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Abstract

We present a general approach to quantifying a mechanism’s susceptibility to

strategic manipulation, based on the premise that agents report their preferences

truthfully if the potential gain from behaving strategically is small. Susceptibility

is defined as the maximum amount of expected utility an agent can gain by ma-

nipulating. We apply this measure to anonymous voting rules, by making minimal

restrictions on voters’ utility functions and beliefs about other voters’ behavior. We

give two sets of results. First, we offer bounds on the susceptibility of several specific

voting rules. This includes considering several voting systems that have been pre-

viously identified as resistant to manipulation; we find that they are actually more

susceptible than simple plurality rule by our measure. Second, we give asymp-

totic lower bounds on susceptibility for any voting rule, under various combinations

of efficiency, regularity, and informational conditions. These results illustrate the

tradeoffs between susceptibility and other properties of the voting rule.
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1 Introduction

1.1 Overview

It is standard in mechanism design, as elsewhere in economic theory, to assume that agents

perfectly optimize. In particular, for direct revelation mechanisms, which ask agents to

report their preferences, conventional theory requires perfect incentives — it should be

exactly optimal for agents to report truthfully. In reality, however, decision-makers do

not perfectly optimize, or at least do not optimize the material payoffs that are usually

modeled. They may not know their environment well enough to be able to do so, and

they may prefer to take computational shortcuts. Accordingly, this paper proceeds from

an alternative behavioral premise: agents will report truthfully if the potential gains

from doing otherwise — that is, from strategically manipulating the mechanism — are

sufficiently small.

Under this premise, a mechanism designer may want to mildly relax the incentive

constraints, rather than treat them as absolutely rigid, if doing so allows her to improve the

performance of the mechanism in other respects. This suggests quantitatively measuring

the incentives that a mechanism provides. Armed with such a quantitative measure, the

designer can compare different mechanisms in terms of the incentives to manipulate, and

consider tradeoffs between these incentives and other properties of the mechanism.

We propose in this paper to measure a mechanism’s susceptibility to manipulation as

the maximum amount of expected utility that an agent can gain by manipulating. That

is, in very stylized terms, susceptibility is

σ = sup
u,lie,φ

(
Eφ[u(lie)]− Eφ[u(truth)]

)
(1.1)

where the supremum is taken over all true preferences the agent may have (the utility func-

tion u, represented by the truthful report truth); all possible strategic misrepresentations

lie; and all beliefs φ that the agent may hold about the behavior of other agents in the

mechanism. Of course, the outcomes u(lie), u(truth) depend on the choice of mechanism,

as well as on the behavior of other agents (encapsulated in the belief φ).

The paper’s mission is to advocate this approach to quantifying incentives. Issues of

motivation and methodology will be taken up in some more detail in Subsection 1.3, but

the bulk of the paper is dedicated to demonstrating how our measure can be used to obtain

concrete results. For this, we apply the measure to voting rules: Given a population of
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voters, each with preferences over several candidates, what voting rule should they use to

choose a winner as a function of their (reported) preferences?

The problem of choosing among voting rules provides a natural test case for any

attempt to quantify manipulation. It is one of the oldest and most widely-studied prob-

lems in mechanism design, not to mention its wide range of applications. Moreover, the

Gibbard-Satterthwaite theorem [22, 51] shows that no interesting voting rule is immune

to strategic manipulation. Since incentives for strategic behavior are unavoidable, the

need to quantify such incentives immediately presents itself in this setting.

To operationalize (1.1) for voting rules, we need two restrictions.

• First, we need to restrict the manipulator’s utility function: otherwise the utility

from a lie could be taken to be arbitrarily larger than the utility from the truth,

and hence every (interesting) voting rule would have σ = ∞. We therefore impose

the normalization that utility functions take values in [0, 1].

• Second, we need to restrict the belief φ: otherwise the manipulator could put proba-

bility 1 on some one profile of other voters’ preferences for which he can manipulate,

and hence we would always have σ = 1. We impose the restriction that, from the

manipulator’s point of view, the votes of the rest of the population should be inde-

pendent and identically distributed across voters. In fact, as we elaborate further in

Subsection 2.1, it is enough for us to require others’ votes to be IID conditionally on

some aggregate state; this restriction is still quite permissive. However, it does mean

that we will restrict attention to anonymous voting rules (those that are invariant

under permuting voters): it would not be appropriate to assume each voter treats

the others interchangeably unless the voting rule does so as well.

