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Abstract

We consider a moral hazard problem where the principal is uncertain what the

agent can and cannot do: She knows some actions available to the agent, but other,

unknown actions may also exist. The principal demands robustness, evaluating

possible contracts by their worst-case performance, over unknown actions the agent

might potentially take. The model assumes risk-neutrality and limited liability,

and no other functional form assumptions. Very generally, the optimal contract is

linear. The model thus offers a new explanation for linear contracts in practice. It

also introduces a flexible modeling approach for moral hazard under non-quantifiable

uncertainty.

Keywords: limited liability, linear contracts, principal-agent problem, robust-

ness, worst-case
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1 Introduction

Imagine a principal who contracts with an agent, but who has only limited knowledge of

what the agent can and cannot do. She wants to write a contract that is robust to this
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uncertainty. What should such a contract look like?

In our model, as in standard moral hazard models, the agent takes an unobserved

costly action, which produces a stochastic output. The principal gives incentives by

paying the agent based on observed output. She wishes to maximize the expected value

of output minus the wage paid out. But unlike in most of the literature, our principal

does not know exactly what actions the agent can take. She knows of some available

actions; but other, unknown actions may also exist, and our principal does not even have

a prior belief about these unknown actions. In this nonprobabilistic setting, we assume a

simple (arguably the simplest) criterion to evaluate contracts: Any contract is judged by

its worst possible performance, given the principal’s knowledge. The principal and agent

are financially risk-neutral, and payments are constrained by limited liability.

One way the principal can obtain a worst-case payoff guarantee is to use a linear

contract — paying the agent a fixed share of output. For example, suppose the principal

considers a contract that pays the agent one-third of output, keeping two-thirds for herself,

and suppose she knows some action the agent can take that would give him an expected

payoff of 400 under this contract. Then, any unknown action the agent might rationally

choose would also give him at least 400. Since the principal’s ex-post payoff is always at

least twice the agent’s, she thus is guaranteed at least 800.

Besides linear contracts, many other contracts can also provide positive guarantees.

But the main finding of this paper is that the best such guarantee, out of all possible

contracts, comes from a linear contract. This result holds without any assumptions on

the structure of the set of known actions. It also persists — with suitable modifications

— through a number of extensions and variations of the basic model.

Briefly, the intuition is as follows. When the principal proposes a contract, in the face

of her uncertainty about the agent’s technology, she knows very little about what will

happen; but the one thing she does know is a lower bound on the agent’s expected payoff

(from the actions that are known to be available). The only effective way to turn this into

a lower bound on her own expected payoff is via a linear relationship between the two,

as in the example above. Even when a contract is nonlinear, whatever guarantee it gives

is still driven by a linear relationship, which in general is an inequality. Linear contracts

are the ones for which this relationship is tight, and this is why they are optimal.

The importance of our finding can be viewed in three different ways. First, it addresses

a longstanding problem in contract theory: Why are linear contracts common in practice

— while textbook models often predict more complicated functional forms? As Holmström

and Milgrom write in their classic paper on linear contracts in dynamic environments [15,
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p. 326]:

It is probably the great robustness of linear rules based on aggregates that

accounts for their popularity. That point is not made as effectively as we

would like by our model; we suspect that it cannot be made effectively in

any traditional Bayesian model. But issues of robustness lie at the heart of

explaining any incentive scheme which is expected to work well in practical

environments.

This paper aims to answer their implicit call with a forthrightly non-Bayesian model of

robustness.

The second view of our contribution is that it provides concrete advice to people faced

with the practical task of designing incentive contracts under non-quantifiable uncertainty.

And, third, it adds to the arsenal of tools for analyzing agency problems, offering a new

and flexible modeling framework that can be used to make more complex moral hazard

problems tractable.

Mathematically, the main result of this paper is rather simple. This makes it all the

more surprising that it did not appear much earlier in the agency theory literature. There

have been results on optimality of linear contracts using other maxmin-type criteria, due

to Hurwicz and Shapiro [16] and recently Chassang [4, Corollary 1]. Diamond [8] also

gave a Bayesian model in which related intuitions apply. However, the present paper

offers a relatively general class of environments, together with a mathematical argument

for robustness based on the alignment between the principal’s and agent’s goals, that

differentiate it from previous literature. (The connections with these previous works will

be discussed in more detail in the concluding section.)

Section 2 of the paper formally presents the basic version of the model and result. The

model is kept as simple and clean as possible here. Section 3 then shows how the logic

of the result persists under various extensions that either remedy unrealistic features of

the basic model or otherwise enrich it. This includes assuming some knowledge about the

costs of various actions, replacing the single set of known actions with multiple possible

minimal sets of actions, and allowing a participation constraint, as well as allowing the

principal to screen agents by their potential actions. These extensions also illustrate how

the method extends beyond the basic model.

This paper joins a recently growing literature exploring mechanism design with worst-

case objectives. This includes the work of Hurwicz and Shapiro [16] mentioned above,

Frankel [11], and Garrett [12], also on contracting with unknown agent preferences; the
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work initiated by Bergemann and Morris [1] and Chung and Ely [7] on mechanism design

with unknown higher-order beliefs; and work such as Yamashita’s [24] on maxmin expected

welfare under weak assumptions on agent behavior (in this case, assuming only that

agents play undominated strategies). A broader mechanism design literature provides

nearly optimal worst-case performance in various settings, without optimizing exactly;

recent examples include the work of Chassang [4], Segal [21], Chawla, Hartline, Malec,

and Sivan [5], and Micali and Valiant [20]. There is also a less closely related strand of

literature, such as Madarász and Prat [18], that looks at local robustness when the model

of the environment is slightly misspecified.

This paper also adds to the literature on explanations for linear contracts — including

the maxmin-optimality papers mentioned above as well as several others. Again, dis-

cussion of the relationship to that literature is deferred to the concluding section. The

conclusion also gives some discussion of interpretation and how to connect the stark as-

sumptions of the model to real-world contract design.

2 The basic model

We start with the basic version of the model. The model here is kept simple, at some

costs of realism, which will be addressed later.

2.1 Notation

We write ∆(X) for the space of Borel distributions on X ⊆ R
k, equipped with the weak

topology. For x ∈ X, δx is the degenerate distribution putting probability 1 on x. R+ is

the set of nonnegative reals.

2.2 Setup

A principal contracts with an agent, who is to take a costly action that leads to a stochastic

output. The action is not observable to the principal; only the resulting output, y, is

observable. Thus, payment to the agent can depend only on y, and this dependence is

what provides incentives. Both parties are financially risk-neutral.

We write Y for the set of possible output values, and assume Y is a compact subset

of R. Y may be finite or infinite. We normalize min(Y ) = 0.

To model the agent’s actions, we abstract away from their physical description and

record only the features that affect behavior and payoffs: the cost of each action to the
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agent, and the resulting probability distribution over output. Thus, an action is a pair

(F, c) ∈ ∆(Y )×R
+. The interpretation is that the agent pays cost c, and output is drawn

y ∼ F . c may be interpreted literally as a monetary cost, or an additive disutility of

effort. We give ∆(Y )× R
+ the natural product topology.

A technology is a compact subset of ∆(Y ) × R
+, describing a possible set of actions

available to the agent. The agent has a technology A, which he knows but the principal

does not. Instead, the principal knows only some set A0 of actions available to the agent,

and she believes A may be any technology such that A0 ⊆ A.

The exogenous A0 may be any technology, subject to the following nontriviality as-

sumption: There exists (F, c) ∈ A0 such that EF [y] − c > 0. This assumption ensures

that the principal benefits from hiring the agent.

It is natural to assume that the agent can always exert no effort; this corresponds to

assuming (δ0, 0) ∈ A0. However our results will not require this assumption. Also, we say

A0 satisfies the full-support condition if, for all (F, c) ∈ A0 such that (F, c) 6= (δ0, 0), F

has full support on Y . Our main result becomes stronger when this condition holds.

Next we define the space of contracts. Any contract must specify how much the agent

is paid for each level of output. We assume one-sided limited liability: the agent can never

be paid less than zero. Thus, a contract is any continuous function w : Y → R
+.1

We can now summarize the timing of the game:

1. the principal offers a contract w;

2. the agent, knowing A, chooses action (F, c) ∈ A;

3. output y ∼ F is realized;

4. payoffs are received: y − w(y) to the principal and w(y)− c to the agent.

