to constructing π appears in Section 3, followed by the actual proof
in Section 4. (A reader eager for the proof can skip ahead to Section 4 without serious
loss of continuity.) In addition, a natural followup question is how sensitive the result
is to the exact joint distribution; we explore this question in Section 5. The concluding
Section 6 will compare our methods to previous multidimensional screening techniques,
and discuss interpretive issues and future work.

2.3. Examples

Here we describe several applications.
Linear monopoly. In the monopoly sales setting described in the Introduction, the prin-

cipal is a seller with G goods available for sale, and the buyer’s preferences are additively
separable across goods. In this case, θg is the buyer’s value for getting good g, so Θg is
an interval in R

+, say Θg = [0� θg], and Xg = {0�1}, with 1 corresponding to receiving the
good g and 0 corresponding to not receiving the good. (Remember however that we allow
for probabilistic mechanisms, which can give the good with probability between 0 and 1.)
The utility function is ug(xg�θg)= θgxg.

For each g, πg is the prior distribution over the buyer’s value for good g. In this model,
it is well known (e.g., Riley and Zeckhauser (1983)) that the optimal selling mechanism
for a single good is a single posted price p∗g: that is, (xg(θg)� tg(θg))= (1�p∗g) if θg ≥ p∗g

and (0�0) otherwise. Consequently, Theorem 2.1 says that in our model where the seller
knows the marginal distribution of values for each good but not the joint distribution of
values, the worst-case-optimal mechanism simply consists of posting price p∗g for each
good g separately.

We shall refer to this example as the benchmark application, and shall return to it peri-
odically in discussion.

We have written this application with a single buyer, but note that it works equally well
with a continuum population of buyers, in which πg denotes the cross-sectional distribu-
tion of buyers’ values for good g. (Indeed, one can think of other possible applications of
the model that are amenable to a population-level interpretation; the taxation example
below is an instance.) In this case, our restriction to direct mechanisms is not immediately
without loss: since the seller does not know the joint distribution π, she could in princi-
ple do better by adaptively learning the distribution as in Segal (2003) or by asking each
buyer for beliefs about the distribution of other buyers as in Brooks (2013). In a model
where the seller has Bayesian uncertainty about the distribution of types in the popula-
tion, such learning would typically be beneficial. However, our model uses a worst-case
objective, and our proof actually constructs a specific joint distribution where no (direct)
mechanism does better than R∗. If this turns out to indeed be the true distribution, then
even with adaptive learning or elicitation of beliefs, the seller will not be able to do better
than R∗. So our worst-case optimality result is unaffected by these issues.

Nonlinear monopoly. More generally, we can consider a multi-good sales model in which
each good g can be allocated continuously: Xg = [0�1]. Then we can regard each good g
as divisible and interpret xg as a quantity; alternatively, xg may be a measure of quality,
as in Mussa and Rosen (1978). Now θg is some parameter describing preferences, and the
payoff function ug(xg�θg) may be an arbitrary Lipschitz function in our model. Usually
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in the literature, one imposes structural assumptions on this function—most importantly,
some form of single-crossing condition—that make it possible to solve explicitly for the
component-g optimal mechanism using standard techniques. But no such assumptions
are needed for our separation result to hold.

In general, the optimal mechanism for component g will now be a menu of various
bundles of (possibly probabilistic) quantities and prices (xg� tg), from which each type
gets its favorite. Our result then says that, from the point of view of the principal who
is uncertain about the joint distribution of the θg, the worst-case-optimal joint screening
mechanism consists of a separate such menu for each component g.

Note also that while we have insisted on allowing probabilistic mechanisms, there are
some sufficient conditions under which the optimal mechanism is actually deterministic.
For example, suppose preferences are linear, ug(xg�θg) = θgxg, but there is a convex
function cg(xg) describing the cost of production. Then any probabilistic mechanism can
be improved on by replacing each type θg’s random allocation by its mean, since this
reduces the principal’s cost and has no effect on the IC and IR constraints. Strausz (2006)
also gives sufficient conditions for deterministic mechanisms to be optimal, although his
conditions fall under the “easy case” of our theorem (discussed near the end of Section 3
below), namely when the component problems are standard one-dimensional screening
problems in which the monotonicity constraint does not bind.

Optimal taxation. A less obvious application of our model is to a Mirrlees-style taxation
problem, in which preferences are quasilinear and the planner has a Rawlsian objective,
to maximize the payoff of the worst-off type. This setup is highly stylized and not meant
to directly inform tax policy, but it illustrates that our results offer a possible framework
for thinking about other applications besides multi-good monopoly.

To illustrate the connection, let us first ignore the joint screening apparatus and re-
turn to the general screening language of Section 2.1. The taxation problem would be
formulated as follows. There is a population of heterogeneous agents, of unit mass, with
types indexed by θ ∈ Θ following a known population distribution π. There is a single
consumption good. Each agent θ can produce any amount x ∈ X = [0�x] of the good, at
a disutility cost h(x�θ), which we extend linearly to random x (and notate the extension
by Eh). We need not make any structural assumptions (e.g., Θ single-dimensional, single-
crossing preferences). A mechanism then consists of an allocation rule x :Θ → �(X) and
consumption function c :Θ →R, satisfying the incentive constraint

c(θ)−Eh
(
x(θ)�θ

) ≥ c(θ̂)−Eh
(
x(θ̂)� θ

)
for all θ� θ̂

and the resource constraint ∫
c(θ)dπ ≤

∫
E

[
x(θ)

]
dπ�

There is no individual rationality constraint, since everyone can be forced to participate.
The planner’s problem is to find a mechanism to maximize the payoff of the worst-off

type, minθ∈Θ(c(θ)−Eh(x(θ)�θ)).
To see how this is equivalent to our formulation, we take the primitive u(x�θ) to repre-

sent the utility an agent would get from producing and consuming x, and the transfer as
the net amount redistributed away. Thus, we write u(x�θ) = x − h(x�θ). Notice that an
allocation rule and a consumption rule (x(θ)� c(θ)) then satisfy IC in the taxation prob-
lem if and only if the allocation rule and the transfer rule (x(θ)�E[x(θ)]−c(θ)) satisfy IC
in the original screening-problem language. Moreover, for any mechanism (x(θ)� c(θ)),
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adjusting every type’s consumption to c(θ) + � for constant � preserves IC and changes
the planner’s objective by �. The optimal � is the one for which the resource constraint
just binds in the adjusted mechanism, namely, � = ∫

(E[x(θ)] − c(θ))dπ. Thus, in the
taxation model, the planner’s problem is equivalent to maximizing

min
θ

(
c(θ)−Eh

(
x(θ)�θ

)) +
∫ (

E
[
x(θ)

] − c(θ)
)
dπ

over all mechanisms satisfying the IC constraint only. Likewise, in the screening formu-
lation, every type’s transfer can be adjusted by a constant �, and the optimal � is the
one that makes IR just bind, namely � = minθ(c(θ) − Eh(x(θ)�θ)); then the principal’s
problem is equivalent to maximizing∫ (

E
[
x(θ)

] − c(θ)
)
dπ + min

θ

(
c(θ)−Eh

(
x(θ)�θ

))
over all mechanisms satisfying IC only. So the two problems are equivalent.

Now we move to the joint screening model. Suppose there are multiple income-
producing activities g = 1� � � � �G; each agent is parameterized by a type for each activity,
so the overall type and allocation spaces are Θ =×g Θ

g and X =×g X
g with Xg = [0�xg],

and payoffs are given by c − ∑
g h

g(xg�θg). The planner knows the marginal distribution
πg of each θg in the population, but not the joint distribution π.

How do we define mechanisms in this model? A mechanism should specify a (prob-
abilistic) level of production in each activity g and a consumption level, for each type
θ ∈ Θ, satisfying incentive compatibility. The resource constraint should specify that to-
tal consumption in the population must not exceed total production across all activities.
However, writing down this constraint is not straightforward, since both sides of the in-
equality depend on the unknown population distribution π. So we need to make a mod-
eling choice. For concreteness let us focus on the most permissive specification: we allow
each agent’s production and consumption to depend not only on his own θ but also on
the entire realized distribution π, and we require the resource constraint∫

c(θ|π)dπ ≤
∫ (∑

g

E
[
xg(θ|π)])dπ

to hold for each π separately. (One might alternatively imagine more restrictive versions
of the model: for example, requiring c and x to depend only on θ, and requiring the
resource constraint to be satisfied for every possible π.)

In the joint problem, one natural mechanism is to separate across the activities g: If the
optimal tax schedule for activity g (with marginal distribution πg) is (x∗g� c∗g), then each
agent θ is assigned to produce x∗g(θg) in each activity g and to receive consumption equal
to

∑
g c

∗g(θg), regardless of the realized joint distribution π. For any π with the correct
marginals, this will ensure that total consumption does not exceed total production. So,
any reasonable formulation of the aggregate resource constraint is indeed satisfied by this
mechanism. Then, using the worst-case distribution constructed in proving Theorem 2.1,
we can conclude that this mechanism is worst-case optimal: no other mechanism can guar-
antee a better value for the Rawlsian objective across all joint distributions. (And under
alternative formulations of the resource constraint, this would remain true, since we have
adopted the most permissive formulation here.)
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If we interpret each g as a time period, then this application of our model con-
nects with a recent literature in dynamic public finance, in which agents’ income-
producing abilities evolve over time. A common prediction of such models is that, in
the optimal mechanism, each agent’s tax will typically depend on the entire history of
his past income. This literature has tacitly acknowledged such history-dependent tax-
ation schemes as unrealistically complicated, and responded by quantitatively compar-
ing with the optima obtained using more restrictive tax instruments, such as those de-
pending only on age and current income (Farhi and Werning (2013), Stantcheva (2015),
Findeisen and Sachs (2015)). However, the theoretical foundations for this approach, or
more generally for delineating which kinds of tax systems are or are not “simple,” are yet
to be established. Our model suggests one avenue for such foundations. In our model, if
the planner knows the distribution of ability within each period but not the correlation
structure across periods or the information each agent has about his own future ability,
then the optimally robust tax policy will tax and redistribute within each period separately.

