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Abstract

Two agents can each accept or reject a proposed deal, whose value for each agent

depends on an unknown state, and may be positive or negative. The deal takes place

only if both accept. Each agent can be imperfectly informed, in an arbitrary way,

about both her own value and the other agent’s. In such environments, contagious

adverse selection may prevent the deal from being reached even when it is mutually

beneficial ex post. We give an upper bound on the ex-ante expected welfare loss in

equilibrium due to such contagion, valid for any information structure. The welfare

loss is small if negative values are unlikely ex ante; and under an assumption of

known aggregate gains from the deal, our bound is sharp. The bound has a succinct

description, even though the equilibrium itself, in any given information structure,

may be hard to describe explicitly.
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1 Introduction

Imagine two agents contemplating a proposed agreement. The value of the agreement for

each agent depends on an unknown state of the world, and each of them may have some

private information about this state. Ex ante, with high probability, both parties stand

to benefit from the deal, but each also foresees some nonnegligible probability that the

deal will turn out badly for her. Each agent may accept or reject, and the deal takes place

only if both accept.

Many kinds of interactions can be described by this simple setup:

• The agents may be a buyer and seller of a good. Since our model assumes the

only options are accept or reject — no bargaining over the price — the applications

would be ones where the price is fixed in advance.

For example, the agents may be a manager and a potential employee, deciding

whether to begin an employment relationship. The manager has private information

about the nature of the work, and the employee has superior knowledge of her

productivity, both of which affect both agents’ value for the relationship. The

salary is fixed by corporate policy, government pay scale, or union contract, and

cannot be negotiated.

• The agents may be representatives of two countries, deciding whether to finalize a

trade agreement.

• The agents may be two members of a hiring committee, voting on an offer to a job

candidate; the candidate is hired only if the vote is unanimous.

In such a situation, the deal may fail even if its total value to the two agents is positive.

Such failure can occur for several reasons. First, of course, either agent can reject the

deal if she expects its value to her is negative. Second, there may be adverse selection:

agent 1 may realize that agent 2 accepts the deal only if it is likely to be favorable to

agent 2, which could be an indication that it is unfavorable to agent 1. This can motivate

agent 1 to reject, even when her expected value based on her own information alone is

positive. A long literature in information economics since Akerlof (1970) has emphasized

this possible reason for breakdown of trade.

Third, and more subtly, this breakdown can be exacerbated by contagion: Once agent

2 realizes that agent 1 may sometimes reject due to adverse selection as above, this can in
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turn make 2 reject for other realizations of her private signal, and so forth. Thus, higher-

order beliefs can play an important role in breakdown of trade. A recent literature has

started to explore the importance of this contagion in economic outcomes (Rubinstein,

1989; Morris and Shin, 2012; Angeletos and La’O, 2013).

It seems, then, that we cannot predict the outcome of the interaction without knowing

the details of the information structure: whether one agent is perfectly informed and the

other completely uninformed; or each receives a conditionally-independent noisy signal

of the state; or perhaps something much more intricate. Unfortunately, information

structures (and especially higher-order information) can be complex, and very hard for an

outside observer to model accurately. In this paper, we show that we can nonetheless give

a bound on the extent of informational contagion, valid across all information structures.

In particular, the effect of contagion goes to zero as the measure of states where either

agent is hurt by the deal goes to zero. Moreover, under an assumption that the deal is

beneficial in aggregate, our bound is sharp, and identifies the information structure that is

most harmful to trade. Perhaps surprisingly, in this worst case, contagion is not a factor

at all.

A numerical example will help illustrate our results. Suppose that it is commonly

known in advance that the proposed deal produces an aggregate net benefit of 2, but the

distribution of this benefit is uncertain. Ex ante, there is a 80% chance that each agent’s

value is 1; but there is also a 10% chance that agent 1 gains 3 from the deal and agent 2

loses 1, and a 10% chance of the reverse payoffs. In brief, the payoffs from the deal are

(3,−1) with probability 10%;

(1, 1) with probability 80%;

(−1, 3) with probability 10%.

(If the deal is rejected, both agents receive 0.)

In this case, our main theorem will say that, no matter what the information stucture

is, the Bayesian game between the two agents has an equilibrium in which at least 60%

of the aggregate gains from the deal are realized (in expectation). Thus, the effects of

contagion are limited to 40% of possible realizations.

Moreover, this 40% bound is sharp. And while we will have to wait to show in detail

why the bound holds, sharpness is easy to see: Consider an information structure in which

both agents receive the same signal — either a “1-favorable” signal (which indicates that

state (3,−1) is relatively likely, in which case agent 2 does not want to trade), or a “2-
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favorable’ ’signal (in which case 1 does not want to trade), or a “normal” signal. The

joint distribution of the signal with the players’ values is as shown in Table 1; here ǫ > 0

is arbitrarily small. In equilibrium, trade can never occur under the 1-favorable or 2-

favorable signals, whose combined probability is 40% − 2ǫ. Note that in this (limiting)

worst-case scenario, all information is public and so informational contagion actually plays

no role.

Values Normal 1-favorable 2-favorable
(3,−1) 10%
(1, 1) 60% + 2ǫ 10%− ǫ 10%− ǫ
(−1, 3) 10%

Table 1: Distribution of values and (public) signals

Our bound on contagion is both obvious and subtle. It is seemingly obvious in the

sense that, if the deal fails, it should be either because agent 1 expects a negative payoff

and so rejects the deal, or agent 2 does. In the 10–80–10 distribution above, any event

over which agent 1’s expected value is negative has probability less than 20%, and likewise

for agent 2, thus suggesting the 40% upper bound. But the result is subtle because of the

interaction of the agents’ information: It is not the case that each agent simply refuses the

deal when her expected value conditional on her signal is negative. Instead, in equilibrium,

each should be conditioning on the information content of the other agent’s acceptance. In

particular, the equilibrium may require mixed strategies, which makes clear that it cannot

be described by a simple yes/no threshold rule on conditional expectations. (An example

illustrating this, and adhering to the 10–80–10 distribution, appears in Appendix A.) This

means that to prove the bound, we need an argument that avoids actually constructing

the equilibrium.

There are two main perspectives on interpretation of our results. One is that this work

contributes to theoretical understanding of the role of higher-order beliefs. In particular,

the recent literature on contagion uses email-game-like information structures (Rubinstein,

1989; Weinstein and Yildiz, 2007) to show how contagion across information sets can

potentially lead to widespread coordination failure. Our results answer this concern by

showing that, from an ex-ante point of view, such contagion is limited.

The other interpretation is more positive: our bounds can be useful to parties deciding

whether to invest in a future opportunity for mutually beneficial trade. For example,

imagine a buyer and seller, making plans at date 0, and anticipating that at date 1 they

4



may wish to trade some widget. At that time, each side may end up with some private

information regarding the cost of production and the value to the buyer, and may choose

to back out of the proposed trade based on this information. At date 0, they need to

decide whether to make some investment (such as production capacity, or building a

prototype) that is necessary in order to be able to trade at date 1. Our model applies

if they can currently foresee the physical circumstances that affect each party’s value for

the trade, but cannot anticipate exactly what each party will know when date 1 arrives.

A lower bound for the gains from trade realized in equilibrium can potentially provide an

immediate guarantee that the investment is worthwhile.1

A related application might be to a regulator designing a financial market, in which

agents might be able to trade some security whose value depends on future events. If

the regulator can anticipate how the events will affect the security’s value but not the

details of what information traders will have, a lower-bound result can potentially provide

assurance that the market can produce enough trade to warrant the fixed costs of creating

the market, even though not all socially valuable trades can be realized in equilibrium.

As these examples suggest, our results also tie in with a recent literature on robust

mechanism design, and can be interpreted as showing that the simple accept/reject mech-

anism can provide a guarantee on realizable gains from trade that is as good as any more

sophisticated contract design. This connection will be developed more precisely in Section

5.

Methodologically, the broader question behind this paper is: In situations of uncer-

tainty, what can we predict about outcomes of economic interactions without knowing

the details of the information structure? Work on this question was pioneered by Berge-

mann and Morris (2013, 2016), taking a similar approach at an abstract level to general

static games, and also applying it to games with a quadratic-normal structure; and by

Bergemann, Brooks, and Morris (2013, 2016), performing a similar analysis in a monopoly

pricing problem and in a first-price auction. The quadratic-normal application was fur-

ther advanced by Bergemann, Heumann, and Morris (2015a, 2015b). We contribute to

exploration of this general question, choosing one of the simplest possible kinds of games,

1It might seem that the whole accept-reject game in our model is unnecessary here: if the ex ante
gains from trade are positive, the parties should simply contract to trade for sure, and not allow anyone
to back out. However, the model fits the following variant: The trade will be socially valuable at date 1
only in a subset of states. At date 1, the parties will know whether the trade is valuable, and in addition,
may have further private information about each party’s value as above. If the states in which trade
is valuable are hard to describe ex ante, the parties may prefer to simply write a contract that allows
either of them to back out at date 1. Then our model describes what happens conditional on trade being
valuable.
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and studying the information-free predictions.

However, a basic difference between this paper and the others mentioned is that the

BCE framework used in these other papers considers all possible equilibria, across all

information structures. In the game we study, it is always an equilibrium for both parties

to always reject the deal; and moreover, this equilibrium cannot easily be refined away

(see Subsection 4.3). So if we allowed all equilibria, we could not make any predictions

about the realized gains from trade. Consequently, we instead study what happens in the

best equilibrium for each possible information structure. This difference in focus has a

couple consequences. First, the interpretation of the results is different; it makes sense to

regard the result directly as a positive prediction of behavior only in situations in which

coordination on the best equilibrium is a plausible assumption. Second, we cannot use the

same technical tools as in the Bergemann-Brooks-Morris work; we need a new method.