Describing the agent’s behavior is simple, since he maximizes expected utility. Given

contract w, and technology A, the set of actions the agent is willing to choose is

A∗(w|A) = arg max
(F,c)∈A

(EF [w(y)]− c) .

Continuity and compactness ensure this set is nonempty. It will also be useful to write

VA(w|A) = max
(F,c)∈A

(EF [w(y)]− c)

1Requiring continuity of w ensures the agent’s optimization problem has a solution. If, say, Y is
an arbitrarily fine discrete grid, then continuity is a vacuous assumption. Alternatively, we could relax
continuity to upper semi-continuity, and all arguments would go through, with a few extra verifications.
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for the agent’s expected payoff. If the agent is indifferent among several actions, we

assume he maximizes the principal’s utility. Thus the principal’s expected payoff under

technology A is

VP (w|A) = max
(F,c)∈A∗(w|A)

EF [y − w(y)].

Finally, we assume the principal evaluates contracts by their worst-case expected pay-

off, over all possible technologies A:

VP (w) = inf
A⊇A0

VP (w|A).

Our focus is on the principal’s problem, namely to maximize VP (w). In the next

subsection, we will show that the maximum exists, and identify the contract that attains

it.

2.3 Analysis

In the above model, the principal considers the worst case over a very wide range of

technologies. Faced with this huge uncertainty, can she even guarantee herself a positive

expected payoff? Yes; one simple way to get such a guarantee is to use a linear contract

— one of the form w(y) = αy for constant α ∈ [0, 1]. The argument was sketched in the

introduction, and now we write it out formally. (This same calculation appears also in

Chassang [4, Theorem 1].) Suppose the principal offers such a contract, with α > 0. Note

that whatever technology A ⊇ A0 the agent has, and whatever optimal action (F, c) he

chooses, his expected payment satisfies

EF [w(y)] ≥ EF [w(y)]− c = VA(w|A) ≥ VA(w|A0). (2.1)

Here the second inequality holds becauseA containsA0, and having more actions available

can only make the agent better off. Now, the principal receives a fraction 1−α of output

while the agent receives fraction α, hence their ex-post payoffs are related via

y − w(y) =
1− α

α
w(y). (2.2)

Combining with (2.1) gives a lower bound on the principal’s expected payoff:

EF [y − w(y)] ≥ 1− α

α
EF [w(y)] ≥ 1− α

α
VA(w|A0).
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Since this holds regardless of the technology,

VP (w) ≥ 1− α

α
VA(w|A0). (2.3)

The nontriviality assumption implies that if α is close to 1 then VA(w|A0) > 0, and so we

have a positive lower bound on the principal’s worst-case payoff.

This shows how to obtain a payoff guarantee from a linear contract. But is it possible

that some other, subtler contract form would give a better guarantee? The answer is no.

Theorem 2.1. There exists a linear contract that maximizes VP .

To show this, we start from any arbitrary contract w, and show that its guarantee is

driven by a linear relation between the principal’s and agent’s payoffs — in the same way

that equation (2.2) drives the guarantee from a linear contract above; but in general the

driving relation will be an inequality. We then construct a contract w′ that satisfies the

same linear relation with equality. We show that as a result, w′ gives the principal the

same guarantee (or better). Thus, any contract can be improved on by a linear contract.

The mechanics of the argument are depicted in Figure 1. Consider any contract w(y),

which may be nonlinear and may not even be monotone in y, as shown by the thick

curve in panel (a). For any action (F, c) the agent may potentially take, consider the

point whose coordinates are the expected output and expected payment to the agent,

(EF [y], EF [w(y)]). This point evidently lies in the convex hull of the curve w — the union

of the two shaded regions in panel (a). Moreover, since the agent can certainly assure

himself a payoff of at least VA(w|A0), he will only take actions that pay at least this

much — those corresponding to the darker shaded region. From this we can identify the

worst case for the principal, call it point Q: it is the point in the dark region where her

expected profit, EF [y]−EF [w(y)], is lowest. Aside from uninteresting cases, this is where

the horizontal line VA(w|A0) hits the left boundary of the convex hull, as in the figure.

Now take the support line to the convex hull at this point Q, as shown in panel (b).

This line exactly delineates the driving inequality: for any action to the right of the line,

if it gives the agent at least VA(w|A0) (dashed line) then the principal’s resulting payoff

is no worse than at Q. But we can also regard the line as being itself a contract, call it

w′. w′ is basically a linear contract; more precisely it is an affine contract, one of the

form w′(y) = αy + β for constant α, β. Because w′ lies above w, it indeed assures the

agent a payoff at least as high as the dashed line; and because w′ still satisfies the driving

inequality (as an equality), it follows that the principal does no worse than Q. Therefore,

the principal’s worst-case guarantee is at least as good under w′ as under w.
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Figure 1: Sketch of the main proof: (a) Identifying the worst-case point for a given
contract w(y). (b) Improving w to an affine contract w′.

We now proceed to walk through each step of the argument in more detail, formally

developing the argument as a series of lemmas. Some technical verifications will be left

to Appendix A.

The first step is to exactly identify the guarantee VP (w) from any candidate contract w.

This characterization is given by Lemma 2.2 below, which formalizes our verbal description

of the worst-case point Q above: the point in the dark shaded region that gives the lowest

expected payoff for the principal. However, our assumption of tie-breaking in favor of the

principal introduces some technicalities.

One technicality is that we need to deal with the zero contract (w(y) = 0 for all y)

separately. We abusively denote this contract by 0. Suppose there exists (F, c) ∈ A0 with

c = 0; that is, the agent can definitely produce some output costlessly. Then the agent is

willing to take any such action, so the principal’s guarantee is simply the highest value of

EF [y] over such F . That is, VP (0) = max(F,0)∈A0
EF [y]. If there is no action (F, 0) ∈ A0,

then the principal is not guaranteed any positive payoff: if it turns out the agent can

either take actions in A0 or produce 0 output at cost 0, he will choose the latter; hence,

VP (0) = 0.

Another minor technicality is that the worst-case payoff VP (w) may be approached,

but not actually attained for any technology. (This is why we defined it as an infimum

over A, and not a minimum.)

Also, to avoid some extra cases, we say a contract w is eligible if VP (w) ≥ VP (0)
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and VP (w) > 0. From our observations so far, we know some eligible contract exists —

indeed, an eligible linear contract exists: w(y) = αy, for α close to 1, is eligible, unless

VP (w) < VP (0) in which case the zero contract is eligible. Therefore, in our search for

optimality, we may restrict ourselves to eligible contracts.

All these points duly addressed, we state the characterization of the principal’s guar-

antee:

Lemma 2.2. Let w be any eligible contract, different from the zero contract. Then,

VP (w) = minEF [y − w(y)] over F ∈ ∆(Y ) such that EF [w(y)] ≥ VA(w|A0). (2.4)

Moreover, for any F attaining the minimum, the constraint holds with equality: EF [w(y)] =

VA(w|A0).

The proof is straightforward and left to Appendix A.

Note that the equality statement in Lemma 2.2 implies that (2.3), the guarantee of a

linear contract, is actually an equality. We record this as a separate lemma:

Lemma 2.3. For any α ∈ (0, 1], if the linear contract w(y) = αy is eligible, then

VP (w) =
1− α

α
VA(w|A0) = max

(F,c)∈A0

(

(1− α)EF [y]−
1− α

α
c

)

. (2.5)

This is also valid for α = 0, if we interpret the term −1−α
α

c as being 0 for c = 0 and −∞
for c > 0.

The next step, and the heart of the argument, is to identify the linear inequality

relating the principal’s and agent’s payoffs that drives the guarantee of contract w.