3. UNSUCCESSFUL PROOF APPROACHES

As indicated above, we will prove Theorem 2.1 by constructing a particular joint distri-
bution on Θ for which no mechanism can generate profit greater than R∗. So as to better
understand the content of the result, we consider some straightforward ways one might
try to construct such a joint distribution.

3.1. Independent Distributions

One natural first try would be to have the different components θg be independently
distributed, π =×g π

g. A priori, an independent model seems to remove all interactions
across components in the setup of the screening problem, so one might expect no inter-
actions in the solution.

However, this approach is a nonstarter even in the benchmark monopoly problem, as
is well known from the bundling literature. For example, with a large number of goods
with independent and identically distributed (i.i.d.) values, the value for the bundle of
all goods is approximately pinned down by the law of large numbers; hence, the seller
can extract almost all surplus by bundling, which she could not do with separately posted
prices (Armstrong (1999), Bakos and Brynjolfsson (1999)). Hart and Nisan (2012) show
that independence also fails in a minimal example: two goods, where the buyer’s value
for each good is either 1 or 2 with probability 1/2 each. The seller can then extract profit
1 for each good by setting either price 1 or price 2; so her optimal profit from selling
the two goods separately is 2. But if the values are independent, she can instead charge
a price 3 for the bundle of both goods, which she then sells with probability 3/4 and so
earns expected profit 9/4 > 2.

In fact, McAfee, McMillan, and Whinston (1989) show that with continuous distribu-
tions, separate pricing is essentially never optimal under independence. This follows from
considering the first-order condition for charging a price for the bundle that is just slightly
less than the sum of separate prices.

3.2. Maximal Positive Correlation

Another approach comes from considering the case where the G separate-screening
problems (Θg�Xg�ug�πg) are all identical. In this case, one possible joint distribution π
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FIGURE 1.—Counterexample with maximal positive correlation. (a) The candidate joint distribution.
(b) A mechanism that outperforms separate sales. (c) A joint distribution for which no mechanism outper-
forms separate sales.

is that all components of the agent’s type are identical: π is distributed along the diagonal
{θ ∈ Θ | θ1 = · · · = θG}. For this distribution, the multidimensional joint mechanism de-
sign problem is equivalent to the component problem, scaled up by a factor of G; it is not
hard to see that indeed no mechanism can earn expected profit greater than G ·R∗1 = R∗,
as needed.

How might one generalize this construction when the component problems are not
identical? One possibility to try is to have all G components of the type be “as positively
correlated as possible,” so as to again reduce the mechanism design problem to a single-
dimensional type. For example, in the benchmark monopoly application where θg ∈ Θg ⊆
R is the value for good g, let qg : [0�1] → Θg be the inverse quantile function, defined by

qg(z) = min
{
θg | Prπg

(
θ ≤ θg

) ≥ z
}
�

and then define the joint distribution by randomly drawing z ∼ U[0�1] and taking θg =
qg(z) for each g. We refer to this as the comonotonic joint distribution.

A problem with this approach is that it is unclear how it would work in general, when
each Θg is not necessarily single dimensional. But even in the benchmark application it
does not always succeed. Here is a counterexample. Consider two goods. Suppose the
possible values for the first good are 1 and 2, with probability 1/2 each; and the possible
values for the second good are 2, 3, and 4, with probabilities 1/3, 1/6, and 1/2, respec-
tively. The seller can earn an expected profit of 1 from the first good alone (either by
setting price 1 or price 2), and profit 2 from the second good alone (either by price 2, 3,
or 4), so the maximum profit from separate pricing is 3.

In the comonotonic joint distribution π, there are three possible types, (1�2), (1�3),
and (2�4), occurring with probabilities 1/3, 1/6, and 1/2, respectively (as shown in Fig-
ure 1(a)). If this is the joint distribution, then we propose the following mechanism where
the buyer has four options:

• Receive good 1 at a price of 1.
• Receive good 2 at a price of 3.
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• Receive both goods at a price of 5.
• Receive nothing and pay nothing.

Figure 1(b) shows the regions of buyer space in which each option is chosen; in particular,
it is incentive compatible for the (1�2) buyer to buy only good 1, the (1�3) buyer to buy
only good 2, and the (2�4) buyer to buy the bundle, leading to revenue

1
3

· 1 + 1
6

· 3 + 1
2

· 5 = 10
3

> 3�

This shows that the comonotonic distribution cannot be used to prove Theorem 2.1 in
general.

Why does the optimal mechanism design problem for this π not decompose into sepa-
rate problems for each component? One way to think about what goes wrong, expressed
in terms of the usual approach to one-dimensional screening problems, is that the mono-
tonicity constraint that arises with multidimensional allocation is weaker than requiring
monotonicity good by good. This can be seen in the example above: the low and high
types both receive good 1, but the middle type does not. This allows the seller to charge a
different marginal price for good 1 to the low type than to the high type.

Indeed, when the standard solution to the one-dimensional problem has the mono-
tonicity constraint not binding, the maximal-positive-correlation approach does succeed.
This is formalized in the following proposition, which for convenience is expressed in
terms of continuous distributions. (The counterexample above is discrete, but this differ-
ence is immaterial; it can be made continuous by perturbation.)

PROPOSITION 3.1: Consider the benchmark monopoly application. Suppose each margin-
al distribution πg is represented by a continuous, positive density f g, and write Fg for the
cumulative distribution. Suppose that for each g, there is a type θ∗g such that the virtual value

vg = θg − 1 − Fg
(
θg

)
f g

(
θg

)
is negative for θg < θ∗g and positive for θg > θ∗g. Let π be the comonotonic joint distribution.
For this π, no mechanism yields higher expected profit than R∗.

This can be shown by the usual method of ignoring the monotonicity constraint, using
the infinitesimal downward IC constraints to rewrite profit in terms of virtual surplus, and
then maximizing virtual surplus pointwise. The details are provided in the Appendix. (In
fact, Proposition 3.1 extends beyond the benchmark application to any single-dimensional
screening problems with single crossing in which the monotonicity constraint does not
bind; we omit the details.)

In the light of Proposition 3.1, our Theorem 2.1 can be seen as a result about the re-
lationship between multidimensional ironing and single-dimensional ironing. Indeed, the
generalized virtual value, which will be a key object in our proof, extends the concept of an
ironed virtual value in the benchmark case. After developing this concept, we will show
how to use it to directly construct our joint distribution π. In the special case where the
component problems involve no ironing, our construction actually recovers the comono-
tonic distribution (as discussed at the end of Section 4.2 below), but in general it is subtler.
For the above example, the π we construct is as shown in Figure 1(c).

In this example, there are actually other joint distributions that also pin down profit to
at most R∗. All of them place positive probability on at least five of the six possible types.
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However, the distribution shown is unique in the following respect: instead of imposing all
of the IC and IR constraints, we can impose just IC against deviating one step downward
for one good (and truthfully reporting the value for the other good), plus the IR constraint
for the lowest type; this subset of constraints already ensures that no mechanism earns
higher profit than R∗. The distribution in Figure 1(c) is the unique joint distribution for
which this subset of incentive constraints is sufficient.

We turn now to the general proof.

4. THE ACTUAL PROOF

We start with a verbal overview of the ideas. The substance of the proof consists of the
case where Θg and Xg are finite, and we cover this case in the text. In the Appendix, we
complete the proof by extending to the general case via an approximation argument.

For the finite case, it helps to first develop some basics about the mathematics of screen-
ing problems in general. A finite screening problem can be thought of as a linear pro-
gramming (LP) problem, with the components of the mechanism (the probability of each
allocation at each type, and the payments) as variables. This allows us to use the language
of LP duality, and talk about the dual variables on the IC and IR constraints. These dual
variables (also known as Lagrange multipliers) will be labeled with the letters λ and κ.

We first show how, in any finite screening problem, the Lagrangian can be interpreted
as a kind of generalized virtual surplus: For each type θ of the agent and each possible
allocation x, one can define a generalized virtual value u(x�θ), which represents the ef-
fect on revenue from a marginal increase in the probability assigned to allocation x; it
equals the value of type θ for that allocation minus the shadow cost from binding incen-
tive constraints of other types that would like to imitate type θ. In the familiar case of
one-dimensional screening problems, these generalized virtual values are just the usual
ironed virtual values, but in fact they can be defined for any finite screening problem. An
optimal mechanism then must maximize the virtual surplus for each type separately. Our
strategy for proving Theorem 2.1 is to construct the distribution π for the joint problem
so that, for each joint type θ, the virtual value for any outcome x is simply the sum of the
virtual values ug(xg�θg) from the component problems. If we can do this, it will immedi-
ately follow that the separate-screening mechanism maximizes the virtual surplus and so
maximizes revenue.

One complication in this argument is that the generalized virtual values for a screening
problem are functions not only of the probability of each type but also of the dual vari-
ables. In general, the dual LP may have many optimal solutions, and we need to choose
one so as to define the generalized virtual values. (The traditional definition of ironed vir-
tual values implicitly corresponds to one particular choice of dual solution.) Hence, rather
than construct a joint distribution π by itself, we will simultaneously construct π and the
dual variables for the joint screening problem using dual variables from the component
problems as inputs to the construction.

We can simplify the task of choosing dual variables by using only a subset of the IC
constraints, namely, those for misreporting a single component of the type; that is, type
θ = (θg�θ−g) imitating a type (θ̂g� θ−g) for some g and θ̂g. We are thus studying a relaxed
problem and showing that with this subset of constraints, already no mechanism earns
more than R∗.