This is discussed further at the start of Subsection 3.2 where the proofs appear.

Our contribution is also reminiscent of the work of Kajii and Morris (1997) on ex-

ante robustness to incomplete information. They consider Nash equilibria of complete-

information games, and give conditions under which any nearby incomplete-information

game must have a nearby equilibrium. In fact, their argument leads to a sharp quantitative

bound on how far the equilibrium can move when one introduces a given amount of

incomplete information. In our model, we give a corresponding quantitative bound on

how far the equilibrium can be from the benchmark of full acceptance. A difference is that

they allow the payoffs in the newly-introduced states to be adversarially chosen (subject

to a bound); we take the payoff distribution as given.

2 Model

Let’s now flesh out the formal model. The two agents are called 1 and 2. Their values for

the proposed deal, v1 and v2, are random variables whose joint distribution is described

by an exogenously given probability measure µ on R
2, with compact support. This µ

describes the prior belief, shared by the two agents and by the outside observer who is

trying to make predictions.

Each agent can either accept or reject the deal. If both accept, they receive payoffs

(v1, v2). If either rejects, then both receive payoff 0. We will assume that neither agent is

certain ex ante that the deal is beneficial for her: the events v1 < 0 and v2 < 0 both have

positive probability under µ.

Both agents may receive information prior to playing the game, via an information
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structure which is unknown to the observer. We restrict to finite information structures,

to avoid complications with equilibrium existence. Thus, an information structure consists

of two finite sets of signals, I1 and I2, and a joint probability measure ν on R
2 ×I1 ×I2,

such that the marginal of ν on the R
2 component coincides with µ. The signals received

by the two agents will be denoted by η1 ∈ I1 and η2 ∈ I2.

Any information structure induces a Bayesian game, in which the two agents observe

their signals and then decide whether to agree to the deal. Each agent i’s possible (mixed)

strategies are functions σi : Ii → [0, 1], denoting the probability of agreeing after each

signal. The expected payoffs from a strategy profile (σ1, σ2) are

u1(σ1, σ2) =

∫
σ1(η1)σ2(η2)v1 dν, u2(σ1, σ2) =

∫
σ1(η1)σ2(η2)v2 dν. (2.1)

(Here and subsequently, whenever we write an integral, the domain of integration is the

entire probability space unless indicated otherwise.) The strategy profile is a (Bayesian

Nash) equilibrium if

u1(σ1, σ2) ≥ u1(σ
′
1, σ2) and u2(σ1, σ2) ≥ u2(σ1, σ

′
2)

for any alternative strategies σ′
1, σ

′
2.

The observer would like to make robust predictions about the best possible equilibrium.

This could naturally be taken to mean the equilibrium that realizes the highest sum of the

agents’ payoffs; but we could also imagine other criteria, e.g. the highest probability of

mutual acceptance, or total welfare with some states weighted more heavily than others.

We give a general formulation. So, we assume the observer has an objective, represented by

some bounded, measurable function of v1, v2, call it w(v1, v2): The observer gets w(v1, v2)

when both agents accept and 0 otherwise. Thus, the observer’s criterion is

W (σ1, σ2) =

∫
σ1(η1)σ2(η2)w(v1, v2) dν.

For example, if we define w(v1, v2) = v1 + v2 then this captures the expected aggregate

surplus realized in equilibrium; if w(v1, v2) = 1 then we have the probability of acceptance.

We then say that a value x for the observer’s criterion is a robust prediction if,

for every information structure (I1, I2, ν), there exists an equilibrium (σ1, σ2) satisfying

W (σ1, σ2) ≥ x.2 We would like to give such a robust prediction and, if possible, identify

2Admittedly, the term “prediction” is an imperfect fit, since it may suggest a point estimate, whereas

7



the maximum robust prediction.

Our analysis will also lead us naturally to look at situations where there is no private

information, i.e. there may be an informative signal but any such signal is observed by

both agents. Explicitly, we say the information structure is public if I1 = I2 and the

measure ν places probability 1 on the event η1 = η2. We say that a value x is a robust

prediction under public information if, for every public information structure (I1, I2, ν),

there exists an equilibrium (σ1, σ2) satisfying W (σ1, σ2) ≥ x.

We have so far made no assumptions on the exogenous value distribution µ. At some

points, we will impose one or the other of the following conditions, under which we can

show stronger results:

• Condition A: With probability 1 under µ, max{v1, v2} ≥ 0.

• Condition B: With probability 1 under µ, max{v1, v2} ≥ 0 and also w(v1, v2) ≥ 0.

In the benchmark case where the observer’s criterion is the aggregate welfare w(v1, v2) =

v1 + v2, the first part of Condition B is redundant: the condition just requires that

v1 + v2 ≥ 0 for sure, i.e. there is ex-ante certainty that the deal is beneficial in aggregate

(as in the example from the introduction).

3 Results

3.1 Measures and decompositions

To identify how good or bad an equilibrium outcome is from the observer’s point of view,

it suffices to describe the event where the deal is rejected: An upper bound on the size

of the rejection event (in the best equilibrium) means a lower bound on the observer’s

criterion, and thus gives a robust prediction.

Our main results describe these possible rejection events. The first main result says

that for any information structure, there exists an equilibrium in which the event of

rejection is bounded above by the union of two other events, one on which the expected

value of v1 is negative and one on which the expected value of v2 is negative. Under

Condition A, we can easily strengthen this to ensure that these two bounding events are

disjoint. (Note that this result is just a characterization of the overall rejection event: It

in our language, if x is a robust prediction then any lower value is as well. A name like “robustly
attainable value” might be more descriptive. But we keep “prediction” for simplicity.
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does not say that in equilibrium, agent 1 rejects on the v1-negative event, and agent 2

rejects on the v2-negative event.)

The second main result is a sort of converse: for any event that can be expressed as a

disjoint union of two negative-value events of this form, there is an information structure

that ensures the deal is rejected there. Moreover, one can choose the information structure

to be public.

If µ satisfies Condition B, then these two results are exactly complementary: taken

together, they identify the maximum robust prediction.

The formal statements will require some further definitions. The verbal descriptions

so far have been in terms of states of nature and rejection events, but in fact it will be

more convenient for us to work with (sub-probability) measures on R
2. Talking in terms of

states and events would require explicit reference to probability spaces, which would have

to be large enough to describe not only the players’ signals but also any coin flips involved

in mixed strategies, thus creating extra baggage to carry around. We are not interested in

the coin flips themselves, but just in how the possible outcomes — acceptance or rejection

— carve up the probability mass that is initially represented by µ. This division can be

most succinctly expressed via measures.

Specifically, given an information structure, and given (mixed) strategies (σ1, σ2), we

can define a measure µD by

µD(E) =

∫
σ1(η1)σ2(η2)1((v1, v2) ∈ E) dν,

for any measurable set E ⊆ R
2. So for any E, µD(E) gives the probability that the pair

of values (v1, v2) is in E and the deal is mutually accepted. (Compare to µ(E) which

simply gives the probability that (v1, v2) ∈ E.) Likewise, we can define µND by

µND(E) =

∫
(1− σ1(η1)σ2(η2))1((v1, v2) ∈ E) dν.

This is the probability that (v1, v2) ∈ E and at least one agent rejects the deal. We call

µD and µND the deal measure and no-deal measure associated to strategies (σ1, σ2), and

note that µD + µND = µ. Note also that we can rewrite the observer’s criterion as

W (σ1, σ2) =

∫
w(v1, v2) dµD. (3.1)

Now say that a measure µ′ on R
2 has a negative decomposition bound if there exist
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two (nonnegative) measures µ1, µ2 with the following properties:

(i) µ′ ≤ µ1 + µ2 (that is, µ′(E) ≤ µ1(E) + µ2(E) for every E);

(ii) µ1 ≤ µ and µ2 ≤ µ;

(iii)
∫
v1 dµ1 < 0 and

∫
v2 dµ2 < 0.

Say that µ′ has a disjoint negative decomposition bound if (ii) can be replaced by the

stronger

(ii’) µ1 + µ2 ≤ µ.

Our first main result is then expressed as follows:

Proposition 3.1. (a) Let (I1, I2, ν) be any information structure. There exists an equi-

librium (σ1, σ2) whose no-deal measure has a negative decomposition bound.

(b) If µ satisfies Condition A, then for any information structure, there exists an equi-

librium whose no-deal measure has a disjoint negative decomposition bound.

The (partial) converse proposition says that, given any measure that has a disjoint

negative decomposition bound, we can find an information structure where the deal is

necessarily rejected at least that often in equilibrium.

Proposition 3.2. Let µ′ be a measure that has a disjoint negative decomposition bound.

Then there exists an information structure such that, in any equilibrium, the no-deal

measure µND satisfies µND ≥ µ′. Moreover, we can take this information structure to be

public.

Evidently, Proposition 3.1 leads to an upper bound on the size of the no-deal measure.

If the ex-ante probability that v1 < 0 or v2 < 0 is small, then the measures µ1 and µ2 in

the definition of a negative decomposition bound must be small, to satisfy (iii); and so

µND, to have a negative decomposition bound, must also be small — that is, the deal is

mutually accepted with high probability.