Lemma 2.4. Let w be any eligible contract, different from the zero contract. Then there

exist numbers κ, λ, with λ > 0, such that

y − w(y) ≥ κ+ λw(y) for all y ∈ Y ; (2.6)

VP (w) = κ+ λVA(w|A0). (2.7)

To be clear about why we say (2.6) drives the guarantee of contract w, simply consider

any action (F, c) the agent might take under any technology, and apply expectations:

EF [y − w(y)] ≥ κ+ λEF [w(y)] ≥ κ+ λVA(w|A0) (2.8)

9



where the second inequality holds as in (2.1). But by (2.7), the right side of (2.8) is

exactly equal to VP (w). So essentially, starting from (2.6) and taking expectations is all

it takes to show that the principal is indeed guaranteed at least VP (w).

Inequality (2.6) carves out a half-plane whose bounding line is the support line shown

in Figure 1. In the formal proof of the lemma, we identify this support line by an

application of the separating hyperplane theorem. The earlier characterization of the

worst-case point (Lemma 2.2) plays an essential role by showing that this point lies on

the boundary of the convex hull, so that the support line exists.

The proof of Lemma 2.4 requires a little extra work (checking that λ is well-defined

and positive), so we leave it to Appendix A.

Now we are ready to define our improved contract w′. We rearrange (2.6) as

w(y) ≤ 1

1 + λ
y − κ

1 + λ
. (2.9)

This leads us to define

w′(y) =
1

1 + λ
y − κ

1 + λ
, (2.10)

an affine contract. We have w′ ≥ w pointwise. Notice that this immediately implies

w′(y) ≥ 0 for all y, so that w′ is indeed a contract.

The next step shows how the driving inequality ensures a guarantee for the principal

from w′ that is at least as good as the guarantee from w.

Lemma 2.5. Suppose that w satisfies (2.6) and (2.7). Then the contract w′ defined by

(2.10) satisfies VP (w
′) ≥ VP (w).

Proof. Rearrange the definition (2.10) to see that w′ satisfies the driving inequality (2.6)

(as an equality). So repeating the argument from (2.8) above, we get

EF [y − w′(y)] ≥ κ+ λVA(w
′|A0) (2.11)

for any action (F, c) the agent might potentially choose under any technology. Thus the

principal is guaranteed at least this amount. But since w′ ≥ w everywhere, the agent is

certainly at least as well off under w′ as under w: VA(w
′|A0) ≥ VA(w|A0). Applying this

to the right side of (2.11), we see that by using w′, the principal is guaranteed at least

κ+ λVA(w|A0). But this equals VP (w) by (2.7).

At this point the proof of Theorem 2.1 is almost complete. We have just a couple

clean-up steps left:
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Lemma 2.6. For any affine contract w′, there is a linear contract w′′ that does at least

as well as w′: VP (w
′′) ≥ VP (w

′), with strict inequality unless w′ is already linear.

Proof. Write w′(y) = αy + β, and note β = w′(0) ≥ 0. Put w′′(y) = αy = w′(y) − β.

This increases the principal’s payoff by β, since a constant shift does not affect the agent’s

incentives for choice of action.

Lemma 2.7. Within the class of linear contracts, there exists an optimal one for the

principal.

Proof. Recall the formula (2.5), which was a lower bound for the guarantee of the linear

contract with share α, with equality whenever the contract is eligible (which must be true

for some linear contract). Since (2.5) is continuous in the share α ∈ [0, 1], it achieves

a maximum, and therefore this maximum is also the optimal guarantee over all linear

contracts.

And now we can put all the pieces together.

Proof of Theorem 2.1. By Lemma 2.7, among the linear contracts, there is an optimal

one, call it w∗. Then in particular w∗ is eligible. If w is any other, nonlinear contract that

does better than w∗, then by Lemmas 2.4, 2.5 and 2.6, there is a linear contract that in

turn does at least as well as w. But this contradicts the fact that w∗ is the best possible

linear contract. Thus, w∗ is optimal among all contracts.

The above argument shows that there is an optimal contract that takes the linear

form. However, there may potentially be many optimal contracts. If the full-support

condition is satisfied, however, then we get a stronger conclusion:

Corollary 2.8. If A0 satisfies the full-support condition, then every contract that maxi-

mizes VP is linear.

This just requires a couple extra verifications at certain points in the proof of Theorem

2.1, which we leave to Appendix A.

We have now reached our main goal, of showing that an optimal contract is linear,

w(y) = αy. We may as well wrap up the analysis of the principal’s problem by identifying

exactly what the share α is. From Lemma 2.3, the optimal share is found by maximizing

(1− α)EF [y]−
1− α

α
c
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jointly over (F, c) ∈ A0 and α ∈ [0, 1]. So we can first find the optimal α for any given

(F, c), then maximize over actions (F, c). When EF [y] < c, the maximum over α is 0

(given by α = 1). Otherwise, the optimal α is equal to
√

c/EF [y], and the objective

reduces to

EF [y] + c− 2
√

cEF [y] = (
√

EF [y]−
√
c)2. (2.12)

Therefore, the optimal contract is chosen by taking (F ∗, c∗) ∈ A0 to maximize
√

EF [y]−√
c, and then choosing α∗ =

√

c∗/EF ∗ [y] to be the share. If it happens that there are

several actions in A0 attaining the maximum (a knife-edge case), then there can be several

optimal linear contracts.

We remark that, aside from the support-line approach taken here, there is also another,

directly constructive way to show that any contract is (weakly) outperformed by a linear

contract. That alternative proof is a little faster, but generalizes less readily. See Appendix

C for details and discussion.

2.4 Discussion of assumptions

Before moving on to the extensions, we should comment on some assumptions, their role

in the mechanics of the model and their consequences for interpretation.

The uncertainty on the principal’s part is clearly essential: If the principal knew for

certain that A = A0, then the optimal contract would in general not be linear (see

e.g. Diamond [8]). For example, with Y finite and A containing only two actions, the

optimal way to incentivize the costlier action would be to pay a positive amount only for

the value of output having the highest likelihood ratio, and zero for all other realizations

of output. Moreover, the space of actions that may potentially be available to the agent

needs to be sufficiently rich. This is needed in Lemma 2.2, which shows that the worst

case for the principal lies on the boundary of the convex hull of w. If we assumed a less

rich space of potential actions, the worst case might lie inside the convex hull, and then

the support line would not be defined.

The limited liability assumption is also crucial. If we removed this assumption, and

instead constrained payments from below by imposing a participation constraint (say,

the agent must be assured a nonnegative expected payoff), then the standard solution of

“selling the firm to the agent” would apply: clearly the principal could not be guaranteed

any higher payoff than the total surplus under A0, namely s0 = max(F,c)∈A0
(EF [y] − c),

and she could achieve this payoff by setting w(y) = y−s0. Thus our argument depends on

having some exogenous minimum payment to the agent. However, our assumption that
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this minimum payment is 0 is simply a normalization. One could instead assume that

the minimum payment is some (positive or negative) constant w, and the straightforward

analogue of Theorem 2.1 would say that an optimal contract has the form w(y) = αy+w.2

Likewise, the model assumes that any action must entail a nonnegative cost to the

agent. This can be relaxed modestly to allow actions that have private benefits: If we

instead assume that the minimum possible cost of an action is c < 0, so that an action

is defined as an element of ∆(Y ) × [c,∞), then the resulting model is equivalent to an

instance of the original model with the cost of each action translated by −c. Thus, the

nontriviality assumption would now require some (F, c) ∈ A0 with EF [y] − c > −c, and

as long as this is satisfied, a linear contract is optimal. (Subsection 3.1 offers another

variation on this theme.)

If this version of the nontriviality assumption is not satisfied, then no contract will

guarantee the principal any positive payoff. Thus, the model is not suitable for describing

situations where the private benefits from undesirable actions could potentially be very

large, e.g. where the agent might be able to steal all the output for personal consumption.

We have also made an assumption of favorable tie-breaking — that if the agent is in-

different among actions, he chooses the best one for the principal. This may seem contrary

to the worst-case spirit of the model, but it can be read as a modeling shorthand for the

standard notion of a contract as consisting of both a payment rule and a recommended

action. (Here the recommended action would be contingent on the technology, or we

could simply imagine the blanket recommendation “break ties in favor of the principal.”)

Other tie-breaking rules would lead to essentially the same results, but may introduce

technical complications: e.g. in some instances the optimal contract may not exist, so

that supw VP (w) is approached, but not attained, by linear contracts.