Once we have decided to focus on this set of constraints, it quickly becomes appar-
ent that the generalized virtual values will separate in the desired way if the following
relationship holds between the dual variables on the IC’s in the joint problem and the
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corresponding dual variables from the component problems:

λ
[(
θg�θ−g

) → (
θ̂g� θ−g

)] = π
(
θ̂g� θ−g

)
πg

(
θ̂g

) × λg
[
θg → θ̂g

]
� (4.1)

This formula, in effect, tells us how we should construct the IC dual variables in terms
of the joint distribution π (the dual variables on the IR’s will be constructed separately).
Of course, we cannot simply choose any old π and define the λ’s by (4.1); we need to
ensure that they are indeed a solution to the dual LP.

Here is an alternative perspective on what this requirement means. In any screening
problem, the dual variables (λ�κ) need to be related to the type probabilities via a cer-
tain set of linear equations, called flow conservation equations. These equations are the
constraints dual to the t variables. They also ensure that the principal’s profit from any
mechanism (the primal objective) is bounded by its generalized virtual surplus.

Our strategy in the joint screening problem, then, is to choose π and the multipliers
(λ�κ) so that two conditions hold:

(i) The flow conservation equations are satisfied.
(ii) The virtual surplus, when maximized type by type, comes out to R∗.

If we can achieve both of these, then together they imply that the profit from any mecha-
nism is at most R∗, which is what we need.

We will choose π and then determine the multipliers via (4.1) above; this will ensure
that virtual values in the joint problem separate into the component virtual values, which
will give (ii). It remains to ensure (i). That is, we must show that π ∈ Π can be chosen so
that the resulting multipliers satisfy the flow conservation equations in the joint screening
problem. We will use a connection between the flow conservation equations in the joint
problem and the corresponding equations in the component screening problems to show
that this can be done—and to obtain at least something of an interpretation for π in the
process.

With this outline to guide us, it is time to begin the details.

4.1. Preliminary Tools

We first gather several general-purpose facts about screening problems. For this sub-
section, we use the variables (Θ�X�u�π) to refer to an arbitrary screening problem as in
Section 2.1, not the product environment of our main model. We also use R∗ here to refer
to the maximal profit in this problem, again setting aside its meaning in the main model.

We start with the discussion of generalized virtual values, introduced in the outline
above. Suppose that (Θ�X�u�π) is a screening problem in which Θ and X are finite, and
every type has positive probability: π(θ) > 0 for each θ ∈Θ. (This latter assumption is not
without loss of generality: probability-zero types cannot simply be deleted from the type
space, because their IR constraints may affect the set of possible mechanisms.)

Let us refer to pure allocations (elements of X) by the variable a. A mechanism then
consists of |Θ| · (|X|+1) numbers, namely the allocation probabilities xa(θ) and payment
t(θ) for each type θ and each a ∈ X , satisfying the IC and IR constraints, as well as the
requirement that each x(θ) form a valid probability distribution:∑

a∈X
u(a�θ)xa(θ)− t(θ) ≥

∑
a∈X

u(a�θ)xa(θ̂)− t(θ̂) for all distinct θ� θ̂ ∈Θ� (4.2)
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a∈X

u(a�θ)xa(θ)− t(θ) ≥ 0 for all θ ∈ Θ� (4.3)

xa(θ) ≥ 0 for all θ ∈ Θ�a ∈X� (4.4)∑
a∈X

xa(θ) = 1 for all θ ∈ Θ� (4.5)

The maximum expected profit over all such mechanisms is given by

max
(x�t)

∑
θ

π(θ)t(θ)�

Maximizing this profit, subject to constraints (4.2)–(4.5), is a linear programming prob-
lem. The maximum value is R∗, by definition.

Then the value of the dual problem is also R∗. Consider an optimal solution to this dual
problem. It consists of dual variables for each constraint (these dual variables are indexed
by types, which we indicate in square brackets):

λ[θ → θ̂] ≥ 0 for each θ �= θ̂�

κ[θ] ≥ 0 for each θ�

μa[θ] ≥ 0 for each θ�a�

ν[θ] for each θ�

It will be useful for notational simplicity to also define λ[θ → θ] = 0 for each θ.
Writing out explicitly the dual constraints, we have∑

θ̂

λ[θ̂ → θ]u(a� θ̂)−
∑
θ̂

λ[θ → θ̂]u(a�θ)− κ[θ]u(a�θ)−μa[θ] − ν[θ] = 0 (4.6)

for each θ and a, as the constraint corresponding to primal variable xa(θ), and∑
θ̂

λ[θ → θ̂] −
∑
θ̂

λ[θ̂ → θ] + κ[θ] = π(θ) (4.7)

as the constraint corresponding to t(θ). We will refer to these latter equalities as flow
conservation equations, since they can be viewed as describing net flow in a network whose
nodes are the types, where the flow along each edge θ → θ̂ is given by λ[θ → θ̂]. We also
have

−
∑
θ

ν[θ] = R∗� (4.8)

the optimal value of the objective in the dual.
Now, for each θ, define the generalized virtual value for each allocation a ∈X ,

u(a�θ)= u(a�θ)−
∑
θ̂∈Θ

λ[θ̂ → θ]
π(θ)

(
u(a� θ̂)− u(a�θ)

)
� (4.9)

and extend this function to randomized allocations, Eu : �(X) × Θ → R, by linearity.
Also define the maximum generalized virtual value for each type:

umax(θ) = max
a∈X

u(a�θ)�
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As we shall momentarily show, these generalized virtual values extend two features of
virtual values that are familiar from the traditional setting (e.g., Myerson (1981)). First,
we can use them to eliminate the payments from the principal’s maximization problem:
for any mechanism, its profit is at most the (expected) generalized virtual value generated
by its allocation rule.4 Consequently, we obtain an immediate upper bound on the profit
of any mechanism by simply taking the maximum generalized virtual value for each type
separately, umax(θ). Second, any optimal mechanism attains this bound with equality. In
particular, for each θ, the optimal mechanism chooses the allocation a ∈ X with the high-
est generalized virtual value. (If the optimal mechanism is not deterministic, there must
be multiple a’s tied for highest virtual value, and only such a’s can receive any probability
weight. Note that this is not reversible: there may exist allocation rules x that put weight
only on virtual-value-maximizing outcomes, yet are not part of any optimal mechanism
(x� t).)

To be precise, we will show the chain of inequalities, for any mechanism (x� t),∑
θ

π(θ)t(θ) ≤
∑
θ

π(θ)Eu
(
x(θ)�θ

) ≤
∑
θ

π(θ)umax(θ) ≤R∗� (4.10)

It will then follow immediately that any optimal mechanism (x∗� t∗) satisfies these rela-
tions with equality. (In particular, the last inequality is always an equality since it does not
depend on the mechanism (x� t).)

In fact, all of these inequalities are straightforward rearrangements of the duality con-
ditions. For the first inequality in the chain, for any mechanism (x� t), the IC and IR
constraints give

∑
θ

π(θ)t(θ) ≤
∑
θ

(
π(θ)t(θ)

+
∑
θ̂

λ[θ → θ̂]((Eu(
x(θ)�θ

) − t(θ)
) − (

Eu
(
x(θ̂)� θ

) − t(θ̂)
))

(4.11)

+ κ[θ](Eu(
x(θ)�θ

) − t(θ)
))

�

The right-hand terms can be reorganized as x terms and t terms. For each θ, the terms
containing x(θ) are∑

θ̂

λ[θ → θ̂]Eu(
x(θ)�θ

) −
∑
θ̂

λ[θ̂ → θ]Eu(
x(θ)� θ̂

) + κ[θ]Eu(
x(θ)�θ

)
�

Using (4.7) to plug in for
∑

θ̂ λ[θ → θ̂] + κ[θ], we see that this equals(∑
θ̂

λ[θ̂ → θ] +π(θ)

)
Eu

(
x(θ)�θ

) −
∑
θ̂

λ[θ̂ → θ]Eu(
x(θ)� θ̂

) = π(θ)Eu
(
x(θ)�θ

)
�

4With traditional (unironed) virtual values in the benchmark monopoly problem and with continuous types,
this inequality actually is always an equality. This property does not extend to our generalized virtual values.
Note that even in the benchmark problem, it does not hold for ironed virtual values, which are what our
definition generalizes.
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And as for the t terms, we have t(θ) appearing on the right side of (4.11) with coefficient

π(θ)−
∑
θ̂

λ[θ → θ̂] +
∑
θ̂

λ[θ̂ → θ] − κ[θ]�

which is zero by (4.7). This verifies the first inequality in (4.10).
The second inequality is immediate from the definition of umax.
For the third inequality in (4.10), it suffices to show that any function x : Θ → �(X)

(without imposing any IC or IR constraints) must satisfy
∑

θ π(θ)Eu(x(θ)�θ) ≤ R∗. For
this, we reverse the x term calculations above to obtain∑

θ

π(θ)Eu
(
x(θ)�θ

)

=
∑
θ

((
κ[θ] +

∑
θ̂

λ[θ → θ̂]
)
Eu

(
x(θ)�θ

) −
∑
θ̂

λ[θ̂ → θ]Eu(
x(θ)� θ̂

))

=
∑
θ

∑
a

((
κ[θ] +

∑
θ̂

λ[θ → θ̂]
)
u(a�θ)−

∑
θ̂

λ[θ̂ → θ]u(a� θ̂)
)
xa(θ)

=
∑
θ

∑
a

−(
μa[θ] + ν[θ])xa(θ)

by (4.6)

≤ −
∑
θ

∑
a

ν[θ]xa(θ) = −
∑
θ

ν[θ] =R∗

by (4.8). This completes the argument for (4.10).
Notice, moreover, that the assumption that the variables λ[θ → θ̂] and κ[θ] were the

optimal dual variables was used only in proving the third inequality. For the first inequal-
ity, we just needed these variables to be nonnegative and satisfy the flow conservation
equations (4.7).