Under Condition B, Propositions 3.1 and 3.2 together pin down the maximum robust

prediction that the observer can make:

Corollary 3.3. Suppose Condition B is satisfied. Then, for a real number x, the following

are equivalent:
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(a) x is a robust prediction;

(b) x is a robust prediction under public information;

(c) x ≤
∫
w(v1, v2) dµ− supµ′

∫
w(v1, v2) dµ

′, where the supremum is over all measures

µ′ having a disjoint negative decomposition bound.

Proof: (a) ⇒ (b): If a prediction of x is valid for any arbitrary information structure,

it is valid for any public information structure.

(b) ⇒ (c): Suppose that the conclusion (c) fails to hold. Then x >
∫
w(v1, v2) dµ −∫

w(v1, v2) dµ
′ for some particular µ′ that has a disjoint negative decomposition bound. So,

by Proposition 3.2, there exists a public information structure where, in every equilibrium,

the no-deal measure is at least as large as µ′, and therefore the deal measure µD is bounded

above by µ − µ′. So, by (3.1) and the fact that w ≥ 0 everywhere, in every equilibrium

the observer’s criterion is W (σ1, σ2) ≤
∫
w(v1, v2) d(µ− µ′) < x. Thus, x is not a robust

prediction under public information.

(c) ⇒ (a): Suppose x satisfies the condition of (c). Take any information structure.

Proposition 3.1(b) applies (since Condition A holds), and we get an equilibrium (σ1, σ2)

whose no-deal measure µND has a disjoint negative decomposition bound. Then, using

(3.1),

W (σ1, σ2) =

∫
w(v1, v2) dµD =

∫
w(v1, v2) dµ−

∫
w(v1, v2) dµND ≥ x

by the assumption in (c). So x is a robust prediction. �

Ahead, in Subsection 3.3, we will show how to mechanically calculate the supremum

in (c). But first, we prove our main results.

3.2 Proofs of main results

We first consider how to prove Proposition 3.1 — existence of a “good” equilibrium for

any information structure.

One natural proof approach would be to follow the revelation-principle-style argument

familiar from the correlated and Bayes correlated equilibrium literature (Aumann, 1987;

Myerson, 1986; Bergemann and Morris, 2016): replace the information structure by one

in which each player has just two possible signals, “accept” or “reject,” corresponding to

the action she would have taken under the original signal; and specify that each player’s

equilibrium action is to follow her signal. Unfortunately, this simplification will not work
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in our setting because we are proving a bound on the best equilibrium for each information

structure, not on all equilibria. Simplifying the information structure in this way may

introduce new, spurious equilibria. So proving a statement about the best equilibrium for

the simplified information structure will not tell us anything about the original information

structure.3

Another approach would be to try to explicitly describe the equilibrium, by applying

contagion directly: Start from the strategy profile where both agents always accept the

deal. Now identify the information sets (i.e. signals) of each agent where her (expected)

value for the deal is negative, and change her strategy to have her reject here. This gives

us a new strategy profile. Now adverse selection may apply: there may be new signals

where an agent’s expected value becomes negative once conditioning on the other agent’s

acceptance. Change her strategy to reject here, again obtaining a new strategy profile.

And so forth. If this process terminates at the equilibrium strategy profile, then perhaps

it allows us to infer properties of this profile.

This cannot be exactly correct: As mentioned in the introduction (and detailed in

Appendix A), the equilibrium may require mixing, so an iterative algorithm like the

above will not actually reach it. But it turns out that a variant does work. The algorithm

above considers, at each step, the strategy profile that accepts the deal on all signals not

yet reached by the contagion, and rejects on all signals that have been reached. Our

variant, instead, considers a Nash equilibrium of the “constrained game” where players

are required to accept on the signals not yet reached by contagion, but are free to accept

or reject on the signals that have been reached. Such an equilibrium always exists, by

the Nash existence theorem. At each step of the iteration, contagion spreads to some

new signal where a player would prefer to reject, given the opponent’s current strategy.

When the iterative process terminates, the signals reached by contagion are not an exact

description of the equilibrium no-deal event, but they do give an upper bound for it. By

keeping mildly careful accounts of how the contagion spreads, we can show that this upper

bound meets the conditions required for Proposition 3.1.

As a historical note, the “constrained game” method to show existence of equilibria

with specific properties has been used elsewhere (for example Monderer and Samet, 1989);

this author does not know of any previous work where it has been used iteratively, as is

done here.

3The simplification actually does work for the worst-case information structure in the proof of Proposi-
tion 3.2 below; no new and better equilibria are introduced. But again, this doesn’t help prove Proposition
3.1, because we cannot know this information structure is the worst case until we have already proven
the proposition.
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Proof of Proposition 3.1: First we prove part (a). Take an information structure

as given.

We successively define sequences of signal sets J k
1 ⊆ I1,J k

2 ⊆ I2 and functions λk
1, λ

k
2 :

I1 × I2 → [0, 1], for k = 0, 1, . . .. These sets and functions will be made to satisfy the

following conditions:

(a) λk
1(η1, η2) = 0 whenever η1 ∈ J k

1 ;

(b) λk
2(η1, η2) = 0 whenever η2 ∈ J k

2 ;

(c) if (η1, η2) /∈ J k
1 × J k

2 , then λk
1(η1, η2) + λk

2(η1, η2) ≥ 1;

(d) if J k
1 6= I1, then

∫
λk
1(η1, η2)v1 dν < 0;

(e) if J k
2 6= I2, then

∫
λk
2(η1, η2)v2 dν < 0.

For each player i, J k
i will be the set of signal realizations that have not yet been reached

by contagion, at stage k of the iterative algorithm. λk
1 and λk

2 will be the accounting that

we eventually use to construct the negative decomposition bound.

For the base case, we take J 0
1 = I1, J 0

2 = I2, and λ0
1, λ

0
2 identically zero. It is clear

that (a) and (b) hold, and (c)–(e) are vacuous.

Now suppose these sets and functions have been defined for some k. Consider the

Bayesian game where each player learns her signal according to ν, and accepts or rejects

the deal, with the constraint that each player i must accept whenever ηi ∈ J k
i . That is,

the (mixed) strategy space of i is the set of σi : Ii → [0, 1], such that σi(ηi) = 1 whenever

ηi ∈ J k
i ; and the payoffs are given by (2.1). This constrained game has a Bayesian Nash

equilibrium, call it (σ1, σ2) for now.

Suppose that (σ1, σ2) is not an equilibrium of the original, unconstrained game. In this

case we will define J k+1
1 ,J k+1

2 , λk+1
1 , λk+1

2 . One of the players has a profitable deviation,

say player 1 (the argument for player 2 is analogous). In particular, there is at least one

signal η∗1 on which she benefits from deviating. That is, there is σ′
1 that agrees with σ1

for all signals except η∗1, and such that

u1(σ
′
1, σ2) > u1(σ1, σ2). (3.2)

We must have η∗1 ∈ J k
1 , because otherwise the deviation σ′

1 would be allowed in the

constrained game, and (3.2) contradicts the assumption that (σ1, σ2) was an equilibrium

13



of the constrained game. Therefore, σ1(η
∗
1) = 1, and σ′

1(η
∗
1) < 1. So (3.2) implies

∫

η1=η∗
1

σ2(η2)v1 dν < 0. (3.3)

Define J k+1
1 = J k

1 \ {η∗1}, and define

λk+1
1 (η1, η2) =

{
σ2(η2) if η1 = η∗1,

λk
1(η1, η2) otherwise.

Also define J k+1
2 = J k

2 and λk+1
2 = λk

2.

Thus, stated in words: At step k + 1, contagion has spread to the one new signal η∗1;

and we update our accounting by recording agent 2’s current strategy σ2 in the values of

λ1(η
∗
1, η2), keeping all other λ’s unchanged.

We check that (a)-(e) are satisfied for step k + 1. It is straightforward to see that (a)

for k + 1 follows from (a) for k. For (c), we only need to check the cases where η1 = η∗1.

There are two possibilities. If η2 /∈ J k
2 , then since λk

1(η1, η2) = 0 (by (a) for k), we get

λk+1
1 (η1, η2) + λk+1

2 (η1, η2) ≥ λk
1(η1, η2) + λk+1

2 (η1, η2)

= λk
1(η1, η2) + λk

2(η1, η2) (because λk+1
2 = λk

2)

≥ 1. (by (c) for k)

If on the other hand η2 ∈ J k
2 , then λk+1

1 (η1, η2) = σ2(η2) = 1 already. So (c) holds. For

(d), we already know
∫
λk
1(η1, η2)v1 dν ≤ 0. And

∫
λk+1
1 (η1, η2)v1 dν −

∫
λk
1(η1, η2)v1 dν

=

∫

η1=η∗
1

(λk+1
1 (η1, η2)− λk

1(η1, η2))v1 dν

=

∫

η1=η∗
1

σ2(η2)v1 dν

< 0

by (3.3). Finally, (b) and (e) hold since J k+1
2 = J k

2 and λk+1
2 = λk

2.

Now, at each step k of this construction, the sets J k
1 ,J k

2 become weakly smaller, and

one of them becomes strictly smaller. By finiteness, the process must stop at some final

step K. This can only happen when the constrained equilibrium (σ1, σ2) is an equilibrium

14



of the unconstrained game. This will be the equilibrium claimed in the proposition, so

we focus now on this K and these strategies. Let µND be the no-deal measure associated

to this equilibrium. We must show the existence of measures µ1, µ2 on R
2 satisfying

conditions (i)–(iii) for a negative decomposition bound on µND.