One more, subtler, assumption is hidden in the maxmin expected utility formulation:

There is non-quantifiable uncertainty about the set of possible actions, but for any partic-

ular action, the risk associated with the action is quantifiable (and moreover, the principal

and the agent agree about how to quantify it). One way to make sense of this combi-

nation of non-quantifiable and quantifiable uncertainty is that the risk inherent in any

given action depends on physical events occurring in the world, which might be relatively

familiar concepts, whereas technologies are too abstract for the principal to be able to

reason probabilistically about them. We could also try to appeal to decision-theoretic

foundations to justify the maxmin expected utility formulation (see e.g. [23] for references

2Similarly, our assumption min(Y ) = 0 is simply an additive normalization of the principal’s payoffs;
without this assumption, an optimal contract would take the form w(y) = α(y −min(Y )).
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to several such axiomatizations), although such an appeal by itself would not explain why

technology appears in the nonprobabilistic parameter space rather than the probabilistic

state space.

3 Extensions

In this section we consider several variations of the basic model. The purpose is twofold:

to study how the result persists when the model is made more realistic, and to show how

the analytical tools extend to more complex models.

Specifically, we consider: refining the principal’s knowledge by adding a lower bound

on the cost of producing any given output distribution, or by otherwise changing the set

of possible technologies; adding a participation constraint; and allowing the principal to

screen by offering different contracts depending on the agent’s technology A. Note that

these extensions are independent of each other; we do not pursue the task of writing a

single model that is as general as possible.

3.1 Lower bounds on cost

An immediate criticism of the basic model is that it unrealistically allows the agent to

produce large amounts of output for free. Indeed, as the proof of Lemma 2.2 (in Appendix

A) shows, the worst-case action for any contract is one that produces an undesirable

distribution F at cost 0. We might wish to change the model to rule this out. One way is

to suppose instead that the principal knows a lower bound on the cost of producing any

given level of expected output.

To model this, suppose there is given a convex function b : R → R
+, and amend the

definition of a technology A to require that every (F, c) ∈ A should satisfy c ≥ b(EF [y]).

We suppose that the known technology A0 also satisfies this condition. We again define

VP (w) as the infimum of VP (w|A) over all possible technologies A ⊇ A0. Everything else

is as in the original model. Then, it turns out that a linear contract is still optimal.

In fact, a significant generalization holds too. We can allow the known lower bound on

cost, b, to depend not only on the expected value of output but also on other moments.

(For example, it may be that producing a high level of output for certain is known to be

expensive, but producing the same mean output with high variance might be less costly.)

Following Holmström [14], we can also allow there to be other observable variables, besides

output, that are informative about the bound on cost. The general result is that the

14



optimal contract is an affine function of output and whatever other relevant variables are

observed.

To give the general formulation, we allow for a vector of observables z = (z1, . . . , zk),

taking values in a compact set Z ⊆ R
k. We assume output is included as one component

of z, say y = z1, and thus assume min{z1 | z ∈ Z} = 0. An action now consists of a

distribution on Z and an associated cost. In our model, the principal knows a lower bound

on the cost of any distribution that depends on the expected values of all the zi. Thus,

we assume given a convex function b : Rk → R
+, and define an action to be a pair (F, c)

with F ∈ ∆(Z) and c ≥ b(EF [z]). A technology is a compact set of actions. We assume

given a technology A0, the set of known actions, and the true A may be any technology

A0. We make the same nontriviality assumption as before.

A contract is now a continuous function w : Z → R
+. The timing of the game and

payoffs are as before: Given contract w and technology A, the agent’s utility and his

choice set are

VA(w|A) = max
(F,c)∈A

(EF [w(z)]− c), A∗(w|A) = arg max
(F,c)∈A

(EF [w(z)]− c);

the principal’s expected payoff is

VP (w|A) = max
(F,c)∈A∗(w|A)

EF [z1 − w(z)].

The principal’s objective VP (w) is defined to be the infimum of VP (w|A) over all tech-

nologies A ⊇ A0.

The main result for this model is:

Theorem 3.1. There exists a contract that maximizes VP and is affine — that is

w(z) = α1z1 + · · ·+ αkzk + β

for some real numbers α1, . . . , αk and β.

The argument here is an extension of the ideas used for the basic model. However,

the analogue of Lemma 2.4, finding the driving inequality for any candidate contract w,

is now a bit subtler: we apply the separating hyperplane theorem to separate two sets,

one given by the convex hull of w as before and the other determined by the shape of

the function b. In addition, identifying the worst-case action for a given contract involves

separately addressing a boundary case that previously applied only for the zero contract,

15



but now can occur more widely and so requires more careful treatment. The details of

the proof are deferred to Appendix B. We also give an example there to illustrate how

this generalized model also serves to describe a situation where only output is observed

but the cost bound depends on higher moments.

3.2 Alternative sets of technologies

The basic model assumes that the true technology might be much, much larger than the

set of actions known to the principal, since any A ⊇ A0 is considered possible. However,

all of the same results hold if the principal considers a much smaller set of possible

technologies A: either A0 itself, or A0 with just one more action (F, c) added. To see this,

just check that when VP (w) is redefined as the infimum of VP (w|A) over this restricted

set of technologies, its value does not change.

In fact, we do not even need to assume that there is a single minimal technology A0.

Here is a more general formulation that allows for multiple minimal technologies, and

also encompasses the simplification in the previous paragraph. Suppose simply that there

is some nonempty collection T of possible technologies, and the principal’s value from

any contract w is defined as VP (w) = infA∈T VP (w|A). Suppose that T has the following

property: For any A ∈ T , and any arbitrary action (F, c), then there exists some A′ ⊆ A
such that A′ ∪ {(F, c)} ∈ T . Then, Theorem 2.1 continues to hold.

The proof is essentially the same as before, using the following generalization of Lemma

2.2: If w is a nonzero, eligible contract (eligibility defined as before), then

VP (w) = minEF [y − w(y)] over F ∈ ∆(Y ) such that EF [w(y)] ≥ inf
A∈T

VA(w|A);

and for any F attaining the minimum, EF [w(y)] = infA VA(w|A). (The proof that the

optimal contract exists is slightly more work than before, but one can derive an analogue

to (2.5) and check that it is upper semi-continuous in α, which is enough for existence of

the optimum.)

One can also show that linear contracts are uniquely optimal under an appropriate

version of the full-support condition.

This discussion stresses that the model does not depend on allowing the agent’s tech-

nology to be outrageously large. However, we do need that, as the technology varies, the

range of actions that may potentially be chosen should be sufficiently rich, as discussed in

Subsection 2.4 above. We could not (for example) restrict attention to technologies that

contain only actions “close” to those in the known technology A0 and expect the same
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results to hold.

3.3 Participation constraint

In the basic model, the only constraint that imposed a lower bound on payments to the

agent was limited liability. We could instead imagine that there is also a participation

constraint, so that the principal is required to guarantee the agent an expected payoff of

at least UA. This operates differently than limited liability, since it applies to the agent’s

payoff net of cost. Such a constraint could be modeled by restricting the principal to only

propose contracts w satisfying EF [w(y)] − c ≥ UA for some (F, c) ∈ A0. Let us assume

some eligible w satisfies this constraint.

In this case, the same argument as before shows that every contract is weakly out-

performed by an affine contract. Indeed, since the contract w′ constructed in Lemma

2.5 satisfies w′ ≥ w everywhere, if w satisfies the participation constraint, so does w′.

However, the one step of the original argument that does not go through is Lemma 2.6,

going from the affine contract αy + β to the linear αy: the latter may not satisfy the

participation constraint.

Actually, a little more work shows that the optimal contract is still linear. Intuitively,

if the optimal contract were affine, αy + β with β > 0, then the value of β would be

determined by the participation constraint binding. But as long as the participation

constraint is binding, the principal would rather increase α slightly, better aligning the

agent’s incentives with her own, and decrease β so that the participation constraint still

binds. Thus it would be an improvement to increase the slope α up to the point where

limited liability binds instead (β = 0).

Theorem 3.2. In the model with a participation constraint added, there is still an optimal

contract that is linear.