We now summarize as a lemma the essential conclusions from the above discussion.

LEMMA 4.1: Consider a screening problem (Θ�X�u�π) in which Θ and X are finite, and
π(θ) > 0 for each θ ∈Θ. Let R∗ be the optimal profit. Then the following statements hold:

(a) There exist nonnegative numbers λ[θ → θ̂], for all θ� θ̂ ∈ Θ (with λ[θ → θ] = 0) and
κ[θ] for all θ ∈Θ, satisfying the following conditions:

– The flow conservation equation (4.7) holds for each θ.
– With generalized virtual values u(a�θ) defined as in (4.9), every possible mechanism

(x� t) satisfies the chain of inequalities (4.10), and any optimal mechanism (x∗� t∗) satisfies
them with equality.

(b) If λ[θ → θ̂] and κ[θ] are any nonnegative numbers satisfying (4.7) for each θ, and
these values λ[θ → θ̂] are used to define u(a�θ) via (4.9), then every mechanism satisfies the
first inequality in (4.10).

As indicated earlier, the generalized virtual values we have defined extend the tradi-
tional notion of ironed virtual values from the one-dimensional case. This is detailed in
the Supplemental Material (Carroll (2017)), which works through the correspondence in
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the case of the benchmark monopoly problem and shows how these two notions of virtual
value coincide, so that our definition is a bona fide generalization.

We close this subsection by stating a couple of additional technical results about screen-
ing problems that are useful for the general proof. First is a simple continuity result, again
for finite screening environments:

LEMMA 4.2: Consider a screening environment (Θ�X�u), with Θ�X finite. Then the max-
imum expected profit is continuous as a function of the distribution π.

The proof is straightforward, so we leave it to the Appendix.
Second is an approximation lemma due to Madarász and Prat (2012) that applies to

continuous type spaces. It shows that when each type in a given screening problem is
moved by a small amount, the principal’s optimal profit does not degrade significantly,
even though the optimal mechanism may be discontinuous. The idea is that any given
mechanism can be made robust to slight changes in the type distribution by refunding a
small fraction of the payment to the agent: doing so pads the incentive constraints in such
a way that if the agent is induced to change his chosen allocation, he does so in favor
of more expensive allocations, and this effect outweighs any small change in the agent’s
location in type space.

Formally, say that two distributions π�π ′ ∈ �(Θ) are δ-close if Θ can be partitioned
into disjoint measurable sets S1� � � � � Sr such that d(θ�θ′) < δ for any θ�θ′ in the same cell
Sk, and π(Sk)= π ′(Sk) for each Sk.

LEMMA 4.3—Madarász and Prat (2012): Take the environment (X�Θ�u) as fixed. For
any ε > 0, there exists a number δ > 0 with the following property: For any mechanism (x� t),
there exists a mechanism (x̃� t̃) such that the following statements hold:

(a) For any two types θ�θ′ with d(θ�θ′) < δ, then t̃(θ′) > t(θ)− ε.
(b) For any two distributions π�π ′ that are δ-close,

Eπ′
[̃
t(θ)

]
>Eπ

[
t(θ)

] − ε�

For completeness, a proof is included in the Supplemental Material.

4.2. Main Proof

Now we start the proof of the theorem proper. We return to the notation (Θg�Xg�ug�
πg) for the component screening problems, and use (Θ�X�u) to refer to the joint envi-
ronment; R∗g is the optimal profit in component problem g and R∗ = ∑

g R
∗g. Again, we

prove the theorem here under the assumption that the Θg and Xg are all finite, leaving
the extension to the general case for the Appendix.

Also assume that πg(θg) > 0 for each g and each type θg; this assumption will be dis-
pensed with at the end.

Let λg[θg → θ̂g] and κg[θg] be dual variables for the component-g problem, given by
Lemma 4.1(a). Thus, they satisfy the flow conservation equations

∑
θ̂g

λg
[
θg → θ̂g

] −
∑
θ̂g

λg
[
θ̂g → θg

] + κg
[
θg

] = πg
(
θg

)
(4.12)
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for each θg ∈Θg, and with the virtual values defined by

ug
(
xg�θg

) = ug
(
xg�θg

) −
∑
θ̂g

λg
[
θ̂g → θg

]
πg

(
θg

) (
ug

(
xg� θ̂g

) − ug
(
xg�θg

))
�

we have from the equality case of (4.10) that∑
θg

πg
(
θg

)
ug

max

(
θg

) = R∗g� where ug
max

(
θg

) = max
xg

ug
(
xg�θg

)
�

Also note for future reference that, for each fixed g, if we sum up (4.12) over all θg, the
λg[· · · ] terms cancel, and we are left with∑

θg

κg
[
θg

] =
∑
θg

πg
(
θg

) = 1� (4.13)

We now begin to construct our joint distribution π and dual variables λ[θ → θ̂]�κ[θ]
for the joint problem. We first define the κ’s by putting

κ[θ] =
∏
g

κg
[
θg

]
�

If we multiply (4.13) across all g, we see that∑
θ∈Θ

κ[θ] = 1� (4.14)

And if we fix any g and θg, and multiply (4.13) only for all other components h �= g, we
likewise get ∑

θ−g∈Θ−g

κ
[
θg�θ−g

] = κg
[
θg

]
� (4.15)

which will also be useful later.
Next we will define π as the solution to a system of linear equations analogous to (4.12).

This system is given by (4.19) below. To briefly motivate it, consider the formula for the
generalized virtual value in the joint screening problem: for any θ = (θ1� � � � � θG) and
x= (x1� � � � � xG),

u(x�θ) = u(x�θ)−
∑
θ̂∈Θ

λ[θ̂ → θ]
π(θ)

(
u(x� θ̂)− u(x�θ)

)

=
∑
g

(
ug

(
xg�θg

) −
∑
θ̂∈Θ

λ[θ̂ → θ]
π(θ)

(
ug

(
xg� θ̂g

) − ug
(
xg�θg

)))

by additive separability of u. Our plan is to put positive weight only on IC constraints
θ̂ → θ for which θ̂� θ differ in just one coordinate. Then, for each g, the difference terms
(ug(xg� θ̂g) − ug(xg�θg)) for which θ̂ and θ differ in a coordinate h �= g cancel, and we
are only left with the terms where they differ in coordinate g; thus our virtual value will
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become

∑
g

(
ug

(
xg�θg

) −
∑
θ̂g∈Θg

λ
[(
θ̂g� θ−g

) → (
θg�θ−g

)]
π(θ)

(
ug

(
xg� θ̂g

) − ug
(
xg�θg

)))
� (4.16)

We wish to choose the distribution π and the λ’s so that the separate-screening mech-
anism maximizes generalized virtual value. This will be accomplished if the generalized
virtual value of each type θ is the sum of the component virtual values; and for this it is
sufficient that, given π, the λ’s should be defined by

λ
[(
θ̂g� θ−g

) → (
θg�θ−g

)] = π(θ)

πg
(
θg

) × λg
[
θ̂g → θg

]
� (4.17)

We will also need the joint distribution π and the dual variables λ[θ → θ̂] and κ[θ] to
satisfy the flow conservation equations∑

g

∑
θ̂g

λ
[(
θg�θ−g

) → (
θ̂g� θ−g

)] −
∑
g

∑
θ̂g

λ
[(
θ̂g� θ−g

) → (
θg�θ−g

)] + κ[θ] = π(θ) (4.18)

for each θ ∈Θ. Substituting for the λ’s from (4.17), this is equivalent to

∑
g

∑
θ̂g

π
(
θ̂g� θ−g

)
πg

(
θ̂g

) × λg
[
θg → θ̂g

] −
∑
g

∑
θ̂g

π(θ)

πg
(
θg

) × λg
[
θ̂g → θg

] + κ[θ] = π(θ) (4.19)

for each θ ∈Θ.
System (4.19) consists of |Θ| linear equations in |Θ| unknowns (the probabilities π(θ)),

whose coefficients come from the component-g problems. The crucial step in our proof
is showing that this system indeed has a solution π, which moreover is a probability dis-
tribution with the correct marginals.

LEMMA 4.4: Under the assumptions of this subsection (Θg finite and πg(θg) > 0), there
exists a full-support distribution π ∈ Π satisfying the flow conservation equations (4.19).

PROOF: First, for each g, we consider a continuous-time Markov process whose state
space is Θg. (This should not be thought of as an agent’s type changing over time; it is
simply an abstract process that happens to have this state space.) The process works as
follows. There are two types of state changes, both triggered by Poisson arrivals:

• To each type θ̂g ∈ Θg is associated a Poisson clock; when the clock ticks, the state
changes to θ̂g. The intensity of this clock depends on the current state: when the current
state is θg, the clock ticks at rate λg[θ̂g → θg]/πg(θg). (The Poisson clocks corresponding
to different θ̂g run independently conditional on the current state θg.)

• In addition, there is an independent “reset” clock at constant Poisson rate 1. When a
reset arrives, the type changes to each θg with probability κg[θg]. (Equation (4.13) ensures
this makes sense: the probabilities add up to 1.)

Let ρg(θg) denote the stationary distribution of this Markov process. Because there is
a single recurrent set, the stationary distribution is uniquely determined as the solution to
the system of linear equations

∑
θ̂g

ρg
(
θ̂g

)λg
[
θg → θ̂g

]
πg

(
θ̂g

) + κg
[
θg

] = ρg
(
θg

)(∑
θ̂g

λg
[
θ̂g → θg

]
πg

(
θg

) + 1
)
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for all θg ∈ Θg. The left-hand side represents the steady-state frequency of changes into
state θg, and the right-hand side represents the frequency of changes out of state θg.
However, from (4.12), we see that distribution πg is a solution to this system, so it must
actually be the stationary distribution, ρg(θg)= πg(θg).