Suppose for now that J K
1 6= I1 and J K

2 6= I2. Define µ1, µ2 by

µi(E) =

∫
λK
i (η1, η2)1((v1, v2) ∈ E) dν

for i = 1, 2. Note that for any signals η1, η2 we have

1− σ1(η1)σ2(η2) ≤ λK
1 (η1, η2) + λK

2 (η1, η2). (3.4)

This is because either (η1, η2) ∈ J K
1 × J K

2 and the left side is zero by definition of the

constrained game, or else (η1, η2) /∈ J K
1 × J K

2 and then (3.4) follows from condition

(c). Now integrating (3.4) over any E ⊆ R
2 gives µND(E) ≤ µ1(E) + µ2(E), which is

condition (i) for a negative decomposition bound. Condition (ii) follows from the fact that

λK
1 , λ

K
2 ≤ 1 everywhere. And (iii) holds because (d) and (e) from the iterative process

ensure that ∫
vi dµi =

∫
λK
i (η1, η2)vi dν < 0

for each i.

If J K
1 is all of I1 or J K

2 is all of I2, then the only difference is that condition (iii)

becomes an equality. For example, if J K
1 = I1, then µ1 is the zero measure, so we have∫

v1 dµ1 = 0, instead of < 0 which is what we need. In this case, redefine µ1 by

µ1(E) = µ(E ∩ {(v1, v2) | v1 < 0}).

By assumption, the event v1 < 0 has positive probability under µ, so µ1 is a nonzero

measure and
∫
v1 dµ1 < 0; and conditions (i), (ii) still hold. Similarly, if J K

2 = I2 then

redefine µ2 analogously. The new µ1, µ2 now satisfy conditions (i)–(iii).

This proves part (a) of Proposition 3.1. To prove part (b), we show how to transform

any negative decomposition bound into a disjoint one, under Condition A.

Let µ1, µ2 be as given by part (a), and suppose that Condition A holds. Let µ∆

denote the positive part of the signed measure µ1 + µ2 − µ. That is, taking S+, S− to be

the positive and negative events of µ1 + µ2 − µ (given by the Hahn decomposition, see
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Billingsley (2012, p. 447)), we define

µ∆(E) = µ1(E ∩ S+) + µ2(E ∩ S+)− µ(E ∩ S+).

Note that µ2 ≤ µ implies µ∆(E) ≤ µ1(E∩S+) ≤ µ1(E) for each E, and likewise µ∆(E) ≤
µ2(E). Define

µ̃1(E) = µ1(E)− µ∆(E ∩ {(v1, v2) | v1 ≥ 0})

and

µ̃2(E) = µ2(E)− µ∆(E ∩ {(v1, v2) | v1 < 0}).

In particular, 0 ≤ µ∆ ≤ µ1, µ2 implies that µ̃1, µ̃2 are nonnegative measures; and µ̃1+µ̃2 =

µ1 + µ2 − µ∆.

We will show that (µ̃1, µ̃2) is a disjoint negative decomposition bound for the no-deal

measure µND. Since µ and µ1 + µ2 are both upper bounds for µND, we have for any E:

µND(E) = µND(E ∩ S+) + µND(E ∩ S−)

≤ µ(E ∩ S+) + µ1(E ∩ S−) + µ2(E ∩ S−)

= µ1(E) + µ2(E)− µ∆(E)

= µ̃1(E) + µ̃2(E),

showing that condition (i) for a disjoint negative decomposition bound is met. Condition

(ii’) is met because µ̃1+ µ̃2 = µ1+µ2−µ∆ ≤ µ1+µ2− (µ1+µ2−µ) = µ. And as for (iii),

notice that µ̃1 is obtained from µ1 by removing mass where v1 ≥ 0, and µ̃2 is obtained

from µ2 by removing mass where v2 ≥ 0 (since v1 < 0 implies v2 ≥ 0 by Condition A).

Therefore, (iii) for (µ̃1, µ̃2) follows from (iii) for (µ1, µ2). �

It now remains to prove Proposition 3.2, on existence of an information structure

forcing some amount of rejection. This proof is a very simple construction: Let (µ1, µ2)

be the disjoint negative decomposition bound for the given measure µ′. Then, simply

have both players observe whether they end up in µ1, µ2, or neither.

Proof of Proposition 3.2: Let (µ1, µ2) be the disjoint negative decomposition

bound for µ′, and put µ0 = µ − (µ1 + µ2). Let I1 = I2 = {0, 1, 2} be the set of signals.

Define the measure ν on R
2 × I1 × I2 as follows: for any E ⊆ R

2,

ν(E × {(0, 0)}) = µ0(E), ν(E × {(1, 1)}) = µ1(E), ν(E × {(2, 2)}) = µ2(E),
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and ν puts zero mass on all other signal pairs. Evidently, ν is a probability measure

whose marginal on R
2 is µ0 +µ1 +µ2 = µ. Thus, we have a public information structure.

For any equilibrium (σ1, σ2), we must have σ1(1)σ2(1) = 0: If σ2(1) > 0, then agent 1

will strictly prefer to reject when she receives signal 1, since her payoff from accepting is∫
σ2(1)v1 dµ1 < 0. Likewise, σ1(2)σ2(2) = 0. It follows that the resulting no-deal measure

satisfies µND ≥ µ1 + µ2 ≥ µ′. �

3.3 Computing the robust prediction

When the distribution of values satisfies Condition B, our Corollary 3.3 characterizes the

maximum robust prediction, that is, a tight lower bound on the value of the best equilib-

rium. In this subsection we show how to actually calculate this tight bound. Evidently,

this task is equivalent to calculating the supremum in (c) of the corollary: the maximum

total value, as measured by the observer’s criterion w, that can be packed into a measure

with a disjoint negative decomposition bound. Equivalently, this is the maximum total

value of w that can be packed into two measures carved out of the prior µ, one on which

the expected value of v1 is negative and one on which the expected value of v2 is negative.

(Because of the strict inequalities, the worst case is not actually attained; we ignore this

for the informal description here.)

It is intuitive that this maximum is found by a greedy algorithm: To form the first

measure µ1, start with all the mass from µ where v1 is negative; then successively add in

remaining mass from µ, proceeding from regions where the ratio w/v1 is highest to where

it is lowest, stopping once the average value of v1 so far reaches zero. Likewise with v2 to

form measure µ2.

In the benchmark situation where w(v1, v2) = v1+v2, the result of this greedy algorithm

can be re-expressed as follows: the worst-case µ1 consists simply of the mass from µ lying

above some upward-sloping line through the origin in the (v1, v2)-plane; similarly, µ2

consists of the mass lying below some such line. These regions are shown in Figure 1,

where the gray heat map represents the density of the prior distribution µ. (Note we

ignore the lower-left half-plane v1 + v2 < 0 since Condition B implies that values in

that half-plane never occur.) The worst-case µ1 consists of all the mass from µ lying in

the horizontally-hatched region, and µ2 consists of all the mass lying in the diagonally-

hatched region. The slopes of the boundary lines are pinned down by the condition that

the integral of v1 over the first region (respectively, v2 over the second) should equal zero.

The maximum robust prediction is then given by the integral of v1 + v2 over the middle,
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non-hatched region. If the two hatched regions overlapped, then the maximum robust

prediction would be zero — i.e. it may be that the deal is never accepted.

v
1

v
2

Figure 1: Worst-case measures µ1, µ2 (criterion = aggregate surplus)

For more general criteria w, greedily maximizing w/v1 and w/v2 as above is not exactly

right because it may lead to measures µ1, µ2 that overlap. In fact, the correct worst-case

µ1 and µ2 will always be separated in terms of the ratio of the two values: that is, there

is some positively-sloped line through the origin, such that µ1 has support only above

the line, and µ2 has support only below it. (This line need not be unique; an example is

shown dashed in Figure 1.) Then, within these respective regions, µ1 will consist of all

the mass from µ where v1 is negative, plus remaining mass for which the ratio w/v1 is as

high as possible; similarly for µ2, taking mass for which w/v2 is as high as possible.

The rest of this subsection will fill in details; it can be skipped on a casual reading. We

first show that the worst-case measures µ1 and µ2 can be separated by some positive-slope

line as above. Moreover, if there is a positive probability mass lying exactly on the line

(a detail omitted from the above description), then this mass can be assigned partially to

the region above the line and partially to the region below it, with all points on the line

being split in the same proportions.

To write this separation statement explicitly, given α, β ∈ [0, 1], we define subsets of

R
2, corresponding to the regions above the dashed line, on the line, and below the line:

Eα
< = {(v1, v2) | v1 < α(v1 + v2)},

Eα
= = {(v1, v2) | v1 = α(v1 + v2)},

Eα
> = {(v1, v2) | v1 > α(v1 + v2)},
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and define two measures µα,β
1 , µα,β

2 by

µα,β
1 (E) = µ(E ∩Eα

<)+βµ(E ∩Eα
=), µα,β

2 (E) = µ(E ∩Eα
>)+ (1−β)µ(E ∩Eα

=) (3.5)

for any E ⊆ R
2. Note that µα,β

1 + µα,β
2 = µ. (We may omit the superscript α, β for

brevity.)

We will then say that a pair of measures (µ1, µ2) is (α, β)-separated if µ1 ≤ µα,β
1 and

µ2 ≤ µα,β
2 .

Lemma 3.4. Let (µ1, µ2) satisfy conditions (ii’) and (iii) for a disjoint negative decom-

position bound. Then there exists a pair (µ̂1, µ̂2) that is (α, β)-separated for some α, β,

and that also satisfies (ii’) and (iii), with µ̂1 + µ̂2 = µ1 + µ2.