The details are in Appendix A.

3.4 Screening on technology

We proved Theorem 2.1 by improving any contract to a linear contract. One might instead

try a a more direct method of proof: find the contract with the best possible guarantee

for the principal, maxw VP (w), and identify an adversarial technology A that prevents the

principal from doing any better. It turns out, however, that this proof approach would

not work, because in general such an adversarial technology does not exist.
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Proposition 3.3. Let w∗(y) = α∗y be the linear contract that maximizes VP , and suppose

that α∗ > 0. Then there exists V P > VP (w
∗) such that, for every technology A ⊇ A0,

there is some contract w with VP (w|A) ≥ V P .

The proof is in Appendix A.

For another interpretation of this proposition, imagine that the principal could some-

how make the contract she offers be a function of the agent’s technology. The proposition

says that she could achieve a strictly higher guarantee — in worst case over all possible

agent types — than in the basic model where she is constrained to only offer a single

contract.

This result naturally brings to mind the question the possibility of screening: What if

the principal could offer multiple contracts, inducing different agent types to self-select into

different contracts? Such screening would be less flexible than the technology-dependent

contract choice above, because it has to be incentive-compatible. It turns out this over-

turns the result of the proposition: Screening with a menu does not give a better worst-case

guarantee than using a single contract.

To formalize this, we imagine that the principal offers a menu of contracts W = (wA),

one for each possible technology A that the agent could have, such that the agent with

any technology A chooses the corresponding contract (this is without loss of generality

by the revelation principle). Thus, we require

VA(wA|A) ≥ VA(wA′ |A) for all A,A′ ⊇ A0. (3.1)

We write the principal’s worst-case payoff from the menu as

VP (W) = inf
A⊇A0

VP (wA|A).

Theorem 3.4. The principal cannot do any better, in terms of worst-case guarantee, with

a menu of contracts than she can with a single contract. That is, for any menu W,

VP (W) ≤ max
w

VP (w).

Again, the proof is in Appendix A.

We close this section with an additional observation: The fact that the principal can

do strictly better than maxw VP (w) for any given technology suggests that she should

be able to improve her worst-case guarantee by deliberately randomizing over contracts.

This naturally raises the question of what the worst-case-optimal randomized contract
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looks like. This seems a harder problem. Similarly, it is not clear whether the result

of Theorem 3.4 — that screening does not help — persists when the principal can offer

menus of randomized contracts. We leave these questions for future work.

4 Discussion

We have presented here a simple principal-agent model that illustrates the robustness

value of linear contracts. In the face of uncertainty about the technology available to the

agent, linearity is the only tool the principal can use to turn her assurance about the

agent’s expected payoff into a guarantee for herself, and so optimal contracts are linear.

We now return to discuss this model’s potential to help explain the popularity of linear

contracts in the real world. Many previous scholars have noticed that, while theoretical

models of agency relations often predict complicated incentive schemes that are sensitive

to the details of the model, when one does see explicit incentives in practice they often

take simple forms, and linear contracts are one common form (see [2, pp. 763-4] and [6,

fn. 3] for many references).

One way to try to explain this via our model would be to take the model literally, imag-

ining that contract writers explicitly maximize a worst-case objective, are risk-neutral, and

so on. A fuzzier story, but perhaps closer to the truth, is as follows: Just as economists

work with stylized models for tractability, so, too, real-life decision-makers may not be

able to write down (or solve) their decision problems in full precision. They may therefore

be content to adopt a solution that is guaranteed to perform reasonably well in a class

of approximate models (similarly to Simon’s “satisficing” [22]). This paper begins by

pointing out how such a guarantee can be obtained from linear contracts, with only slight

reliance on knowledge of the environment. Our main result then shows that, while many

other contracts can also offer some such guarantee, linear contracts play a distinguished

role in this story, by providing the best possible guarantee.

How does our model relate to other explanations for linear contracts in previous litera-

ture? The paper of Holmström and Milgrom [15] quoted above was one early explanation,

also invoking robustness. In their model, the principal and agent have CARA utility, and

the agent controls the drift of a (possibly multidimensional) Brownian motion in continu-

ous time. Although the principal can make payments depend on the entire path of motion,

the optimal contract is simply a linear function of the endpoint. Holmström and Milgrom

present this model as capturing robustness, in view of the agent’s large strategy space.

However, it is really the stationary structure of the model that underlies the conclusion:
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the CARA utility implies that at each point in time, the optimal incentives going forward

are independent of the previous history, and this leads to linearity.

Diamond [8] gives an argument for linear contracts that is close to the intuition of

this paper. Diamond’s Section 5 considers a model in which the agent can either choose

no effort, producing a low expected output, or high effort, producing a higher expected

output. For a given level of effort, the agent can choose among all distributions over

output that have the same mean, and all such distributions are equally costly. A linear

contract is then optimal. The argument rests on the same intuition as here — with such

freedom to choose the distribution, only a linear relation can tie the principal’s expected

profit to the agent’s expected compensation. However, the assumptions that there are

exactly two effort levels, and that all distributions with a given mean are equally costly,

are restrictive. Furthermore, there are actually many optimal contracts in Diamond’s

model. In our model, uncertainty about which distributions are actually possible can

make the linear contract uniquely optimal.

Several other papers consider models where the contractible outcome variable com-

bines effort with mean-zero additive noise, leading naturally to linear contracts (or, more

precisely, what we have called affine contracts, but let’s ignore that distinction). For ex-

ample, a version of the model of Edmans and Gabaix [9] with linear utility and additive

noise gives this result. However, their model focuses mainly on implementing a particular

action, rather than maximizing the principal’s payoff. Earlier works by Laffont and Tirole

[17] and McAfee and McMillan [19] consider problems that combine moral hazard and

adverse selection: a principal uses a menu of contracts to screen agents on ability. In

both of their models, there is again an optimal menu in which payment is linear in output

within each contract. Again, however, there may also be other optimal menus. In any

case, the assumption of additive noise is quite specific.

Chassang [4] considers a dynamic model and gives the same lower bound as ours

(2.3) on the performance of a linear contract, by the same calculation. Chassang also

gives a worst-case optimality result for linear contracts in a certain class of environments

(his Corollary 1). In that class, first-best total surplus may be arbitrarily small, so the

objective used is the ratio of the principal’s profit to first-best surplus. As in our proof

here, Chassang argues by finding a bad environment for any given contract. However,

there is no analogue to our argument of improving a nonlinear contract to a linear one

(instead, Chassang directly calculates that the objective value for any contract is at most

the lower bound for the best linear contract); nor any analogue to our driving inequality

(2.6), which expresses the intuition that any contract’s guarantee stems from its ability
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to align the principal’s and agent’s payoffs.

Finally, Hurwicz and Shapiro [16] also consider a maxmin contracting problem whose

objective involves the ratio of principal’s profits to first-best total surplus. They focus on

a particular class of environments involving quadratic effort costs. Their paper does not

discuss economic intuition behind the optimality argument, which involves a differential

inequality; it seems quite different from the argument here.

Against this backdrop, then, the contribution of the current paper is a combination

of features: The model allows many degrees of freedom (the set of known actions the

agent has can be arbitrary, with no functional form assumptions); the concern for robust

performance is modeled explicitly through the worst-case payoff objective; and we give a

mathematical argument for optimality based on the simple intuition that any contract’s

guarantee is driven by its alignment between the agent’s interests and the principal’s.

Also, in contrast to previous maxmin results, the simple expected-profit objective here

might also be considered more natural than the ratio objective, although this distinction

is a matter of taste.

The model’s mathematical tractability is also a virtue: as discussed in the introduction,

one main purpose of the model is to present a methodology that can be adopted to

study more complicated contracting problems. The various extensions in Section 3 give

a sampling of such possibilities. And one can certainly come up with others beyond

those discussed in detail here: for one more example, suppose that, instead of being

risk-neutral over money, the principal and agent maximize the expected value of some

(known) utility functions; then a straightforward variation of our main argument here

shows that the maxmin-optimal contract is now affine in utility space.3 Another, more

sophisticated, application of our machinery is in the companion paper [3], which takes

the same modeling approach to the principal-expert problem of Zermeño [25, 26] to study

worst-case-optimal incentives for information acquisition.