Now consider a new Markov process whose state space is the joint type space Θ, and
that is governed by Poisson state changes as follows:

• For each component g and each θ̂g ∈ Θg, there is a Poisson clock. When it ticks,
component g of the state changes to θ̂g, that is, if the current state is θ, then it changes to
(θ̂g� θ−g). This clock has an intensity of λg[θ̂g → θg]/πg(θg) when the current state is θ.

• In addition, there is a reset clock with rate 1; when a reset arrives, the entire state is
redrawn, with probabilities κ[θ] for each θ. (This makes sense by (4.14).)
These clocks are independent across g and θ̂g, conditional on the current state.

Let π denote the stationary distribution of this Markov process. This stationary distri-
bution must satisfy the equations

∑
g

∑
θ̂g

π
(
θ̂g� θ−g

)λg
[
θg → θ̂g

]
πg

(
θ̂g

) + κ[θ] = π(θ)

(∑
g

∑
θ̂g

λg
[
θ̂g → θg

]
πg

(
θg

) + 1
)

for all θ, which is exactly (4.19) above.
Also, because each θg is a recurrent state of the Markov process for component g, it is

not hard to see that any state θ is reached with positive probability, so π has full support.
Finally, we can see that for each component g of the state, the arrival rate of each type

of event that affects component g (either component changes or resets) depends only on
the current component g and is otherwise independent of other components. Hence, the
evolution of component g of the state is described exactly by our earlier Markov process
with state space Θg. (This conclusion makes use of (4.15), which ensures that when a
reset event occurs, the new θg is indeed drawn from distribution κg.) Consequently, the
stationary distribution π has component-g marginal equal to πg. Thus, π ∈ Π. Q.E.D.

Now, armed with this joint distribution π, define the IC multipliers λ[(θ̂g� θ−g) →
(θg�θ−g)] by (4.17), and write λ[θ̂ → θ] = 0 whenever θ̂� θ differ in more than one com-
ponent. This ensures (4.18) is satisfied, since it follows from (4.19).

We can use these multipliers to show that no mechanism earns total profit more than
R∗ against distribution π. To start, define u(x�θ) for each x ∈ X and θ ∈ Θ to be the
virtual value in the joint screening problem with these multipliers and distribution. Then
the virtual values are additively separable, as we can confirm by retracing our steps above:

u(x�θ) =
∑
g

(
ug

(
xg�θg

) −
∑
θ̂g

λ
[(
θ̂g� θ−g

) → (
θg�θ−g

)]
π(θ)

(
ug

(
xg� θ̂g

) − ug
(
xg�θg

)))

=
∑
g

(
ug

(
xg�θg

) −
∑
θ̂g

λg
[
θ̂g → θg

]
πg

(
θg

) (
ug

(
xg� θ̂g

) − ug
(
xg�θg

)))

=
∑
g

ug
(
xg�θg

)
�

Here, the first line is the calculation we have already performed in (4.16), using the
additive separability of u and the specification that λ[θ̂ → θ] is zero unless θ̂ and θ differ
in just one coordinate. And in the second line, we have used (4.17).
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Now, we have not established that the multipliers here are an optimal solution to the
dual of the joint problem. Nonetheless, we know that they satisfy the flow conservation
equations for the joint problem, (4.18). Therefore, we can apply part (b) of Lemma 4.1:
For any mechanism (x� t) in the joint screening problem,∑

θ

π(θ)t(θ) ≤
∑
θ

π(θ)Eu
(
x(θ)�θ

)
=

∑
θ

π(θ)
∑
g

Eug
(
xg(θ)�θg

)
�

The right side thus separates partially across components, but it does not separate
completely, in that the argument to the component virtual utility is xg(θ), which can
potentially depend on every component of θ and not just on θg. However, we have
Eug(xg(θ)�θg)≤ ug

max(θ
g) by definition of ug

max. Therefore, we can complete the chain:∑
θ

π(θ)t(θ) ≤
∑
θ

∑
g

π(θ)Eug
(
xg(θ)�θg

)

=
∑
g

(∑
θ

π(θ)Eug
(
xg(θ)�θg

))

≤
∑
g

(∑
θ

π(θ)ug
max

(
θg

))

=
∑
g

(∑
θg

(∑
θ−g

π
(
θg�θ−g

))
ug

max

(
θg

))

=
∑
g

(∑
θg

πg
(
θg

)
ug

max

(
θg

))

=
∑
g

R∗g

= R∗�

So any joint screening mechanism gives expected profit at most R∗ with respect to the
type distribution π, which is what we wanted to show.

This finishes the case where each πg has full support. To allow for probability-zero
types, we use our earlier continuity result, Lemma 4.2.

For each g, suppose πg is an arbitrary distribution on Θg, with R∗g the corresponding
maximum expected profit. Let πg

1 �π
g
2 � � � � be a sequence of full-support distributions on

Θg that converges to πg. Then, if we let R∗g
1�R

∗g
2� � � � be the corresponding values of the

maximum expected profit, Lemma 4.2 says that R∗g
n →R∗g as n → ∞.

For each n, the proof we have just completed shows that there exists a joint distribution
πn on Θ, with marginals πg

n , such that no mechanism earns an expected profit of more than
R∗

n = ∑
g R

∗g
n with respect to πn. By compactness, we can assume (taking a subsequence

if necessary) that πn converges to some distribution π on Θ. Then π has marginal πg

on each Θg. And for any mechanism (x� t), we have Eπn[t(θ)] ≤ R∗
n; taking limits as

n → ∞, we have Eπ[t(θ)] ≤R∗. Thus, no mechanism earns expected profit more than R∗

on distribution π.
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This completes the proof of the theorem when the type and allocation spaces are finite.
The extension to the general case is basically technical and consists of two steps. First,
we keep type spaces finite but extend to general allocation spaces; this part is completely
straightforward. Second, we remove the restriction to finite type spaces by approaching
the distributions πg using arbitrarily fine discrete approximations; here is where we use
Lemma 4.3 to show that the approximation has only a small effect on optimal profit, both
in the component problems and in the joint problem. The details of these arguments are
left to the Appendix. Q.E.D.

At this point, we can briefly remark on the construction of π embedded in Lemma 4.4,
and informally relate it back to the attempts in Section 3. Consider the benchmark
monopoly application, and suppose the marginal distributions πg have increasing virtual
values. Take a fine discretization of the type space. For each good g separately, the stan-
dard solution to the dual problem puts positive weight only on the adjacent downward
incentive constraints and the IR constraint of the lowest type. (This dual solution is con-
structed explicitly in Section C of the Supplemental Material.) Thus, the component-g
Markov process in the proof of Lemma 4.4 runs as follows: the state θg gradually increases
from one type to the next higher type according to a Poisson clock, interrupted by resets at
which the state moves back to the lowest type. In the continuous-type limit, the state drifts
deterministically upward in the type space, until a reset occurs, when the process returns
to the lowest type. Accordingly, the corresponding joint type process runs as follows: in
between resets, the state θ drifts deterministically upward in every component; when a
reset occurs, all components jump back to their lowest possible value. Consequently the
movements of all components are perfectly synchronized, so the stationary distribution
must be the comonotonic distribution that we saw in Section 3. (However, for any finite
approximation of the type space, the components are not perfectly synchronized, and the
resulting joint distribution π has full support.)

5. SENSITIVITY ANALYSIS

A natural response to Theorem 2.1 is to ask how sensitive the result is to the assumption
of extreme uncertainty. We have assumed that the principal solves a maxmin problem
over the entire space of joint distributions Π. On the other hand, if we were to assume
that the principal knows π exactly, typically separate screening would not be optimal. But
what happens if we shrink the space of uncertainty just slightly? That is, does separate
screening remain optimally robust if the principal has a little bit of information about the
joint distribution? That is the question we explore in this section. For concreteness, we
focus on the benchmark monopoly application.

One immediate difficulty is that it is not clear exactly what it should mean to have
“a little information” about π. For example, if we assume that the principal knows that
some alternative mechanism (x′� t ′) earns higher profit than separate screening, then this
knowledge might be considered a little information, but it trivially overturns the result.

To express this more formally: One might describe the principal’s additional informa-
tion by imposing some one-dimensional moment restriction on π, of the form

Eπ

[
z(θ)

] = 0 (5.1)

or

Eπ

[
z(θ)

] ≥ 0 (5.2)
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for some function z : Θ → R, and let Π′ be the set of all π ∈ Π satisfying the restriction.
We would then evaluate a mechanism (x� t) according to infπ∈Π′ Eπ[t(θ)] instead of the
original objective (2.3), and ask whether separate sales is still optimal. The example in the
preceding paragraph shows how we can easily cook up a moment restriction to make the
answer negative. The question then seems to be, what are the interesting restrictions to
consider?

We explore two approaches here. First, we consider one particular moment restriction
suggested by the literature, namely negative correlation in values between two goods, and
explore its consequences numerically. Second, we show that in the finite-type version of
the model, in general there is an open set of distributions π for which separate pricing
is optimal. In the continuous-type version, this is not the case, but at least there is an
open set of moment restrictions z(θ) one can impose on the maxmin problem such that
separate pricing remains optimal. These findings give some assurance that Theorem 2.1 is
not a knife-edge result, without needing to take a stand on specific moment restrictions.

Proofs of all results from this section can be found in the Supplemental Material.

5.1. Negative Correlation

One of the main intuitions from the early bundling literature is that bundling is prof-
itable when values for goods are negatively correlated. This argument has been passed
down as received wisdom (see, e.g., the undergraduate text of Church and Ware (2000,
pp. 169–170)), although it comes chiefly from examples rather than any general theorem
(Stigler (1963), Adams and Yellen (1976)): for example, in the extreme case where the to-
tal value for all goods is deterministic, the seller can extract the full surplus by selling the
bundle of all goods. Negative correlation is also in some sense opposite to the positively
correlated case of Section 3.2. For both these reasons, negative correlation seems like a
natural place to look for restrictions that might overturn the separation result.