The proof is mechanical: With (µ1, µ2) given, any choice of parameters α, β specifies

a way of redividing the mass µ′ = µ1 + µ2 into µ̂1 and µ̂2. There is some range of (α, β)

for which the needed inequality
∫
v1 dµ̂1 < 0 is satisfied, and a corresponding range for

µ̂2; we just need to show that these two parameter ranges overlap. The details are in

Appendix B.

Lemma 3.4 shows that in our search for the supremum of
∫
w(v1, v2) dµ

′ over mea-

sures that have a disjoint negative decomposition bound, we can restrict ourselves to

decompositions that are (α, β)-separated for some α, β.

So, for any given α, β, define Y (α, β) to be the supremum of
∫
w(v1, v2) d(µ1+µ2) over

pairs (µ1, µ2) that satisfy conditions (ii’)–(iii) and are (α, β)-separated. We just need a

way to compute Y (α, β) for given α and β, and then in a subsequent round we optimize

over α, β.

It is evident that

Y (α, β) = sup
µ1

∫
w(v1, v2) dµ1 + sup

µ2

∫
w(v1, v2) dµ2,

where the first supremum is over all measures µ1 ≤ µα,β
1 satisfying

∫
v1 dµ1 < 0, and

the second is over all measures µ2 ≤ µα,β
2 satisfying

∫
v2 dµ2 < 0. We denote these two

separate suprema by Y1(α, β), Y2(α, β).

These separate suprema Yi can each be calculated by the greedy algorithm that takes

mass for which w/vi is as large as possible, up until the point where the total integral of

vi is zero.

Let us give a precise statement. We describe how to compute Y1; then Y2 is analogous.
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For γ > 0 and δ ∈ [0, 1], define the subsets of R2

F γ
< = {(v1, v2) | v1 < γw(v1, v2)}, F γ

= = {(v1, v2) | v1 = γw(v1, v2)}.

Then F γ
< is increasing in γ, and so

∫
F

γ

<

v1 dµ1 is also (weakly) increasing in γ, since the

pairs that are in F γ
< but not in F γ′

< for γ′ < γ must satisfy v1 ≥ 0. The integral is also

left-continuous in γ. Let γ∗ ∈ (0,∞] be the supremum of values such that
∫
F

γ

<

v1 dµ1 < 0.

(This integral is negative for small enough γ > 0, so we are assured that γ∗ > 0.) If

γ∗ < ∞ then the expression
∫
F

γ∗

<

v1 dµ1 + δ
∫
F

γ∗
=

v1 dµ1 is weakly increasing in δ ∈ [0, 1],

and is nonnegative at δ = 1; let δ∗ be the supremum of values for which it is < 0. The

expression must be equal to 0 at δ = δ∗.

Lemma 3.5. If γ∗ = ∞ then Y1(α, β) =
∫
R2 w(v1, v2) dµ1. Otherwise,

Y1(α, β) =

∫

F
γ∗

<

w(v1, v2) dµ1 + δ∗
∫

F
γ∗
=

w(v1, v2) dµ1.

Y2(α, β) can be evaluated by an analogous procedure, using µ2 in place of µ1, and with the

roles of v1 and v2 switched in defining γ∗ and δ∗.

The proof is in Appendix B.

Finally, we can summarize our work as follows:

Proposition 3.6. Given µ satisfying Condition B, the following procedure determines the

maximum robust prediction:

1. For each choice of α, β ∈ [0, 1], split µ into µ1 and µ2 by (3.5).

2. Use the greedy algorithm on this µ1 — taking the mass with the highest ratio w/v1,

and all mass where v1 < 0 — to compute Y1(α, β), and likewise with µ2 to compute

Y2(α, β), as described in Lemma 3.5. This determines Y (α, β) = Y1(α, β)+Y2(α, β)

for the given α and β.

3. Then, the maximum robust prediction equals
∫
w(v1, v2) dµ− supα,β Y (α, β).

Proof: The correctness of step 2 follows from Lemma 3.5. The correctness of step 3

then follows from Corollary 3.3 (and the discussion following Lemma 3.4). �

In Section 4, we will give examples to illustrate this procedure.

We note that the brief description given earlier for the aggregate welfare criterion

w(v1, v2) = v1 + v2 — as illustrated in Figure 1 — immediately follows as a special case.
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3.4 Discussion

As we have seen, Proposition 3.1 gives a bound on the no-deal measure, that is tight

under Condition B. What happens in general?

If v1, v2 may simultaneously be negative, the bound implied by the proposition (part

(a)) can fail to be tight. To see this, consider any distribution where v1 = v2 with

probability 1. Then the two agents are playing a common interest game, and whatever

strategy profile maximizes their expected payoff is an equilibrium. In particular, their

payoff in this equilibrium must be at least as high as their payoff from simply always

accepting the deal. For an example, suppose that µ is the distribution consisting of two

mass points: (v1, v2) = (−1,−1) with probability 2/5, or (1, 1) with probability 3/5. Then,

this common-interest argument shows that any information structure has an equilibrium

where each player’s expected payoff is at least 1/5. But part (a) of the proposition is not

strong enough to imply this: in this example, any µ′ ≤ µ has a negative decomposition

bound, since we can take µ1 = µ2 to be the measure with mass 2/5 on (−1,−1) and 3/10

on (1, 1). So part (a) cannot give any nontrivial robust prediction.

The problem is that, in forming a negative decomposition bound, some portion of µ

may be “double-counted” in both µ1 and µ2. The proof of part (b) shows that we can get

rid of this double-counting as long as v1 and v2 are not both negative; but if they are, we

may run into trouble. It seems that the contagion-accounting argument we have used to

prove Proposition 3.1 is not strong enough to always give a tight bound.

One more comment: we have also restricted the distribution µ by assuming there is

positive probability both that v1 < 0 and that v2 < 0. But this is a more innocuous

assumption, since without it, the game is easy to analyze. For example, if v1 ≥ 0 for sure,

then we can simply assume that agent 1 always accepts the deal, and 2 best replies; then

our tight bound on the no-deal measure is given by the largest µ2 with
∫
v2 µ2 < 0.

4 Examples

Here we give a couple of examples illustrating how to compute the maximum robust pre-

diction, following the method in Subsection 3.3. Both of these examples satisfy Condition

B, so that the method is valid. We also build further on one of the examples in order to

illustrate the resilience of the always-reject equilibrium.
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4.1 An introductory example

The first application is a simple (perhaps too simple) example adapted from Morris and

Shin (2012). It extends the numerical example in the introduction.

The two parties are a buyer and seller, with the opportunity to trade an asset at a

fixed price of p. It is common knowledge that the asset is worth v + c to the buyer and

v − c to the seller, where v is the unknown fundamental value, and c > 0 is a known

constant. Most likely, v is equal to p. However, there is a small probability δ that the

asset is a lemon, with fundamental value v = p−M , and probability δ that it is a peach,

with fundamental value v = p+M . Here M is a constant with M > c.

(In the interpretation given by Morris and Shin, the asset is a mortgage-backed secu-

rity, and p is a price determined by the market for other similar securities. Any one such

security is idiosyncratic and hence there is a possibility of private information. The ±c

trading motive comes from liquidity needs of the buyer and seller. Other interpretations

are possible.)

The parties’ net gains from the trade are then (v1, v2) = ((v + c) − p, p − (v − c)).

Accordingly, the distribution µ is:

(v1, v2) =





(−M + c,M + c) (lemon) with probability δ,

(c, c) (normal) with probability 1− 2δ,

(M + c,−M + c) (peach) with probability δ.

We take w(v1, v2) = 1 everywhere, so we are interested in robust prediction of the proba-

bility of trade. (Taking w(v1, v2) = v1 + v2 = 2c would give gains from trade.) Note that

Condition B is satisfied.

Since the criterion w(v1, v2) = 1 and the gains-from-trade criterion w(v1, v2) = v1 + v2

are equivalent in this example, the technique illustrated in Figure 1 applies: we form each

party i’s negative-value measure µi by carving out probability mass from µ where i’s share

of the total surplus is as low as possible, up until the point where the expected value of vi

is zero. If these two measures µ1, µ2 end up overlapping then the best robust prediction

is no trade.

Specifically, there are two cases depending on parameters:

• If δM/c ≤ 1/2, then the maximal possible total mass of µ1 is δM/c — consisting of

the δ probability of lemon realizations, together with a δ(M−c)/c probability mass of

normal realizations. Likewise the maximal µ2 consists of the δ probability of peach

and δ(M − c)/c mass of normal. (Again, these are really suprema, not maxima,
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but we glide over this distinction.) Therefore, by Corollary 3.3, the maximum

robust prediction is 1− 2δM/c. That is, for any information structure, there is an

equilibrium where the proposed trade occurs with probability at least 1 − 2δM/c;

and this bound is tight, even if information is actually public.

To be fully explicit, we describe an information structure approaching the bound:

Both parties receive the same signal, η1 = η2 = η ∈ {0, 1, 2}. The joint distribution

of values and signals is as shown in Table 2. Here ǫ > 0 is arbitrarily small.

Under signal 1 — which is a noisy signal of the lemon state — trade cannot occur in

equilibrium because player 1 (the buyer) has a negative expected value; and under

the peach signal 2, trade cannot occur because player 2 (the seller) has a negative

expected value. So trade occurs with probability at most 1− 2δM/c+ 2ǫ.