Relatedly, the modeling approach here may prove useful to future economic theorists,

who need a flexible model of moral hazard that outputs a simple solution, to serve as

just one of many moving parts in some larger model. However, this suggestion should be

supplemented with a note of caution: It is common in applied theory models to assume

full knowledge of the environment, but then exogenously impose a restriction to linear

contracts for tractability (e.g. [10, 13]). The model here cannot be invoked as a justifi-

cation for this practice, since the contract that is best among all linear contracts when

the technology is known to be A0 is generally different from the maxmin-optimal contract

3Details of this model are available from the author.
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studied here.

A Proofs omitted from main text

Proof of Lemma 2.2. First, consider any technology A ⊇ A0. The agent’s payoff is at

least VA(w|A0). That is, his chosen action (F, c) satifies

EF [w(y)] ≥ EF [w(y)]− c ≥ VA(w|A0).

Hence the principal’s payoff, VP (w|A) = EF [y − w(y)], is at least the minimum given by

(2.4). Thus, the principal’s worst-case payoff VP (w) is no lower than given by (2.4).

To see this is tight, let F be a distribution attaining the minimum in (2.4). First

suppose that F does not place full support on values of y for which w attains its maximum.

Then let F ′ be a mixture of F with weight 1−ǫ, and a mass point δy∗ with weight ǫ, where

y∗ is some point where w attains its maximum. Then EF ′ [w(y)] > EF [w(y)] ≥ VA(w|A0).

The strict inequality means that if A = A0 ∪ {(F ′, 0)}, then the agent’s unique optimal

action in A is (F ′, 0), leading to expected payoff (1− ǫ)EF [y − w(y)] + ǫ(y∗ − w(y∗)) for

the principal. As ǫ → 0 this converges to the minimum in (2.4), so the principal cannot

be guaranteed any higher expected payoff.

Now suppose F does place full support on values of y at which w attains its maximum.

If EF [w(y)] > VA(w|A0), then we can again proceed as above with A = A0 ∪ {(F, 0)}.
This leaves only the case of equality — VA(w|A0) = maxy w(y) — which is only satisfied

when A0 contains some action of the form (F, 0) with F supported at output levels for

which w attains its maximum. Then, under technology A0 the agent will choose such an

action. But then the agent would have been willing to choose the same action under the

zero contract (and any A ⊇ A0), which costs less to the principal (strictly, since w is not

the zero contract). Thus VP (w) < VP (0), contradicting eligibility.

This shows (2.4). Now let F ∈ ∆(Y ) attain the minimum in (2.4). We have EF [y −
w(y)] = VP (w) > 0 by eligibility. On the other hand, y − w(y) ≤ 0 when y = 0. Now

if we have EF [w(y)] > VA(w|A0) strictly, then replace F by a mixture of F with weight

1− ǫ and δ0 with weight ǫ, for small ǫ, to see that minimality is contradicted. Hence we

have equality, EF [w(y)] = VA(w|A0), as claimed.

Proof of Lemma 2.4. Although the separation argument in Figure 1 is illustrated in out-

come space, the proof (and result) of this lemma are most cleanly written in payoff space.
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Thus, let S ⊆ R
2 be the convex hull of all points (w(y), y−w(y)) for y ∈ Y . Let T be

the set of all pairs (u, v) ∈ R
2 such that u > VA(w|A0) and v < VP (w). The conclusion

(2.4) of Lemma 2.2 implies that S and T are disjoint.

So by the separating hyperplane theorem, there exist constants κ, λ, µ such that

κ+ λu− µv ≤ 0 for all (u, v) ∈ S, (A.1)

κ+ λu− µv ≥ 0 for all (u, v) ∈ T, (A.2)

and (λ, µ) 6= (0, 0). In addition, if we let F ∗ be the distribution attaining the minimum

in (2.4), the pair (EF ∗ [w(y)], EF ∗ [y − w(y)]) lies in the closures of both S and T , hence

κ+ λEF ∗ [w(y)]− µEF ∗ [y − w(y)] = 0. (A.3)

We will show that λ, µ > 0. Condition (A.2) implies that λ, µ ≥ 0, so we just need to

show that both inequalities are strict:

• If µ = 0, then λ > 0, and (A.1) and (A.2) imply maxy∈Y w(y) ≤ −κ/λ ≤ VA(w|A0).

This can only happen if the agent has some action in A0 that guarantees him a

payment of maxy w(y) and costs zero. As in the proof of Lemma 2.2, this implies

VP (w) < VP (0), contradicting eligibility.

• If λ = 0, then µ > 0, and (A.1) and (A.2) imply miny∈Y (y−w(y)) ≥ κ/µ ≥ VP (w).

But miny∈Y (y−w(y)) ≤ 0−w(0) ≤ 0, so VP (w) ≤ 0, again contrary to assumption.

Now we can rescale κ, λ, µ so as to assume µ = 1. Then, λ remains positive, (A.1)

implies (2.6), and (A.3) implies (2.7).

Proof of Corollary 2.8. Suppose w is an optimal contract. Note that the proof of Lemma

2.5 actually shows that the contract w′ defined by (2.10) satisfies

VP (w
′) ≥ κ+ λVA(w

′|A0) = VP (w) + λ(VA(w
′|A0)− VA(w|A0)). (A.4)

But under the full-support assumption, if w′ is not identical to w then the difference

VA(w
′|A0) − VA(w|A0) is strictly positive. (This follows because the action taken under

w and technology A0 has full support, so gives the agent strictly higher payoff under w′

than w.) Then (A.4) implies that VP (w
′) > VP (w), contradicting optimality of w.
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Therefore, w′ = w. So w is an affine contract. In fact, w must be linear: otherwise the

improvement given by Lemma 2.6 is strict, again contradicting optimality. Thus, every

optimal contract is linear.

Proof of Theorem 3.2. The same steps used for Theorem 2.1 show that there is an optimal

contract that is affine, w(y) = αy + β. Moreover, for any given α, the optimal choice of

β is to be as small as possible subject to the nonnegativity and participation constraints:

β∗(α) = max

{

0, UA − max
(F,c)∈A0

(αEF [y]− c)

}

. (A.5)

Evidently, the first case of the max holds when α is greater than some threshold α, and

the second case holds for α ≤ α (to be precise, α = min(F,c)∈A0
(UA + c)/EF [y]). So we

have an analogue of Lemma 2.3: for any α, the guarantee of the best affine contract with

slope α is at least

max
(F,c)∈A0

(

(1− α)EF [y]−
1− α

α
c

)

− β∗(α), (A.6)

with equality for eligible contracts. Thus finding the optimal contract reduces to maxi-

mizing (A.6) over α.

But when α ≤ α, (A.6) simplifies to

max
(F,c)∈A0

(

EF [y]−
1

α
c

)

− UA, (A.7)

which is increasing in α (or constant, in the case c = 0). And so we conclude that the

maximum is attained at some α ≥ α, where β∗(α) = 0.

Proof of Proposition 3.3. Let (F ∗, c∗) ∈ A0 be the action that maximizes (2.12). So we

have w∗(y) = α∗y, with α∗ =
√

c∗/EF ∗ [y], and the principal’s guarantee is VP (w
∗) =

(
√

EF ∗ [y]−
√
c∗)2. Consider any technology A, and let (F, c) be the agent’s action under

w∗ and A. Thus

α∗EF [y]− c ≥ α∗EF ∗ [y]− c∗. (A.8)

We consider two cases.
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• If c ≥ c∗/2, then the principal’s payoff from contract w∗ is

(1− α∗)EF [y] ≥ 1− α∗

α∗
(α∗EF ∗ [y]− c∗ + c)

= EF ∗ [y]− 2
√

c∗EF ∗ [y] + c∗ +
1− α∗

α∗
c

≥ VP (w
∗) +

1− α∗

α∗

c∗

2
.