We will give the precise definition of susceptibility for voting rules in Subsection 2.1, after

laying out basic vocabulary.

Our concrete results are of two sorts. First, in Section 3, we give quantitative bounds

on the susceptibility of several rules discussed in prior voting literature. We begin by

developing intuitions using simple voting systems, such as supermajority with status quo,

plurality, and Borda count. We then reconsider several voting systems which previous

literature identified as resistant to strategic manipulation: the Black, Copeland, Fishburn,

minimax, and single transferable vote systems. It turns out that under our measure, all

of these are more susceptible than simple plurality rule, unless the number of candidates

is very small. Indeed, it is not trivial to supply an interesting example of a voting system
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that is less susceptible than plurality rule. We give such an example, in the case of three

candidates.

Second, in Section 4, we give several theorems providing asymptotic lower bounds

on the susceptibility of any voting rule satisfying various conditions, showing how fast

the susceptibility of such rules can shrink as the number N of voters grows. These

lower bounds illustrate the tradeoffs between susceptibility and other properties of the

voting rule. For example, if the voting rule is simply required to be weakly unanimous (a

minimal efficiency condition), our lower bound is on the order of N−3/2. If the voting rule

is required to be monotone, we have a much stronger bound, on the order of N−1/2. The

latter bound goes to zero more slowly in N , and does not hold without the monotonicity

restriction. Thus, imposing monotonicity substantially limits the voting rule’s ability to

resist manipulation, at least for a large number of voters. If we impose that the voting

rule be monotone, unanimous, and also tops-only (i.e. the winner depends only on each

voter’s first choice), then we can solve exactly for the minimum possible susceptibility.

This minimum is also on the order of N−1/2, and is attained by majority rule with status

quo, among others. The finding that majority rule is optimal again contrasts sharply

with results on least-manipulable voting rules using a different measure of manipulability

[33, 36]. We also give several more results of this flavor (see Table 4.1 for a summary).

We should emphasize that this paper focuses on voting rules mainly because doing so

constitutes a canonical theoretical exercise. Our conclusions are certainly not meant to

be read literally as policy prescriptions — in practice, individual strategic manipulation

is only one of many considerations that go into choosing a voting rule.

Our measure of susceptibility can be used to compare mechanisms and evaluate trade-

offs in many other mechanism design settings as well. As an example, the companion

paper [13] applies the same approach to study the tradeoff between incentives and effi-

ciency in double auction mechanisms.

We believe that the generality of our method, its connection with a positive description

of manipulative behavior, its tractability as illustrated by our results here for voting rules,

and the contrast of several of our results with earlier findings using other measures of

manipulability, taken together, provide a strong case for using this approach as one way to

evaluate and compare mechanisms. In the concluding Section 5, aside from summarizing

and indicating directions for future research, we also discuss how our approach fits into a

broader program of mechanism design.

In order to avoid interrupting the flow of text with computations, most of the proofs

are only sketched in the paper. The details of the omitted proofs are in Appendices C
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through H, which are collected in a separate file available online.

1.2 Related literature

The motivating viewpoint behind this paper is that quantifying strategic incentives is

important for practical mechanism design. Accordingly, this paper is allied most closely

with a literature arguing that the incentives to manipulate in particular mechanisms are

small — beginning with the seminal paper of Roberts and Postlewaite on the Walrasian

mechanism [49] and including recent work on matching markets [3, 24, 26, 27]. However,

we build on the approach of this literature by showing how to quantify incentives explicitly,

and by introducing them into the design problem, rather than focusing only on specific

mechanisms.

Our evaluation of voting rules in terms of the incentives to manipulate is most similar in

spirit to a paper by Ehlers, Peters, and Storcken [18]. As in the present paper, their notion

of susceptibility is defined as the maximum utility gain from manipulation. However,

where we consider voting over a finite number of candidates, they consider voters who

must collectively choose a point in Euclidean space, and they restrict attention to tops-

only voting rules.

Recent independent work by Birrell and Pass [9] considers quantifying incentives in

voting rules, using ideas very similar to ours, but they consider probabilistic voting rules

and do not impose any restriction on beliefs. Day and Milgrom [16] and Erdil and Klem-

perer [19] used quantitative measures of strategic incentives to compare mechanisms for

combinatorial auctions. Some other theoretical literature has also constructed mecha-

nisms with small incentives to manipulate [4, 28, 31, 32, 38, 52], but without focusing

as we do on comparisons between mechanisms or tradeoffs between incentives and other

properties.