Values (v1, v2) η = 0 η = 1 η = 2
(−M + c,M + c) 0 δ 0

(c, c) 1− 2δM
c
+ 2ǫ δM−c

c
− ǫ δM−c

c
− ǫ

(M + c,−M + c) 0 0 δ

Table 2: Distribution of values and (public) signals

• If δM/c > 1/2, then the best possible robust prediction is 0: the information may

be structured so that no trade can occur in equilibrium.

One possible information structure that yields no trade (not the only one) is to have

a publicsignal η ∈ {1, 2}, jointly distributed with the values as shown in Table 3.

Under signal 1, the expected value of v1 is negative; under signal 2, the expected

value of v2 is negative.

Values (v1, v2) η = 1 η = 2
(−M + c,M + c) δ 0

(c, c) 1

2
− δ 1

2
− δ

(M + c,−M + c) 0 δ

Table 3: Distribution of values and (public) signals
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Figure 2: Worst-case computation, in an example. (a) The observer’s µ. (b) Worst case
for the aggregate-welfare criterion. (c) Computing Y (α) for the probability-of-acceptance
criterion. (d) Worst case for the probability-of-acceptance criterion.

4.2 A more complicated illustration

Here we briefly walk through a more involved example of the method, featuring a contin-

uous and asymmetric distribution of values. To avoid a proliferation of notation, we use

specific numbers.

Let µ be the uniform distribution on the pentagon

P = {(v1, v2) ∈ R
2 | − 2 ≤ v1 ≤ 3;−1 ≤ v2 ≤ 4; v1 + v2 ≥ 0}.

This pentagon is shown shaded in Figure 2(a). (We will not attempt to give an interpre-

tation to this distribution.)
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We first consider the criterion of aggregate welfare w(v1, v2) = v1 + v2. In this case,

again following the method described in Subsection 3.3, the worst-case µ1 consists of all

the mass from µ lying above some upward-sloping line through the origin; this portion of

the pentagon is shown horizontally hatched in Figure 2(b). That is, µ1 consists of mass

distributed uniformly on this region, wth the same density as µ. The slope of this line is

determined by the condition that the integral of v1 over this region should be zero. (Unlike

in the previous example, we need not worry about what happens with mass exactly on

the boundary line, since the mass there is zero.) Likewise, the worst-case µ2 consists of all

the mass from µ in the region below some other upward-sloping line; this region is shown

diagonally hatched in Figure 2(b). The boundary is pinned down by the condition that

the integral of v2 over this region is zero.

Thus, in the worst case, both players receive a (public) signal telling them whether

(v1, v2) has landed in the horizontally-hatched, diagonally-hatched, or gray region. Only

in the gray region do both players accept the deal.

To identify the slope of the boundary line for µ1, write κ1 for the slope of this line.

This line intersects the upper edge of P at point
(

4

κ1

, 4
)
. (This is assuming that the

line does indeed intersect the upper edge of P , rather than the right edge; we later

check that this is the case.) Thus, the range of possible values of v1 in the horizontally-

hatched region is
[
−2, 4

κ1

]
, and for each such v1 the range of corresponding values of v2

is [max{−v1, κ1v1}, 4]. So the condition pinning down κ1 is

∫ 4

κ1

−2

∫ 4

max{−v1,κ1v1}

v1 dv2 dv1 = 0.

Some computation leads to κ1 =
√
2. From this we check that 4/κ1 = 2

√
2 < 3, so that

the line does indeed intersect the upper edge of P as depicted.

By a similar argument, the slope κ2 of the line bounding µ2 is given by the condition

∫ 3κ2

−1

∫ 3

max{−v2,
v2
κ2

}

v2 dv1 dv2 = 0

which gives the solution κ2 =
√
21/9. We check that this line intersects the vertical v1 = 3

at the point (3,
√
21/3), whose v2-coordinate is < 4, so the line does indeed intersect the

right edge of P as shown.

This identifies the worst case. The maximum robust prediction is then given by

integrating v1 + v2, multiplied by the density of µ, over the gray region. The integral
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comes to approximately 0.772. Thus, we can robustly predict that for any information

structure, there is an equilibrium that realizes expected total welfare of at least 0.772,

or 29.1% of the “first-best” where the deal always occurs; and this bound cannot be

improved.

We now take the same µ, but consider the probability-of-acceptance criterion, w(v1, v2) =

1. In this case, we proceed as described in Proposition 3.6. For each α ∈ [0, 1], we sep-

arate µ into the mass below the line v1 = α(v1 + v2) (i.e. the line through the origin of

slope κ = (1 − α)/α) and the mass above this line. (β in the proposition describes how

to divide up the mass exactly on the line; again, this is irrelevant in the present example

since this mass is zero.) Within the portion above the line, we form µ1 by taking all the

mass with sufficiently low values of v1/w — that is, with v1 < γ1, for some γ1. This is

shown by the horizontally-hatched region in Figure 2(c). The value of γ1 is determined by

the constraint that the integral of v1 over this region should equal 0. If the integral of v1

over the entire region above the line is positive, then no choice of γ1 attains this equality,

and we instead come as close as possible by taking all the mass above the line to form

µ1. Similarly, µ2 consists of all the mass below the κ line with sufficiently low values of

v2, as shown by the diagonally-hatched region. The integral of v2 over this region should

equal 0 if possible, and if not possible, then µ2 consists of all the mass below the line —

as shown in the figure in this case. Once µ1 and µ2 are constructed, Y (α) consists of the

sum of the integrals of w with respect to these two measures — that is, the total area of

the two hatched regions (times a constant, the density of µ). Finally, maximizing Y (α)

over all α gives the worst case.

The thresholds γ1 and γ2 are functions of α that cannot be conveniently written in

closed form; they are solutions to cubic polynomials whose coefficients depend on α.

However, we can compute them, and maximize Y (α), numerically. The resulting α is

approximately 0.614, i.e. the slope κ is 0.629; and the corresponding worst-case µ1, µ2

consist of the mass shown in the horizontally- and diagonally-hatched regions of Figure

2(d).4 The maximum robust prediction is then given by integrating w, multiplied by

the density of µ, over the remaining, gray region. This gives us 0.165. Thus, for any

information structure, there exists an equilibrium where the deal is mutually accepted

with probability at least 0.165.

4As depicted, the boundary lines given by γ1 and γ2 happen to intersect on the line of slope κ. This
concurrency can be shown to hold more generally, but we do not explore this in detail here.
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4.3 All-rejection equilibrium

As explained in the introduction, in our game it is natural to look for bounds on the

best equilibrium for any given information structure, not on all possible equilibria: the

latter question is trivial, because there is always an equilibrium in which both agents

always reject the proposed deal. One might try to get rid of such an equilibrium by

using a standard refinement, such as elimination of weakly dominated strategies, or more

generally trembling-hand perfection. Unfortunately, this does not seem to help. Here is

a simple illustration.

We return to the example of Subsection 4.1. Suppose the parameters are such that

δM/c is small, so that for any information structure there is an equilibrium with a high

probability of trade. Now consider the following information structure. The signal sets

are I1 = I2 = {L,N, P}. The letters stand for “lemon, normal, peach,” and the first and

last signals are perfectly informative while the middle signal is imperfectly informative.

Specifically, conditional on the true value pair (v1, v2), the two agents receive signals that

are independently drawn from the same distribution, which is given by Table 4.

Values (v1, v2) Pr(L | v1, v2) Pr(N | v1, v2) Pr(P | v1, v2)
(−M + c,M + c) 1/2 1/2 0

(c, c) 0 1 0
(M + c,−M + c) 0 1/2 1/2

Table 4: Distribution of each player’s signal, conditional on values

For some signal realizations, the players have weakly dominant actions: If player 1

(the buyer) receives L, she knows the asset is a lemon for sure (her value for the proposed

trade is −M + c < 0) so, in any trembling-hand perfect equilibrium, she must reject the

trade. If she receives P , the asset is a peach for sure, so she must accept. Similarly, in

any trembling-hand perfect equilibrium, player 2 must accept on seeing L and reject on

seeing P .

Consider the following strategy profile: agent 1 accepts only upon seeing P , and 2

accepts only upon seeing L. To check that this is a trembling-hand perfect equilibrium,

it suffices to check that each agent is playing a strict best reply when she sees signal N .

So consider agent 1, say, when she has seen signal N . From her point of view, any of

the three values for the asset is possible. But 2 will have only agreed to the trade if the

asset is a lemon. So agent 1 strictly loses out by accepting the trade; that is, rejecting is
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a strict best reply. Similarly for agent 2.

In this equilibrium, the trade is mutually accepted only if agent 1 receives signal P

and 2 receives L; but this can never happen.

It is worth noting also that, if indeed we do restrict attention to trembling-hand perfect

equilibria, our main results are not substantially changed. In particular, the results of

Proposition 3.1 remain valid if we require the equilibrium to be trembling-hand perfect,

as long as we relax (iii) in the definition of a (disjoint) negative decomposition bound to

require weak rather than strict inequalities. (A quick proof sketch: apply the argument in

the original proof to the “game with ǫ trembles,” in which each player always accepts with

probability ǫ, rejects with probability ǫ, and follows her intended strategy with probability

1− 2ǫ. Then consider a limit of the resulting equilibria and the terminal weights λK
i , as

ǫ → 0.)

5 Closing Discussion

We close with some additional discussion of interpretation and connections to literature,

and hopes for further work.