Accordingly, let us take the restriction of negative correlation literally, and test it by
considering G= 2 goods and imposing the moment restriction

Eπ

[
θ1θ2

] ≤Eπ1

[
θ1

] ×Eπ2

[
θ2

]
on the possible joint distributions π ∈ Π′. It turns out that with this restriction, it may or
may not happen that the worst-case-optimal revenue is still the R∗ from selling separately.

To get some sense of whether one case or the other is common, random numerical
experiments were run in Matlab, using finite type spaces Θ. These were computation-
ally implemented via the following more general observation: For any one-dimensional
moment restriction of the form Eπ[z(θ)] ≥ 0, the worst-case optimization problem

max
(x�t)∈M

(
min
π∈Π′ Eπ

[
t(θ)

])
(5.3)

can be rewritten as a standard linear program. To see this, observe that for any given
mechanism (x� t), the inner minimization in (5.3) is a linear program: choose probabilities
π(θ) ≥ 0 to minimize

∑
θ t(θ)π(θ) subject to constraints

∑
θ−g π(θg�θ−g) = πg(θg) for

each g = 1� � � � �G and each θg ∈ Θg, and
∑

θ z(θ)π(θ) ≥ 0. By duality, this program’s
value can also be obtained by a maximization problem, namely

max
αg[θg]�β

∑
g

∑
θg

πg
(
θg

)
αg

[
θg

]
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over all choices of real numbers αg[θg] (for each g and θg) and β ≥ 0 satisfying

∑
g

αg
[
θg

] +βz(θ) ≤ t(θ) for all θ = (
θ1� � � � � θG

) ∈ Θ� (5.4)

Therefore, the maxmin problem in (5.3) can be expressed as a single maximization—over
all choices of the mechanism (x� t), and all choices of αg[θg] and β satisfying (5.4)—that
can be solved by standard LP methods.

In the simulations, we randomly generated 1000 choices for the marginal distributions
(π1�π2), calculated the mechanism that maximizes the worst-case revenue over nega-
tively correlated distributions by the method described above, and checked whether the
worst-case revenue was strictly higher than obtained by selling the two goods separately.
The set of possible values for each good was Θ1 = Θ2 = {1�2�3�4�5}, and the marginals
π1�π2 were generated by drawing a probability uniformly from [0�1] for each value, then
rescaling to make the probabilities sum to 1.

The result was that in 975 of the 1000 trials, the worst-case revenue was still the R∗ from
selling separately. That is, based on the simulation results, the optimality of separate sales
is usually robust to assuming that the values are known to be negatively correlated.

One might protest that this sensitivity test is too weak, because it is inappropriate to
take negative correlation so literally; it is no surprise that one misspecified inequality
restriction often fails to rule out some worst-case distributions. It is not clear what an ap-
propriate sharper test would be. One possible test would be to impose negative affiliation
on π, that is, negative correlation conditional on θ ∈ Θ̃1 × Θ̃2, for all nonempty measur-
able subsets Θ̃1 ⊆ Θ1� Θ̃2 ⊆ Θ2. This limits the possible π to a much smaller set, so one
would expect separate sales to be worst-case optimal much less often.

It is not immediately clear how to repeat the above computational exercise with the
restriction of negative affiliation, since it is not a linear constraint on π. However, if we
move to the continuous-type setting, we can obtain a negative result: separate sales is
(essentially) always dominated by bundling. The dominance is weak for a given bundle
price, but can be made strict by randomizing the bundle price.

PROPOSITION 5.1: Consider the benchmark monopoly application with G = 2. Suppose
each set of values Θg is an interval in R

++, and each marginal distribution πg is represented
by a continuous, positive density f g. Assume that for each g, the optimal separate price p∗g

is strictly in the interior of Θg. Then there exist ε�ε > 0, q ∈ (0�1), and R′ >R∗ such that the
following statements hold:

(a) The mechanism that lets the buyer choose either good 1 at price p∗1, good 2 at price
p∗2, or the bundle of both goods at price p∗1 + p∗2 − ε, earns expected profit at least R∗ for
any negatively affiliated joint distribution π ∈ Π.

(b) Consider the following mechanism: first randomly choose ε = ε with probability q or
ε = ε with probability q = 1 − q; then offer each good g with price p∗g or the bundle of
both goods at price p∗1 + p∗2 − ε. This mechanism earns expected profit at least R′ for any
negatively affiliated joint distribution π ∈Π.

The argument (given in the Supplemental Material) is a straightforward extension of
that given by McAfee, McMillan, and Whinston (1989) for the independent case, obtained
by looking at the first-order condition for ε.



478 GABRIEL CARROLL

5.2. Open Sets of Distributions

Another approach to sensitivity analysis, which avoids making any particular choices
of moment restrictions, is to look at the set of distributions π for which separate pricing
is optimal and ask how small this set is. If it contained only the one specific distribution
constructed in Section 4, this might be cause to view the conclusion of Theorem 2.1 as
a knife-edge result. However, we will show here that the situation is not so extreme: in
particular, when the type space is finite, there typically exists an open set of such worst-
case π’s (in the natural topology on Π).

We could also simply try to show that there is an open set of possible moment restric-
tions z in (5.1) (or (5.2)) for which the worst-case optimal revenue is R∗. Note however
that this is a much weaker statement than existence of an open set of π’s as above. In
fact, as long as there is more than one π—say π1 and π2—for which optimal revenue
is R∗, then we can allow any z in the open set satisfying Eπ1[z(θ)] < 0 and Eπ2[z(θ)] > 0.
There is then some convex combination π ′ of π1 and π2 for which Eπ′ [z(θ)] = 0, and for
this distribution, no mechanism can earn more than R∗. So for any such z, the worst-case
objective (5.3) equals R∗.

To get to our open-set result, the important step is the following.

LEMMA 5.2: Consider the benchmark monopoly application. Suppose each set of values
Θg is finite, that each πg has full support, and also that for each single-good problem πg, the
optimal price is unique. Then there exists a joint distribution π ∈ Π for which selling each
good separately constitutes the unique optimal mechanism.

The proof (in the Supplemental Material) involves a more careful retracing of the
generalized-virtual-value maximization arguments in Section 4.

From here we can infer the result.

COROLLARY 5.3: In the setting of Lemma 5.2, there exists a set of joint distributions Π̂ ⊆
Π, which is open (in the relative topology on Π, as a subset of R|Θ|) and such that for any
π ∈ Π̂, no joint screening mechanism earns an expected profit higher than R∗.

This quickly follows because the set of possible mechanisms is effectively a convex poly-
tope, so there are only finitely many choices for the optimum (namely, the polytope’s ver-
tices). Lemma 5.2 shows that there exists π for which the separate sales mechanism is
strictly better than all the other candidate optima, so by continuity it remains optimal for
nearby distributions. The formal proof is, again, provided in the Supplemental Material.

We note that Corollary 5.3 does not extend to the continuous-type case. A brief argu-
ment for why can be seen following McAfee, McMillan, and Whinston (1989): Assume
two goods; assume that each Θg is an interval in R

+, with a unique optimal price p∗g that
is in the interior of the interval, and assume that each πg has a continuous density. Re-
strict attention to joint distributions π that also have continuous densities.5 Consider the
mechanism that offers good 1 for price p∗1, good 2 for price p∗2, or both goods for the
price p∗1 + p∗2 − ε, where ε may be positive, negative, or zero. The profit of this mech-
anism, under any given π, is differentiable as a function of ε. Separate pricing is optimal

5This restriction is not innocuous here, because Theorem 2.1 had no such restriction, and in fact our proof
technique can lead to distributions that do not have a density. However, one can formulate a proposed coun-
terpart of Corollary 5.3 for continuous types, without restricting π to have a density, and show that such a
counterpart is false by building on the intuition here. Details are omitted for brevity.
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only if the first-order condition is satisfied: the derivative of profit with respect to ε should
be zero at ε = 0. If one writes out this condition explicitly, it depends on the joint distri-
bution, and is easily seen to be violated for generic choices of π. Note that this argument
does not apply in the discrete-type situation of Corollary 5.3 because then the profit is not
differentiable as a function of ε.

Even though the optimal mechanism is more sensitive to changing π in the continuous-
type case, there is still typically an open set of moment restrictions z under which the
worst-case optimum remains R∗. As described at the beginning of this subsection, this
holds as long as there is more than one choice of joint distribution π that pins profit down
to R∗ (which will be true in general).

In the continuous-type setting, it should be no surprise that slight perturbations of the
joint distribution lead to changes in the optimal mechanism: The principal optimizes over
a large space of mechanisms, and we cannot expect to get strong functional form conclu-
sions about the solution to such an optimization problem without similarly strong func-
tional form assumptions on the setup of the problem. Still, continuity arguments (such as
Lemma 4.3) can be used to argue that if the distribution π is perturbed slightly, separate
screening remains approximately optimal.

6. CONCLUDING COMMENTS

We wrap up by discussing past, present, and future: comparing our analytical tech-
niques to previous methods in multidimensional screening, discussing interpretation of
the present model, and describing aspirations for subsequent work.