Finally, our work also naturally brings to mind the extensive prior literature that

evaluates and compares voting systems using other measures of manipulation. By far the

most common approach is profile-counting — that is, considering all possible profiles of

voters’ preferences that may occur, and measuring manipulability as the fraction of such

profiles at which some voter can benefit by manipulating. This method appears to have

been pioneered by Peleg [46] and has been followed by many authors since [1, 20, 25, 33,

34, 35, 36, 39, 44, 54, 55]. Variations include counting profiles in some weighted manner,

e.g. weighted by the number of voters who can manipulate, or by the number of different

false preferences by which a manipulator can benefit; or partially ordering mechanisms by

5



the set of profiles at which someone can manipulate [21] (see also [45] for this approach

applied to matching mechanisms). Some of the literature also considers manipulation

by coalitions rather than individual voters [29, 30, 47, 48, 50]. The measure used by

Campbell and Kelly [12], like ours, is based on the maximum gain from manipulating,

but they define gain in terms of the number of positions in the manipulator’s preference

ordering by which the outcome improves. Yet another approach involves studying the

computational complexity of the manipulation problem [6, 7].

1.3 Methodology

We now discuss in more detail the motivation behind our approach to measuring suscepti-

bility. Readers interested in getting to the concrete results quickly can skip this subsection

without loss of continuity.

Our measure is grounded in the following simple model of manipulation (again ex-

pressed in terms of voting systems just for specificity). Voters face a cost of ǫ > 0 to

behaving strategically, while truthful behavior is costless. The ǫ may be thought of as a

computational cost (to computing a strategy, or acquiring information on other voters’

preferences that is needed to strategize), or as a psychological cost of dishonesty. Then, if

the gain from strategic manipulation is sure to be less than ǫ, the voters will simply vote

truthfully.

A planner needs to choose a voting rule for such voters. The planner cannot anticipate

the voters’ preferences, beliefs, or their exact strategic behavior, and she evaluates voting

rules by their worst-case performance. The planner is, however, certain of one thing: if she

chooses a voting rule with susceptibility σ < ǫ, voters will vote truthfully. Truthful voting

will then ensure that the result of the election really does reflect the voters’ preferences in

the way specified by the voting rule. This motivates the planner to choose a voting rule

with low susceptibility, if possible.

This informal story summarizes verbal arguments in recent market design literature

[3, 11, 26, 27], which use approximate strategyproofness of certain mechanisms to advocate

their use in practice. We develop the model more formally in a game-theoretic framework

in Appendix A.

In our model, the planner tries to prevent manipulation altogether. A common critique

[8, 14, 60] argues that the planner’s real goal should instead be to choose a mechanism that

will ensure a good outcome in equilibrium, which may involve some manipulation along

the way. However, that criticism, applied to the present paper, would miss the purpose.
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As discussed at the end of Appendix A (and further elaborated in the companion paper

on double auctions [13]), a similar model could be used when the planner does have

some specific theory of manipulative behavior. Our general point that incentives can be

measured quantitatively remains valid.

In view of the long previous literature mentioned in Subsection 1.2 using other ap-

proaches to measuring manipulation, we should also explain why we propose a new mea-

sure rather than taking an existing one off the shelf. Our approach has the following

benefits:

• The measure of susceptibility (1.1) as the utility gain from misreporting is portable

across many mechanism design problems.

• Our measure is tied directly to manipulative behavior via the simple model of the ǫ

cost of behaving strategically. Consequently, it acknowledges the distinction between

when manipulation is possible and when it will actually occur, in ways that a profile-

counting measure would miss.

For example, suppose that there are two candidates A,B, and suppose the number

of voters is large. Each voter votes for his (reportedly) preferred candidate. Consider

the voting rule that chooses A if the number of A votes is even and B if it is odd. This

rule is manipulable at almost every profile. But if a manipulator is fairly uncertain

about the votes of the rest of the population, then it is not immediately obvious

what the strategically optimal vote is; and the benefits from manipulation are low,

because A wins with probability close to 1/2 no matter what the manipulator does.