5.1 Robust mechanism design

Our results can naturally be recast so as to connect with the literature on robust mecha-

nism design (Bergemann and Morris, 2005; Chung and Ely, 2007; Frankel, 2014; Garrett,

2014; Carroll, 2015). In this literature, one envisions a planner designing a mechanism

by which agents will interact. As usual, a mechanism specifies actions available to the

agents, and an allocation as a function of the actions taken. The planner is unsure about

some aspect of the economic environment, and does not represent this uncertainty by a

Bayesian prior belief; instead she wants a mechanism that is guaranteed to perform well

in all possible environments. This goal is formalized as a maxmin criterion.

In our setting, we can imagine a mechanism design problem where the space of pos-

sible “allocations” simply consists of doing the deal or not (or probabilistic mixtures in

between). The planner wants to implement the deal, but cannot force either agent to

agree — there is an interim individual rationality constraint. The game we have de-

scribed, where either agent simply chooses to accept or reject, is one possible mechanism;

but we could alternatively imagine much more involved interactions.

Formally, a mechanism for this setting consists of spaces M1,M2 of actions for each
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agent, and a function g : M1×M2 → [0, 1], specifying the probability with which the deal

is implemented, for each action profile. Interim individual rationality means that each

agent should have a “veto” action mi ∈ Mi that ensures the deal is not implemented.

Thus, for our accept/reject mechanism, M1 = M2 = {A,R}, and g(A,A) = 1, g(A,R) =

g(R,A) = g(R,R) = 0 (and R is veto).

We assume the planner knows the prior µ on values, but does not know the information

structure. We allow the planner to choose a mechanism and, for each information structure

(I1, I2, ν) (denoted ν for short), to specify a Bayesian equilibrium (σν
1 , σ

ν
2 ) of the game

in which each agent i learns her signal ηi and then chooses an action in Mi. (Thus the

planner gets to choose the equilibrium, as is usual in mechanism design.)

The planner’s payoff from information structure ν is then

W ν =

∫
g(σν

1 (η1), σ
ν
2 (η2))w(v1, v2) dν.

(The equilibrium strategies σν
1 , σ

ν
2 may involve mixing; here we extend g to mixed actions

by linearity.) The planner’s uncertainty about the information structure is represented

by a worst-case objective: she evaluates any possible mechanism by the infimum of W ν ,

over all information structures.

If Condition B is satisfied, then our results quickly imply that the simple accept/reject

mechanism is actually optimal for the planner. Indeed, the worst-case information struc-

ture in the proof of Proposition 3.2 has the property that no mechanism can get the deal

accepted with positive probability when signal 1 or 2 is realized. Hence no mechanism

can give a performance guarantee better than our robust prediction.

5.2 Perspectives

As discussed in the introduction, our results can be interpreted from several perspectives.

One is as a purely theoretical comment on the recent literature on informational conta-

gion in games, pointing out limits on the importance of contagion. In particular, under

Condition B, informational contagion does not “cause” the socially desirable deal to fail

in our game, in the sense that the worst-case information structure does not require any

contagion. This contrasts with the basic intuition from adverse selection (Akerlof, 1970)

that private information is harmful, and with the more recent applied-theory literature

such as Morris and Shin (2012) emphasizing the contributing role of higher-order beliefs.

(See also Kessler (2001) or Levin (2001) for another counterpoint to this literature.)

29



For another, more positive perspective, our results can be useful to parties deciding

whether to make an investment that enables future interaction, as in the introductory

example of a buyer and seller writing an incomplete contract on possible future trade

of a specialized widget. The robust mechanism design interpretation also falls under

this heading: it suggests that parties who are uncertain about the future information

structure may as well adopt the simple accept/reject mechanism, rather than looking for

some more sophisticated alternative mechanism. However, we emphasize that any such

positive interpretation depends on the assumption that the players can coordinate on the

best Bayesian equilibrium — an assumption that may be reasonable in some applications,

such as the contracting or mechanism design cases, but not in others.

A different positive perspective is to see our results as part of the literature on de-

sign of information structures (Kamenica and Gentzkow, 2011; Rayo and Segal, 2010;

Kolotilin, 2014): the worst-case information structure can be seen as a description of how

an adversary might commit to release information so as to try to prevent two agents from

reaching a deal.

5.3 Multiple proposals

The model here has assumed that there is only a single deal that the two parties can

agree to, and we have emphasized applications where this assumption is relevant. But in

many other situations, one might imagine that multiple alternative deals are available.

For example, in international negotiations, there might be many ways to write a treaty.

For a buyer and seller trading a good, there might be many possible prices at which to

trade; each price would constitute a different “deal.” What would change if we considered

such settings, with a mechanism that determines not only whether a deal takes place but

which deal is chosen?

In general we would expect very different results. For concreteness, consider the case

of a buyer and seller trading a good, with quasi-linear preferences; and for our criterion

w consider total realized surplus, which does not depend on the price. Suppose the good

is known for certain to be worth more to the buyer than to the seller. With a fixed price

as in our model here, Condition B is satisfied, so the worst-case information structure

involves no private information. If the price could be endogenously determined then this

would no longer be true: With only public information, many simple mechanisms could

realize all gains from trade; for example, a mechanism where both agents simultaneously

name a price and they trade iff they name the same price. With private information, not
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all gains would be realized in general. Indeed much stronger results are known: there are

examples in the literature of information structures where no mechanism can achieve any

trade in equilibrium, even though there is common knowledge that the buyer’s value is

higher than the seller’s (Samuelson, 1984; Fieseler, Kittsteiner, and Moldovanu, 2003).

So the worst information structure cannot be public.

Can we give good bounds on the surplus attainable with other mechanisms? Unfor-

tunately, the contagion bound argument we have used for the accept/reject mechanism

seems difficult to generalize. The argument begins from a strategy profile that is an equi-

librium in the “reference” states where both values v1, v2 are positive, and then changes

the strategies one signal at a time, and keeps track of the needed changes in order to ob-

tain a bound on the extent of contagion. For other mechanisms, such as a double auction,

it is not clear what reference states or what equilibrium profile to use as a starting point.

The multiple-deal setting certainly raises many natural questions: How would one

determine the strongest robust prediction for aggregate welfare if (for example) the parties

were able to coordinate on the best mechanism for any given information structure?

Is it possible to describe the worst-case information structure, or the optimally robust

mechanism? These questions seem significantly harder than the analysis given here for

the accept/reject mechanism. We leave them for future work.

A An example with mixed strategies

As promised in the introduction, we give here an example showing how the socially optimal

equilibrium may involve mixing.

Suppose that the information structure is as follows. Agent 1’s signal η1 may take

one of three possible realizations, which we call A,B,C; agent 2’s signal η2 may take

on realizations X, Y, Z. The probability of each pair of signals, and the payoffs for each

possible signal pair, are as shown in Table 5. The payoffs follow the 10–80–10 example.

The two agents observe their respective signals, then each decide whether to accept

or reject the proposed deal.

To identify the (best) equilibrium of this game, the analysis proceeds in three steps:

• If agent 2 receives signal X or Z, then for sure she benefits from the deal, so we may

as well assume she accepts in these cases.5 Then, if agent 1 receives signal A, then

5Actually, since we are claiming that the equilibrium described here is the socially optimal one, we
should also consider other possible equilibria where 2 does reject with positive probability under X or

31



η1\η2 X Y Z

A
0.36
1, 1

0.03
−1, 3

0.40
1, 1

B
0.04
1, 1

0.05
−1, 3

C
0.10
3,−1

0.02
−1, 3

Table 5: Joint distribution of signals and values

her expected payoff from accepting is positive (although its exact value depends on

how agent 2 behaves when she gets signal Y ). So 1 with signal A accepts as well.

• Does 2 accept the deal when she gets signal Y ? Suppose she does. Then we can

check that agent 1 prefers to reject when she gets signal B, and prefers to accept

when she gets signal C. This fully specifies agent 1’s strategy. But then, 2’s best

reply is to reject when she gets signal Y — a contradiction.

Now suppose 2 rejects when she gets signal Y . Then we can check that 1’s best

reply is to accept under B and reject under C. Given this, 2 prefers to accept under

Y — again a contradiction.

• So it must be that in equilibrium agent 2 mixes under signal Y . If 2 accepts with

probability q under Y , then 1’s best reply is as follows: under signal B, accept if

q < 4/5 and reject if q > 4/5 (and possibly mix at q = 4/5); under C, reject if

q < 1/15 and accept if q > 1/15 (and mix at q = 1/15).

By examining the possible cases, we soon arrive at the equilibrium: Agent 1 accepts

with probability 1/15 under signal B, and 1 under C; and agent 2 accepts with

probability 4/5 under Y .

In this equilibrium, the ex-ante probability that the proposal is mutually accepted is

667/750 ≈ 89% — consistent with the lower bound of 60% given by Proposition 3.1.

Z. This can only happen in equilibrium if 1 rejects for sure under both A and B, or under A and C,
respectively. Then, the probability that both players accept is at most 60%, less than in the equilibrium
we compute here. Thus, the equilibrium here is indeed the optimal one.
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B Omitted Details

Proof of Lemma 3.4: In keeping with the main text, write µ′ = µ1 + µ2. As α ranges

over [0, 1], the event Eα
< is increasing in α. (This depends on the fact that v1 + v2 ≥ 0

everywhere.) Moreover, any pair (v1, v2) contained in one Eα
< but not another satisfies

v1 ≥ 0, since pairs with v1 < 0 are in every Eα
<. Therefore

∫
Eα

<

v1 dµ
′ is weakly increasing

in α. Also, it is negative for small enough α > 0, and is left-continuous. Let α ∈ (0,∞]

be the supremum of values for which
∫
Eα

<

v1 dµ
′ < 0.