6.1. Related Multidimensional Screening Work

There is a substantial previous literature in economics and computer science on multi-
dimensional screening that is too diverse to survey exhaustively here. Much of this work
studies versions of the (Bayesian) multi-good monopolist problem, usually using continu-
ous type distributions. In some (e.g., Armstrong (1996)), special cases are solved by parti-
tioning the type space into one-dimensional paths, solving on each path, and then check-
ing that the resulting mechanism is actually incentive compatible. A more widespread,
and more broadly applicable, approach generalizes the standard method of integration by
parts from single-dimensional screening problems. In principle, the method extends nat-
urally to multiple dimensions: one constructs a virtual value that is related to the original
type distribution by a differential equation, so that profit can be expressed as the integral
of virtual value via the divergence theorem, and one then maximizes this virtual value
pointwise to find the optimal mechanism. However, as explained in Rochet and Choné
(1998), there is a large multiplicity of choices of virtual value, due to freedom in choosing
boundary conditions, and most such choices do not lead to the correct solution. A second
difficulty is that even if the boundary is identified correctly, typically the pointwise virtual
value maximizer still is not incentive compatible because ironing is necessary; giving rea-
sonable assumptions on primitives to rule out ironing is apparently more difficult in the
multidimensional model than the one-dimensional model.

Several significant contributions (Rochet and Choné (1998), Daskalakis, Deckelbaum,
and Tzamos (2013), Daskalakis, Deckelbaum, and Tzamos (2015)) directly address iron-
ing by offering “guess-and-check” methods that can be sometimes used to find the ironing
regions, to thereby identify the optimal mechanism, and to find a dual solution to certify
optimality. The arguments in these papers optimize over indirect utility functions (spec-
ifying the utility that each type of agent obtains in the mechanism), rather than working
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directly in the space of mechanisms, as in the present paper. Another work, closer to the
present paper, is Haghpanah and Hartline (2015). That paper works in the space of mech-
anisms, and solves a class of problems by using the optimality of a particular candidate
mechanism to pin down the correct choice of virtual value, then verifies that the mecha-
nism is indeed optimal by showing that it is a virtual value maximizer. (The main results
concern specifications where no ironing is needed, although ironing does receive some
attention.)

The differential equation characterizing virtual values (appearing, for example, in equa-
tion (4.8) of Rochet and Choné (1998), equation (3.4) of Rochet and Stole (2003), or the
“divergence density equality” in Haghpanah and Hartline (2015)) is a continuous-type
analogue of our flow conservation equations (4.7). Again, though, it is based only on
local incentive constraints and does not take account of ironing. In this paper, an impor-
tant feature is that we make no assumptions about the structure of preferences within
each component, and so there is no presumption that only local incentive constraints are
needed. Indeed, we could have restricted the model to ensure that only local incentive
constraints are needed, but as the discussion in Section 3.2 shows, doing so would miss
out on much of the subtlety of the result.

The concept of generalized virtual values, central to this paper, does have antecedents
in the literature. Most closely related is the independent and simultaneous work of Cai,
Devanur, and Weinberg (2016). That paper gives essentially the same definition (4.9) for
generalized virtual values and proves Lemma 4.1 (both parts). However, the main focus
of that paper is not on identifying the optimal mechanism as here, but rather on showing
that some simple mechanisms are approximately optimal; to do so, it uses a simple but
non-optimal choice of dual variables to obtain bounds on the optimal revenue. Other,
earlier incarnations of our formula (4.9) appear in Sher and Vohra (2015), which gives
a similar formula in a variant of a single-good monopoly problem, and Myerson (1991,
Section 10.5), which studies a problem of welfare maximization with multiple agents and
no transfers.6 The present paper seems to be the first to use these generalized virtual
values to characterize the exact optimum in a model of this generality.

The papers by Sher and Vohra (2015) and Cai, Devanur, and Weinberg (2016) also walk
through the connection with traditional single-good virtual values, just as we describe
in the Supplemental Material, and these two papers introduce the “flow conservation”
terminology, which we have followed here.

6.2. Interpretation

Our model can be viewed in various ways. One interpretation is positive: a problem
faced by an actual decision maker, who is uncertain about the joint distribution governing
the agent’s type and has maxmin preferences (which could be interpreted as extreme
ambiguity aversion à la Gilboa and Schmeidler (1989), with a set of priors given by our Π).
Indeed the prediction of the model squares with some common experience: when a buyer
walks into a store that sells a thousand different items, she sees separate posted prices for
each item (and perhaps special deals for a few combinations of items that are naturally
grouped together). Why has the storekeeper not solved the high-dimensional problem
of optimally selling all items simultaneously? One perspective suggested by our model

6The work by Cai, Daskalakis, and Weinberg (2012) also defines a different object called virtual types in the
context of a multiple-good, multibuyer auction. The virtual types there play a role in the algorithmic description
of the optimal auction, but do not have an economic interpretation corresponding to ours.
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invokes a particular form of bounded rationality: perhaps the manager can easily estimate
the distribution of values for each item separately, but thinking about joint distributions
becomes too unwieldy or unreliable due to the curse of dimensionality, so the storekeeper
avoids it; then selling separately provides the best guarantee that can be reached using
only this limited information.

Such an interpretation is open to criticism: is it reasonable to make the extreme com-
bination of assumptions, that the principal has perfect knowledge of the marginals yet
no knowledge of the joint? One response is that once we set out to avoid the extreme
assumptions of either perfect knowledge of π or no knowledge at all, almost any specific
modeling assumption in between would be open to question. The assumption made here
at least is easy to state and gives a simple solution. But in fact, one can also give versions
of the result with other informational assumptions. For example, suppose the principal
is not even sure about the marginals: for each component g, she knows only some set
of distributions Πg. (Bergemann and Schlag (2011), Carrasco et al. (2015) and Kos and
Messner (2015), among others, study maxmin screening problems of this form.) Suppose
her overall uncertainty set Π consists of all distributions whose marginal for each g lies
in Πg; she seeks a mechanism to maximize worst-case profit over this set. If each Πg is
sufficiently well behaved to contain a single worst-case distribution, then as a corollary of
our theorem, this principal will again optimize by solving the maxmin screening problem
for each g separately.

Still, one might be uncomfortable giving such a literal interpretation to any model that
juxtaposes the extremes of Bayesian and worst-case behavior. This is why our preferred
view of Theorem 2.1 is as a methodological contribution: Previous literature on multidi-
mensional screening does not offer a general model that makes the “null” prediction of
no bundling. Arguably, it is helpful to have such a model, and this paper gives one.

This model helps to formalize a particular robustness property of selling separately. It
also provides a theoretical benchmark from which to better understand why various forms
of bundling do arise in other models. For example, as discussed already, the elegant ar-
gument in McAfee, McMillan, and Whinston (1989) shows that, for generic continuous
distributions, the first-order condition for separate pricing to be optimal fails: some form
of bundling does better. That paper had left open the question of what happens in the
nongeneric case where the condition does hold. If bundling remained optimal, then ar-
guably the reason for bundling would really not come from the distribution at all but from
something even more basic. Theorem 2.1 responds to this by showing that we cannot con-
clude that bundling is desirable without at least some knowledge of the distribution.

6.3. Future Directions

As described in the Introduction, the main purpose of this paper has been to advance
a possible new perspective on multidimensional screening problems to contrast with the
traditional approach, which has often given intractable, or at least complicated, models.
Specifically, we have formulated a model in which assuming no interactions between the
components leads to no interactions in the solution.

This is a first step. There are two natural goals for further work to build on this model
and proof:

• First, to connect formally with the simple intuition sketched back in the Introduction
that the separate screening mechanism has the following property: knowing the marginal
type distributions is enough to determine the expected profit without knowing anything
further about the joint distribution. Call this property joint independence. This property
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makes the mechanism an intuitively natural candidate for the maxmin optimum. Can our
proof (or perhaps some completely different proof technique) be expressed in a way that
centers on this property?

This might seem an obvious approach to try, but there is subtlety involved. If we give
up the assumption that the agent’s preference is additively separable across components
g and allow for more general preferences, then it is not hard to write down examples
of similar-looking problems—maxmin profit with known marginal type distributions but
unknown joint distribution—where the unique optimal mechanism does not satisfy joint
independence. (We omit the details here.) To put it another way, the connection from
joint independence to optimality is not automatic, but rather depends on some deeper
properties of the problem.

• Second, to have fruitful applications of the method to new economic questions. More
specifically, this would mean identifying some applied theory question involving multidi-
mensional screening, where a traditional Bayesian model would be intractable, and where
using the robust approach to obtain a solution turns out to be helpful in thinking through
the economics of the problem. As noted before, the main applied value of studying mul-
tidimensional screening models is in understanding interactions between the dimensions,
which is exactly what the model here has ruled out. However, this paper may be useful as
a clean starting point, from which interactions can be systematically introduced.

Earlier work by this author followed this course of development in a moral hazard
setting, taking a simple robust approach to principal–agent contracting (Carroll (2015a))
and applying it to gain traction on the more complex problem of incentivizing information
acquisition (Carroll (2015b)). To do the same in a multidimensional screening context is
still a task that lies ahead.

APPENDIX A: OMITTED PROOFS

Please note that the separate Supplemental Material contains further material (Ap-
pendixes B and C).