Hence, even a small cost of strategizing can discourage manipulation.

For another example, consider the voting rule that chooses A as winner if everyone

votes for B, and B otherwise. This voting rule is manipulable at only N + 1 out

of the 2N possible vote profiles. But voting truthfully is weakly dominated, and

the incentives to vote strategically can be very strong — each voter is pivotal if his

belief is that everyone else will vote for B — so we should expect manipulation to

be an important issue.

• Our comparison of plurality vote with other voting systems, and our identification

of least-susceptible voting rules (Theorem 4.5 in particular), contrast with previous

results using profile-counting measures of manipulation. So even an analyst who

prefers to use profile-counting measures should still take our σ into consideration,

as it gives novel insights.
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2 Preliminaries

2.1 Framework and definitions

We now review standard concepts from voting theory, and subsequently introduce the

terminology that will be needed to study our measure of susceptibility.

There is a set of M candidates, C = {A1, . . . , AM}. We may refer to the candidates

also as A,B,C, . . .; we will use whichever notation is most convenient at the moment.

There is also a set of N + 1 voters. (From here onwards we take the number of voters to

be N + 1 rather than N , as this simplifies calculations.) We assume M ≥ 3 and N ≥ 1.1

Some of our results are asymptotic; it will be understood that these asymptotics apply

with M held fixed and N → ∞.

Each voter is assumed to have a strict preference (linear order) on the set of can-

didates. The symbol ≻ denotes a generic such preference. Let L denote the set of all

M ! such preferences. A preference may be notated as a list of candidates; for example,

if M = 3, ACB denotes the preference that ranks A first, C second, and B third. We

may similarly write AC . . . to indicate that A is first, C is second, and the rest of the

preference is unspecified. A (preference) profile is an element of LN+1, specifying each

voter’s preference. A voting rule is a map f : LN+1 → C, choosing a winning candidate for

each possible profile. (Note that some authors use terms such as social choice function,

reserving voting rule for the special case where each voter reports only his top choice, e.g.

[18, 33]).

We restrict attention throughout to voting rules that are anonymous, meaning that

the outcome is unchanged if the voters are permuted. Consequently, we can notate the

argument of f as a list specifying the number of voters with each preference that occurs.

For example, f(3 ABC,N − 2 BAC) refers to the candidate who wins when any 3 voters

report preference ABC and the other N − 2 report BAC. This numbered list will also

be called a profile. When there is potential ambiguity, we will use nonanonymous profile

for a list specifying each voter’s preference and anonymous profile if only the number of

voters with each preference is to be specified. It will be useful to think of anonymous

profiles as the integer points of a simplex in M !-dimensional space — those integer points

whose coordinates are nonnegative and sum to N + 1.

More generally, we define a K-profile (anonymous or nonanonymous) to be a list

specifying the preferences of K voters. When such partial profiles are concatenated, we

1The case M = 2 is uninteresting in terms of incentives, e.g. using majority rule to decide between
two alternatives gives no incentives to manipulate.
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mean that the votes are to be combined in the obvious way. For example, if ≻ represents

one voter’s preference and P an N -profile describing preferences for the other N voters,

then f(≻, P ) is the candidate chosen when the N+1 voters have the specified preferences.

We will also define here a few properties of voting rules which will be useful later. We

organize these into three categories:

• Efficiency properties: A voting rule f is Pareto efficient if, for any two candidates

Ai, Aj and any profile P such that every voter ranks Ai above Aj, f(P ) 6= Aj.

The voting rule is weakly unanimous if, for every preference ≻, f(N + 1 ≻) is

the candidate ranked first by ≻. That is, if all voters have identical preferences,

their first choice wins. It is strongly unanimous if, for every profile P such that all

N +1 voters rank the same candidate Ai first, f(P ) = Ai. Clearly, Pareto efficiency

implies strong unanimity, which in turn implies weak unanimity.

• Regularity properties: One regularity condition often viewed as normatively desir-

able [40] is monotonicity, which says that if the current winner’s status improves,

she remains the winner. The precise definition is as follows. First, given a preference

≻, a preference ≻′ is an Ai-lifting of ≻ if the following holds: for all Aj, Ak 6= Ai,

we have Aj ≻ Ak if and only if Aj ≻′ Ak, and Ai ≻ Aj implies Ai ≻′ Aj. That is,

the position of Ai is improved while holding fixed the relative ranking of all other

candidates. Then, a voting rule f is monotone if it satisfies the following: For every

profile P , if P ′ is obtained from P by replacing some voter’s preference ≻ by an

f(P )-lifting of ≻, then f(P ′) = f(P ).