Similarly,
∫
Eα

>

v2 dµ
′ is weakly decreasing in α, negative near α = 1, and right-

continuous. Let α be the infimum of values for which
∫
Eα

>

v2 dµ
′ < 0.

We show that α ≥ α. Suppose not. Then, the sets Eα
< ∪ Eα

= and Eα
= ∪ Eα

> are

disjoint, except for (v1, v2) = (0, 0) which is in both. Define Eα
≤ = Eα

< ∪ Eα
= and Eα

≥ =

(Eα
= ∪ Eα

>) \ {(0, 0)}. These sets are disjoint.

We must have
∫
Eα

≤

v1 dµ
′ ≥ 0, otherwise the maximality of α would be violated. Simi-

larly,
∫
E

α

≥

v2 dµ
′ ≥ 0.

Define two new signed measures by

µ̃1(E) = µ1(E)− µ′(E ∩ Eα
≤), µ̃2(E) = µ2(E)− µ′(E ∩ Eα

≥).

Note that µ̃1 is nonpositive on Eα
< and nonnegative on Eα

>, hence

∫
(v1 − α(v1 + v2)) dµ̃1 ≥ 0.

Similarly ∫
(v2 − (1− α)(v1 + v2)) dµ̃2 ≥ 0.

Then we have

0 >

∫

R2

v1 dµ1 −
∫

Eα
≤

v1 dµ
′ =

∫

R2

v1 dµ̃1 ≥ α

∫

R2

(v1 + v2) dµ̃1,

0 >

∫

R2

v2 dµ2 −
∫

E
α

≥

v2 dµ
′ =

∫

R2

v2 dµ̃2 ≥ (1− α)

∫

R2

(v1 + v2) dµ̃2.

So
∫
R2(v1 + v2) dµ̃1 < 0 and

∫
R2(v1 + v2) dµ̃2 < 0, and therefore

∫

R2

(v1 + v2) d(µ̃1 + µ̃2) < 0.
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However, µ̃1 + µ̃2 is a nonnegative measure since

(µ̃1 + µ̃2)(E) = µ′(E)− µ′(E ∩ Eα
≤)− µ′(E ∩ Eα

≥) = µ′(E \ (Eα
≤ ∪ Eα

≥)) ≥ 0

for any E ⊆ R
2. Since v1 + v2 ≥ 0 µ′-almost everywhere, we have a contradiction.

So indeed we have α ≥ α. If α > α, we can take α to be any number in between and

β to be arbitrary. Then define

µ̂1(E) = µ′(E ∩ Eα
<) + βµ′(E ∩ Eα

=), (B.1)

µ̂2(E) = µ′(E ∩ Eα
>) + (1− β)µ′(E ∩ Eα

=). (B.2)

Now

Eα
< ⊆ Eα

< ∪ Eα
= ⊆ Eα′

< ∪ {(0, 0)}

for any α′ ∈ (α, α), which readily implies

∫

R2

v1 dµ̂1 =

∫

Eα
<

v1 dµ
′ + β

∫

Eα
=

v1 dµ
′ < 0,

and by a similar argument ∫

R2

v2 dµ̂2 < 0.

Thus, (µ̂1, µ̂2) satisfies condition (iii) for a disjoint negative decomposition bound. Ev-

idently µ̂1 + µ̂2 = µ′ = µ1 + µ2, so (ii’) for the original pair of measures implies (ii’)

for the new pair. And from the definitions (B.1–B.2) we can see that the new pair is

(α, β)-separated. So we are finished in this case.

We are left with the case α = α. In this case, we fix α = α = α and repeat the

argument with β.

Since v1, v2 ≥ 0 everywhere on Eα
=, the expression

∫

Eα
<

v1 dµ
′ + β

∫

Eα
=

v1 dµ
′ (B.3)

is weakly increasing in β ∈ [0, 1]. Let β be the supremum of such values for which it is

< 0. (If it is ≥ 0 already at β = 0 then take β = 0.) Note that by continuity in β, (B.3)

is in fact ≥ 0 at β, except in the corner case where β = 1 and α = 1. But in this corner

case, the lemma is easily proven. Indeed, we can then take (α, β) = (1, 1), and define µ̂1

and µ̂2 by (B.1–B.2), and the conclusion of the lemma holds:
∫
v1 dµ̂1 < 0 by assumption,
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∫
v2 dµ̂2 must be < 0 because µ̂2 only places weight on E1

>, where v2 < 0 for sure, and

the rest follows as before. Thus, we may assume that the expression (B.3) is ≥ 0.

Similarly, the expression
∫
Eα

>

v2 dµ
′ + (1− β)

∫
Eα

=

v2 dµ
′ is decreasing in β; let β be the

infimum of values for which it is < 0, or β = 1 if no such values exist. The expression

is ≥ 0 there except if β = 0 and α = 0, and again this corner case can be disposed of

separately.

Now we show that β > β. Suppose not. Then take any β with β ≤ β ≤ β. Define

µ̃1(E) = µ1(E)− µ′(E ∩ Eα
<)− βµ′(E ∩ Eα

=),

µ̃2(E) = µ2(E)− µ′(E ∩ Eα
>)− (1− β)µ′(E ∩ Eα

=).

As before, µ̃1 is nonpositive on Eα
< and nonnegative on Eα

>, hence

∫
(v1 − α(v1 + v2)) dµ̃1 ≥ 0,

and similarly ∫
(v2 − (1− α)(v1 + v2)) dµ̃2 ≥ 0.

Now

0 >

∫

R2

v1 dµ1 −
(∫

Eα
<

v1 dµ
′ + β

∫

Eα
=

v1 dµ
′

)

(since the first integral is negative by assumption, and the expression in parentheses is

just (B.3) at β, which is ≥ 0 because we have assumed we are not in the corner case)

=

∫

R2

v1 dµ̃1 ≥ α

∫

R2

(v1 + v2) dµ̃1.

Thus,
∫
R2(v1 + v2) dµ̃1 < 0. By a similar argument,

∫
R2(v1 + v2) dµ̃2 < 0. Adding,∫

R2(v1+v2) d(µ̃1+ µ̃2) < 0. But µ̃1+ µ̃2 = (µ1+µ2)−µ′ = 0 identically — a contradiction.

Thus, β > β. So we can choose β ∈ (β, β). Now let (µ̂1, µ̂2) be defined by (B.1–B.2).

It is immediate that
∫
R2 v1 dµ̂1, which is just (B.3), is < 0, and similarly

∫
R2 v2 dµ̂2 < 0.

Thus the new pair satisfies condition (iii), and the rest is checked as before. �

Proof of Lemma 3.5: We just prove the formula for Y1.

First suppose γ∗ = ∞. Then
∫
R2 w(v1, v2) dµ1 is clearly an upper bound for Y1(α, β).

From the definition of γ∗, we have
∫
F∞
<

v1 dµ1 ≤ 0, where F∞
< is the event (w(v1, v2) >

0 or v1 < 0). If the inequality is strict, we can take µ1 = µ1|F∞
<

(that is, the measure
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defined by µ1(E) = µ1(E∩F∞
< ) for any E). Otherwise, since there is a positive probability

of v1 < 0 under µ (by assumption) and so also under µ1|F∞
<
, then there is also a positive

probability of v1 > 0 under µ1|F∞
<
. So we can form µ1 from µ1|F∞

<
by removing an

arbitrarily small probability mass on such an event. In either case, we obtain µ1 with∫
R2 v1 dµ1 < 0 strictly, and

∫
R2 w(v1, v2) dµ1 arbitrarily close to

∫
R2 w(v1, v2) dµ1.

Now suppose γ∗ is finite. Define the measure µ̂1 by

µ̂1(E) = µ1(E ∩ F γ∗

< ) + δ∗µ1(E ∩ F γ∗

= ).

So the expression given as the value of Y (α, β) in the lemma statement is just
∫
w(v1, v2) dµ̂1.

Also, we know that
∫
v1 dµ̂1 = 0.

We first show that this value is an upper bound on Y (α, β). Otherwise, let µ1 be a

measure with higher value of
∫
w(v1, v2) dµ1, still satisfying

∫
v1 dµ1 < 0 and µ1 ≤ µ1.

Define a signed measure by µ̃1 = µ1− µ̂1. Then µ̃1 is nonpositive on F γ∗

< , and nonnegative

on F γ∗

> (which we define in the obvious way). Therefore,

∫

R2

(v1 − γ∗w(v1, v2)) dµ̃1 ≥ 0.

This implies

∫

R2

v1 dµ1 −
∫

R2

v1 dµ̂1 ≥ γ∗

(∫

R2

w(v1, v2) dµ1 −
∫

R2

w(v1, v2) dµ̂1

)
.

But here the left side is negative, while the right side is positive — a contradiction.

So
∫
R2 w(v1, v2) dµ̂ is indeed an upper bound on Y (α, β). For the reverse direction,

note that, as in the γ∗ = ∞ case, the measure µ̂1 places some positive probability on the

event v1 < 0 (which is contained in F γ∗

< ), and so it must also place positive probability

on v1 > 0. By removing an arbitrarily small amount of probability mass with v1 > 0,

we get a new measure µ1 such that
∫
R2 v1 dµ1 < 0 and µ1 ≤ µ1, and

∫
R2 w(v1, v2) dµ1 is

arbitrarily close to
∫
R2 w(v1, v2) dµ̂1. �
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