PROOF OF PROPOSITION 3.1: For notational convenience, let us parameterize types
directly by z, and write θg(z) for the corresponding value for good g. Thus, for any
mechanism (x� t), x(z) ∈ [0�1]G indicates type z’s probability of receiving each good, and
t(z) ∈ R indicates z’s payment; incentive compatibility (2.1) becomes

∑
g

θg(z)xg(z)− t(z) ≥
∑
g

θg(z)xg(̂z)− t (̂z) for all z� ẑ ∈ [0�1]� (A.1)

and individual rationality (2.2) becomes

∑
g

θgxg(z)− t(z)≥ 0� (A.2)

The claim is that for any such mechanism, expected revenue satisfies

∫ 1

0
t(z)dz ≤ R∗�
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Following the standard method, let U(z) = ∑
g θ

g(z)xg(z)− t(z) denote the payoff of
type z. So for z′ ≥ z, (A.1) gives

∑
g

(
θg

(
z′) − θg(z)

)
xg

(
z′) ≥ U

(
z′) −U(z) ≥

∑
g

(
θg

(
z′) − θg(z)

)
xg(z)� (A.3)

Thus, U is Lipschitz, hence absolutely continuous, and so equal to the integral of its
derivative. Moreover, at each point of differentiability, the envelope theorem applied to
(A.3) gives us

dU

dz
=

∑
g

dθg(z)

dz
xg(z) =

∑
g

1
f g

(
θg(z)

)xg(z)�

Therefore,

U(z) = U(0)+
∫ z

0

dU(̃z)

dz̃
dz̃ =U(0)+

∑
g

∫ z

0

xg(̃z)

f g
(
θg(̃z)

) dz̃�
Consequently, profit is

∫ 1

0
t(z)dz =

∫ 1

0

(∑
g

θg(z)xg(z)−U(z)

)
dz

=
∫ 1

0

(∑
g

θg(z)xg(z)−U(0)−
∑
g

∫ z

0

xg(̃z)

f g
(
θg(̃z)

) dz̃)dz

≤
∑
g

[∫ 1

0
θg(z)xg(z)dz −

∫ 1

0

(∫ z

0

xg(̃z)

f g
(
θg(̃z)

) dz̃)dz

]
�

where the last inequality holds because U(0) ≥ 0 by (A.2). Switching the variables in the
second integral and changing the order of integration gives

=
∑
g

[∫ 1

0

(
θg(z)− 1 − z

f g
(
θg(z)

))
xg(z)dz

]
� (A.4)

Now, for each g, we can see that the expression in parentheses is exactly the virtual value
vg corresponding to marginal type θg(z). Hence, by assumption, this quantity is nega-
tive for θg(z) < θ∗g and positive for θg(z) > θ∗g, which correspond to z < Fg(θ∗g) and
z > Fg(θ∗g), respectively. In particular, an upper bound for the value of (A.4) is found
by taking xg(z) to be as small as possible, namely 0, when z < Fg(θ∗g), and as large as
possible, namely 1, when z > Fg(θ∗g). Thus, the principal’s profit is at most

∑
g

[∫ 1

Fg(θ∗g)

(
θg(z)− 1 − z

f g
(
θg(z)

))
dz

]
=

∑
g

[∫ 1

Fg(θ∗g)

d

dz

(−θg(z)(1 − z)
)
dz

]

=
∑
g

θ∗g(1 − Fg
(
θ∗g))�
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This is exactly the profit attained by the mechanism that sells the goods separately, with
a price of θ∗g for good g; therefore it cannot exceed R∗. This establishes that the profit
from any mechanism is at most R∗, as claimed. Q.E.D.

PROOF OF LEMMA 4.2: Let � = maxx�θ u(x�θ)− minx�θ u(x�θ), and notice that for any
mechanism satisfying IC, any two types’ payments can differ by at most �. Consequently,
when looking for optimal mechanisms, we can restrict attention to mechanisms whose
payments are in [−t� t] for a sufficiently high value of t (which is independent of the
distribution π): each type’s payment is bounded below, because a sufficiently low payment
for one type would imply low payments for all types, and then the mechanism would not
be optimal (it could be improved by increasing all types’ payments by a small constant
without violating IR); and each type’s payment is bounded above simply by IR.

Then the maximum expected profit, as a function of π, is the upper envelope of a uni-
formly bounded family of linear functions (one such function for each possible mechanism
M ∈M satisfying the bounds on payments). It readily follows that this upper envelope is
Lipschitz in π and, in particular, is continuous. Q.E.D.

COMPLETION OF THE PROOF OF THEOREM 2.1: The argument in the text proved the
theorem in the case of finite type and allocation spaces; here we extend this to prove the
full theorem. We maintain the notation of Section 2.2.

First, we extend to general allocation spaces, but keep type spaces finite. So suppose
each Θg is finite. Let R∗g be the optimal revenue in component g and let R∗ = ∑

g R
∗g.

Suppose there exists a mechanism (x′� t ′) that achieves revenue at least R∗ +ε with respect
to every joint distribution π ∈ Π, where ε > 0.

For each component g, define an auxiliary screening problem (Θ̃g� X̃g� ũg� π̃g) as
Θ̃g = Θg and π̃g = πg, X̃g = {x′g(θ) | θ ∈ Θ}, ũg(xg� θg) = Eug(xg�θg). That is, we con-
sider only the component-g allocations that were actually assigned to some type in the
mechanism (x′� t ′); such an allocation may have been a lottery, but we treat it as a pure
allocation in the new screening problem. It is evident that any mechanism for this new
screening problem translates to a mechanism for the original component-g screening
problem, with the same expected profit; hence, the optimal profit for the new component-
g screening problem is R̃∗g ≤ R∗g. Because Θ̃g and X̃g are finite, we can apply the result
for the finite case to see that there is a joint distribution π̃ for which no joint screening
mechanism can give expected profit more than R∗. But (x′� t ′) evidently gives us a joint
screening mechanism for the new problem, which produces expected profit ≥ R∗ + ε for
every possible joint distribution—a contradiction.

Finally, we can prove the theorem in general, without the restriction to finite type
spaces. Write R∗ = ∑

g R
∗g as usual and suppose, for contradiction, that there exists a

mechanism (x′� t ′) that achieves profit at least R∗ +ε against every possible joint distribu-
tion π, where ε > 0.

For each component g, let δg be as given by Lemma 4.3 with ε/(2G+1) as the allowable
profit loss. By making δg smaller if necessary, we may also assume that any two types at
distance at most δg have their utility for every xg ∈ Xg differ by at most ε/(2G + 1).
Also, consider the joint screening environment, with the metric on Θ given by the sum
of componentwise distances, and let δ be as given by Lemma 4.3 with ε/(2G + 1) as
allowable loss again. Now let δ= min{δ1� � � � � δG�δ/G}.

For each g, we form an approximate distribution on Θg with finite support as follows:
Let Θ̃g be a finite subset of Θg with the property that every element of Θg is within dis-
tance δ of some element of Θ̃g (this can be done by compactness). Arbitrarily partition
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Θg into disjoint measurable subsets S
g
θg for θg ∈ Θ̃g, such that each element of any S

g
θg

is within distance δ of θg, and θg itself is in S
g
θg . Then define a distribution π̃g ∈ �(Θg),

supported on Θ̃g, by π̃g(θg)= πg(S
g
θg).

Evidently, π̃g is δ-close to πg. Therefore, the maximum profit attainable in the screen-
ing problem (Θg�Xg�ug� π̃g) is at most R∗g + ε/(2G + 1): otherwise, Lemma 4.3 would
be violated in going from π̃g to πg.

In turn, we can view π̃g as a distribution just on Θ̃g, and any mechanism for screening
problem (Θ̃g�Xg�ug� π̃g) can be converted to a mechanism on the whole type space Θg

by assigning each type its preferred outcome from the set {(xg(θg)� tg(θg)) | θg ∈ Θ̃g} and
subtracting ε/(2G+ 1) from all payments (so as to make sure that IR is still satisfied for
types outside of Θ̃g). This conversion causes a profit loss of ε/(2G+ 1). We conclude that
the maximum profit attainable in screening problem (Θ̃g�Xg�ug� π̃g) is at most R∗g +
2ε/(2G+ 1).

Since this is true for each g, we can apply the finite-type-space version of our result to
conclude that there is a distribution π̃ on Θ̃ =×g Θ̃

g, with marginals π̃g, for which any
mechanism earns expected profit at most R∗ + 2Gε/(2G+ 1).

Now we will construct a measure on Θ based on our discretization, but with marginals
given by the original πg. For each θ = (θ1� � � � � θG) ∈ Θ̃, let Sθ ⊆ Θ be the product set×g S

g
θg ; notice that as θ varies over Θ̃, the sets Sθ form a partition of Θ.

For each such θ, we define a measure πθ on Sθ as follows. If π̃g(θg) = 0 for some g, let
πθ be the zero measure. Otherwise, consider the conditional probability measure πg|Sg

θg

for each component g (which is well defined since πg assigns positive probability to S
g
θg ).

Define πθ to be the product of these conditional measures, multiplied by the scalar π̃(θ).
We can extend πθ to a measure on all of Θ (by taking it to be zero outside Sθ). Now

simply define a measure π on Θ as the sum of πθ, over all θ ∈ Θ̃.
Note that π is indeed a probability measure; this follows from the fact that the measure

assigned to any Sθ equals π̃(θ), and hence the total measure of Θ is

π(Θ) =
∑
θ∈Θ̃

π(Sθ)=
∑
θ∈Θ̃

π̃(θ) = 1�

In fact, the marginal of π along component g must equal πg for each g. This follows from
two facts: first, the probability assigned to any cell Sg

θg under this marginal is equal to

∑
θ−g∈Θ̃−g

π(S(θg�θ−g))=
∑

θ−g∈Θ̃−g

π̃
(
θg�θ−g

) = π̃g
(
θg

) = πg
(
S
g
θg

);
and second, conditional on cell Sg

θg , the distribution along the g component follows πg|Sg
θg

(because this is true for each of the cells S(θg�θ−g)).
Consequently, our mechanism (x′� t ′) satisfies Eπ[t ′(θ)] ≥R∗ + ε, by assumption.
In addition, the fact that π(Sθ) = π̃(θ) for every θ ∈ Θ̃ implies that π̃ is δ-close to π,

since every element of Sg
θg is within distance δ≤ δ/G of θg for each component g. Conse-

quently, Lemma 4.3 assures us the existence of a mechanism whose expected profit with
respect to π̃ is greater than (R∗ + ε)− ε/(2G+ 1)=R∗ + 2Gε/(2G+ 1).

But we already showed it is impossible to earn profit greater than R∗ + 2Gε/(2G+ 1)
against π̃. Contradiction. Q.E.D.
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