• Now suppose c ≤ c∗/2. We know that if the principal learns A before contracting,

then by choosing an appropriate contract she can earn at least (
√

EF [y] −
√
c)2

(since in fact this is her worst-case guarantee with A in place of A0 — note the

condition EF [y] > c is met). We show that this expression is bounded strictly above

VP (w
∗). Define

g(x) =

√

x2 + (α∗EF ∗ [y]− c∗)

α∗
− x (A.9)

for x ≥ 0. Then g is convex, and we check that the minimum is given by the

first-order condition; this condition is satisfied (uniquely) by x =
√
c∗, with value

g(
√
c∗) =

√

EF ∗ [y]−
√
c∗. Now, holding c fixed, treat EF [y] as a variable, constrained

by (A.8) and EF [y] > c. Then (
√

EF [y] −
√
c)2 is minimized by taking (A.8) to

hold with equality, and in this case
√

EF [y] −
√
c = g(

√
c). Thus we see that the

principal can make a payoff of at least

(

√

EF [y]−
√
c
)2

≥
(

g(
√
c)
)2 ≥

(

g(
√

c∗/2)
)2

.

Now observe that (g(
√
c∗/2))2 > (g(

√
c∗))2 = VP (w

∗).

So in both cases, we have a lower bound for the principal’s payoff when she knows A
that is strictly above VP (w

∗).

Proof of Theorem 3.4. Consider any menu W . Let w0 = wA0
, the contract that the agent

would choose when the technology is just A0. We claim that VP (w0) ≥ VP (W), which

will prove the theorem.

Suppose not. Then, there is some technology A1 under which, facing contract w0, the

agent chooses an action (F1, c1) that gives the principal payoff less than VP (W). We may

assume that A1 = A0 ∪ {(F1, c1)}. Note also that (F1, c1) /∈ A0, since otherwise A1 = A0

and so VP (w0|A0) < VP (W) which is a contradiction. It must be that, under w0, the agent

earns strictly higher payoff from (F1, c1) than he does from any action in A0: otherwise
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he would be willing to take the same action under A1 as he does under A0, thereby giving

the principal VP (w0|A0) ≥ VP (W).

Now let w1 = wA1
, the contract chosen from the menu when the technology is A1.

Under w1 and A1, the agent must choose action (F1, c1). Proof: If he chooses any action

in A0, then his payoff is at most VA(w0|A0) (by revealed preference (3.1)). On the other

hand, his payoff under w1 and A1 must be at least as high as his payoff from (F1, c1)

under w0 (by revealed preference again, since w1 was chosen under A1), which is higher

than VA(w0|A0) by the previous paragraph.

Hence, (F1, c1) is the agent’s uniquely chosen action under w1, and

EF1
[w1(y)]− c1 ≥ EF1

[w0(y)]− c1

again by (3.1). Then, the principal’s payoff when the technology is A1 is

EF1
[y − w1(y)] = EF1

[y]− c1 − (EF1
[w1(y)]− c1)

≤ EF1
[y]− c1 − (EF1

[w0(y)]− c1)

= EF1
[y − w0(y)]

< VP (W)

where the last line is by definition of (F1, c1). Since the principal should get at least

VP (W) under every possible technology, we have a contradiction.

B General lower bounds on cost

First, as promised in Subsection 3.1, we illustrate by example how the multiple-observables

model allows us to describe situations where where the cost bound depends on higher

moments of output. Suppose, for example, that only output y is observed, and the

principal knows that any distribution F costs at least h(EF [y])− κ · V arF [y], where h is

some given convex function. Then, we would capture this by putting

Z = {(y, y2) | y ∈ Y }

and

b(z1, z2) = max{0, h(z1)− κ(z2 − z21)}.

Theorem 3.1 would apply, and tell us that an optimal contract is quadratic in y.
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We now embark on the proof of the theorem, which follows the same outline as in

Subsection 2.3. We first characterize the payoff guarantee of any given contract w. The

situation is a bit more complex than before, because the tie-breaking assumption requires

careful treatment of the boundary case in which the agent’s best action under any possible

technology is already available in A0.

For F ∈ ∆(Z) and a given contract w, define h(F |w) = EF [w(z)] − b(EF [z]), the

highest expected payoff the agent could possibly get from producing distribution F . Since

b is convex, h is concave in F .

Lemma B.1. Let w be any contract. Then one of the following two cases occurs:

(i) VP (w) = minEF [z1 − w(z)] over F ∈ ∆(Z) such that h(F |w) ≥ VA(w|A0).

(ii) maxF∈∆(Z) h(F |w) = VA(w|A0).

Proof. Let F0 be a distribution attaining the minimum in (i). (The constraint set is

nonempty since it is satisfied by the action chosen under A0.) Suppose that F0 does not

also maximize h(F |w) over all F ∈ ∆(Z). Then, choose F1 yielding a higher value of h, and

put F ′ = (1−ǫ)F0+ǫF1 for small ǫ. By concavity, h(F ′|w) ≥ (1−ǫ)h(F0|w)+ǫh(F1|w) >
h(F0|w). So if A = A0 ∪ {(F ′, b(EF ′ [z]))}, then the agent’s unique optimal action in A is

(F ′, b(EF ′ [z])). As ǫ → 0 the principal’s resulting payoff tends to EF0
[z1 − w(z)]. Thus

the principal cannot be guaranteed more than the value in (i). On the other hand the

principal is guaranteed at least this much, just as in the proof of Lemma 2.2.

Also, if h(F0|w) > VA(w|A0) strictly, then let A = A0 ∪ {(F0, b(EF0
[z]))}. With this

technology, the agent’s unique optimal action is (F0, b(EF0
[z])), and again the principal

cannot be guaranteed more than the value in (i). Thus in either of these situations VP (w)

is as specified by conclusion (i).

We are left with the situation in which F0 maximizes h(F |w) over all F ∈ ∆(Z) and

h(F0|w) = VA(w|A0). In this case, we have conclusion (ii).

Now we prove Theorem 3.1 by the same process as before: given a non-affine contract

w, use a separation argument to replace it by an affine contract w′ that is pointwise above

it and gives a weakly greater guarantee to the principal. We will perform the separation

in outcome space, not in payoff space as in our proof of Lemma 2.4. In addition, we use

two different versions of the argument, depending which case of Lemma B.1 applies.

Proof of Theorem 3.1. We may assume that the convex hull of Z is a full-dimensional

set in R
k. (This can be accomplished by a linear change of coordinates to embed Z
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in a smaller-dimensional space if necessary, unless Y = {0} but the latter situation is

uninteresting.)

Consider any non-affine contract w. As usual, we may restrict attention to eligible

contracts, since nontriviality ensures such a contract exists. One of the two cases of

Lemma B.1 holds, and we deal with the two separately.

Case (i). We define

t(z) = max{b(z) + VA(w|A0), z1 − VP (w)}

and observe that t is a convex function. Now, we define two sets in R
k+1 = R

k × R. Let

S be the convex hull of all pairs (z, w(z)), for z ∈ Z. Let T be the set of all pairs (z, c)

such that z lies in the convex hull of Z, and c > t(z).

Both of these sets are convex. We claim they are disjoint. If not, there exists some

F ∈ ∆(Z) such that EF [w(z)] > t(EF [z]). In particular,

EF [w(z)] > b(EF [z]) + VA(w|A0)

implying

h(F |w) > VA(w|A0),

and also

EF [w(z)] > EF [z1]− VP (w)

implying

EF [z1 − w(z)] < VP (w).

This is a direct contradiction to our statement (i).

So by the separating hyperplane theorem, there are constants λ1, . . . , λk, µ, ν such that

∑

i

λizi + µc ≤ ν for all (z, c) ∈ S, (B.1)

∑

i

λizi + µc ≥ ν for all (z, c) ∈ T, (B.2)

and some λi or µ is nonzero. Inequality (B.2) implies µ ≥ 0. In fact, µ > 0. Proof:

Suppose µ = 0. Since the projection of either S or T onto the first k coordinates contains

Z, (B.1) gives
∑

i λizi ≤ ν for all z ∈ Z, while (B.2) gives
∑

i λizi ≥ ν for all z ∈ Z. Hence,
∑

i λizi = ν for all z ∈ Z. Since not all λi are zero, this contradicts the full-dimensionality
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of Z.

Now we can rewrite (B.1) as

w(z) ≤ ν −∑

i λizi
µ

for all z ∈ Z.

This motivates us to define

w′(z) =
ν −∑

i λizi
µ

, (B.3)

an affine contract satisfying w′ ≥ w pointwise.

Now we are ready to check that VP (w
′) ≥ VP (w). Let (F0, c0) be the action that the

agent chooses under w and technology A0.

Consider any technology A ⊇ A0. As in the original proof of Theorem 2.1, we certainly

have have VA(w
′|A) ≥ VA(w

′|A0) ≥ VA(w|A0). Let (F, c) be the action chosen under w′

and A. Then (B.2) implies

t(EF [z]) ≥ ν −
∑

i λiEF [zi]

µ

= EF [w
′(z)]

= VA(w
′|A) + c

≥ VA(w|A0) + c

≥ b(EF [z]) + VA(w|A0).

If the inequality is strict, then t(EF [z]) = EF [z1]− VP (w), and so we have

VP (w
′|A) = EF [z1 − w′(z)] = t(EF [z]) + VP (w)− EF [w

′(z)] ≥ VP (w).

Otherwise, t(EF [z]) = b(EF [z]) + VA(w|A0) and so all the inequalities in the stacked

chain above are equalities. In particular, the second inequality is an equality, implying

VA(w
′|A) = VA(w

′|A0) = VA(w|A0). Since the agent does at least as well as VA(w|A0) by

taking action (F0, c0), this action is in his choice set under w′ and A, and so the principal

gets at least the corresponding payoff: VP (w
′|A) ≥ EF0

[z1 − w′(z)]. This is equal to

EF0
[z1−w(z)], since otherwise VA(w

′|A0) > VA(w|A0). But EF0
[z1−w(z)] = VP (w|A0) ≥

VP (w).

Thus in either case, VP (w
′|A) ≥ VP (w). This holds for all A, so VP (w

′) ≥ VP (w).

Case (ii). In this case, define S to be the convex hull of all pairs (z, w(z)), and T to

be the set of all (z, c) with z in the convex hull of Z and c > b(z) + VA(w|A0). These are
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convex, and disjoint: otherwise, there exists F such that

EF [w(z)] > b(EF [z]) + VA(w|A0)

which reduces to

h(F |w) > VA(w|A0),

in contradiction to the statement of (ii). Using the same arguments as in case (i), we find

λ1, . . . , λk, µ, ν such that (B.1) and (B.2) hold, and we show that µ > 0. Again, we define

an affine contract w′ by (B.3); from (B.1) we know that w′ ≥ w pointwise.

Consider the agent’s behavior under contract w′. For any action (F, c) chosen by the

agent under any possible technology, we have

EF [w
′(z)]− c ≤ EF [w

′(z)]− b(EF [z]) = w′(EF [z])− b(EF [z]) ≤ VA(w|A0)

where the second inequality follows from (B.2). That is, the agent can never earn a higher

expected payoff than VA(w|A0). On the other hand, the agent can always earn at least

this much, since VA(w
′|A) ≥ VA(w

′|A0) ≥ VA(w|A0) as usual. So we have equality. From

here the argument finishes just as at the end of case (i), and we have VP (w
′) ≥ VP (w).

Existence of an optimum. We have shown that any contract w with VP (w) > 0

can be (weakly) improved to an affine contract. So it now suffices to show existence of an

optimum within the class of affine contracts, analogous to Lemma 2.7, and this contract

will then be optimal among all contracts.

Put b = maxz∈Z b(z) and y = max(Y ). Note that for any contract w satisfying

maxz∈Z w(z) − b ≥ y, the agent can potentially attain a payoff greater than y, which

means that the principal cannot be guaranteed a positive payoff. Hence we can restrict

attention to contracts with w(z) ∈ [0, y+b] for all z. By full-dimensionality, this implies a

compact range of possible values for the parameters α and β defining the affine contract.

We will show below that VP (w) is upper semi-continuous with respect to w, under the

sup-norm topology on the space of contracts. (It may not be fully continuous.) Since

the affine contract w in turn varies continuously in α, β under this topology, it will then

follow that VP (w) is upper semi-continuous in α, β, so that the maximum is attained.

Let w1, w2, . . . be any contracts that converge to some contract w∞ in the sup norm.

We wish to show that VP (w∞) ≥ lim supk VP (wk). We can replace the sequence (wk) with

a subsequence along which VP (wk) converges to its lim sup on the original sequence; thus,

we assume henceforth that VP (wk) converges. Now consider any technology A, and let
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(Fk, ck) be the agent’s chosen action under A and contract wk. We may again pass to a

subsequence and assume that (Fk, ck) has some limit (F∞, c∞) ∈ A. Then straightforward

continuity arguments show that (F∞, c∞) is an optimal action (perhaps not the only one)

for the agent under w∞, and its payoff to the principal is the limit of the corresponding

payoffs of (Fk, ck) under wk. Hence,

VP (w∞|A) ≥ EF∞
[z1 − w∞(z)] = lim

k
EFk

[z1 − wk(z)] = lim
k

VP (wk|A) ≥ lim
k

VP (wk),

and so VP (w∞) ≥ limk VP (wk) as needed.

C An alternative approach

We give here another, more direct approach to the main argument of Theorem 2.1: that

for any contract w, there is a linear contract w′ that guarantees at least as much for the

principal. (The argument here was suggested by Lucas Maestri.)

Consider any eligible w, and let (F0, c0) be the action that the agent would choose

under technology A0. Put α = EF0
[w(y)]/EF0

[y]. (The denominator must be positive,

since the principal is guaranteed a positive payoff.) Put w′(y) = αy. Notice that under

this contract, the agent can again take action (F0, c0) to earn a payoff of

EF0
[αy]− c0 = EF0

[w(y)]− c0 = VA(w|A0),

and the principal then earns

EF0
[(1− α)y] = EF0

[y − w(y)] = VP (w|A0) ≥ VP (w).

We will show that the principal does at least as well under w′ as under w. Consider an

arbitrary technology A, and let (F, c) be the action the agent would take under contract

w′; we need to show that the principal’s resulting payoff, VP (w
′|A), is at least VP (w). If

EF [y] ≥ EF0
[y], then the principal gets

(1− α)EF [y] ≥ (1− α)EF0
[y] = VP (w|A0) ≥ VP (w).

Also, we have EF [w
′(y)]− c ≥ VA(w

′|A0) ≥ VA(w|A0) by optimality for the agent; and if

equality holds throughout, then the agent would also be willing to choose (F0, c0), again

giving the principal at least VP (w); thus VP (w
′|A) ≥ VP (w) in this case too. So we can
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focus on the case when EF [y] < EF0
[y] and EF [w

′(y)]− c > VA(w|A0).

Put λ = EF [y]/EF0
[y], and let F ′ be the mixture λF0 + (1 − λ)δ0. Then, consider

contract w when the technology is A0 ∪ {(F ′, c)}. The agent’s payoff from (F ′, c) is

EF ′ [w(y)]− c = λEF0
[w(y)] + (1− λ)w(0)− c

≥ λEF0
[w(y)]− c

= λαEF0
[y]− c

= αEF [y]− c

= EF [w
′(y)]− c

> VA(w|A0)

which means that the agent would strictly prefer to take action (F ′, c) over any other

action. This leaves the principal with a payoff of

EF ′ [y − w(y)] = λEF0
[y − w(y)]− (1− λ)w(0)

≤ λEF0
[y − w(y)]

= (1− α)EF [y]

= EF [y − w′(y)]

= VP (w
′|A).

Thus we have VP (w) ≤ VP (w
′|A). So we have shown this inequality holds for all A,

implying VP (w) ≤ VP (w
′).

We comment that, while this proof is quicker and more direct than the support-line

approach in the main text, we have focused on that approach for two reasons. One is

that it generalizes readily, in particular to the multiple-observables extension of Appendix

B and to the principal-expert problem in [3]. The approach above depends on taking a

convex combination of an arbitrary distribution with δ0 to attain a specific expected

output; it is not clear how to extend it when the space of observable outcomes is not

one-dimensional. The second reason is that Corollary 2.8 — only linear contracts are

optimal with full support — is almost immediate with the support-line approach; with

the argument here it seems to require more work.
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