We will also define here another very weak regularity condition (though not implied

by monotonicity). Say that f is simple on the pair of candidates {Ai, Aj} if the

following two conditions are satisfied:

– at any profile P where every voter ranks Ai, Aj first and second in some order,

f(P ) ∈ {Ai, Aj};

– moreover, there is a value K∗ such that at every such profile, f(P ) = Ai if the

number of voters ranking Ai first is at least K
∗, and f(P ) = Aj otherwise.

Note that the often-invoked property of Condorcet-consistency [40] — that, if a Con-

dorcet winner exists (see Subsection 3.2), she should be elected — implies simplicity

on every pair of candidates.
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Figure 2.1: A tops-only voting rule

• Informational properties: We define just one property here. The voting rule f is

tops-only if the outcome depends only on each voter’s first-choice candidate. In this

case we can further economize on notation, writing, for example, f(3 A,N − 2 B).

Tops-onliness is useful for intuition, because when M = 3, tops-only voting rules

can be represented graphically. Indeed, since only first choices matter, the vote

profiles now form a simplex in M -dimensional space rather than in M !-dimensional

space. With M = 3, this simplex is just a triangular grid; the corners represent the

all-A profile, the all-B profile, and the all-C profile. We can illustrate a voting rule

by coloring each cell of the grid according to the winning candidate. For example,

Figure 2.1 illustrates a supermajority rule with N + 1 = 7 voters: either B or C is

elected if she receives 5 or more votes; otherwise A wins.

For non-tops-only rules, we can draw such grids, but only for small portions of the

vote simplex.

Following [46], we will use the term voting system to denote a family of voting rules,

one for each value of N . (In fact, our examples of voting systems will generally consist of

a rule for each M and N , but this detail is irrelevant since we think of M as fixed and N

as varying.) A voting system is tops-only if the corresponding rule is tops-only for each

N , and similarly for other properties.

We can now discuss manipulation. We consider one distinguished voter, the manipu-

lator. The manipulator has a von Neumann-Morgenstern utility function u : C → [0, 1].2

2Other voters may also have utility functions, but these are irrelevant from the manipulator’s point
of view because we assume they may only report ordinal preferences.
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We say that the utility function u represents a preference ≻ if, for every two candidates

Ai, Aj, Ai ≻ Aj implies u(Ai) > u(Aj). We say that u weakly represents ≻ if Ai ≻ Aj

implies u(Ai) ≥ u(Aj).

We will use the term opponent-profile to refer to the N -profile representing the voters

other than the manipulator. Suppose that the manipulator believes that the opponent-

profile, P , follows the joint probability distribution Φ ∈ ∆(LN). (∆(X) means the simplex

of probability distributions on X.) If ≻ is his true preference ranking, represented by u,

then the amount of expected utility he can gain from strategic manipulation is

max
≻′∈L

(
EΦ[u(f(≻′, P ))]− EΦ[u(f(≻, P ))]

)
.

Here the operator EΦ indicates expectation with respect to the distribution Φ for P .

We focus attention on a particular class of beliefs Φ, those for which the other voters’

preferences are IID. As argued by McLennan [37], this is a reasonable model of beliefs in

a large population, where each member treats the others as interchangeable strangers.3

For any φ ∈ ∆(L), write IID(φ) for the distribution over opponent-profiles obtained by

drawing each preference independently according to φ.

We can now formally define our measure of susceptibility to manipulation. Let

Z = {(≻,≻′, u, φ) ∈ L × L× [0, 1]M ×∆(L) | u represents ≻}.

The susceptibility of the voting rule f is

σ = sup
(≻,≻′,u,φ)∈Z

(
EIID(φ)[u(f(≻′, P ))]− EIID(φ)[u(f(≻, P ))]

)
. (2.1)

In words, σ is the supremum of the amount the manipulator could gain in expected utility

u by reporting a preference other than his true preference ≻, given that his belief about

P is IID(φ) for some φ.

The restriction to IID beliefs may seem confining. In fact we can relax it considerably,

to conditionally IID beliefs. That is, suppose that instead of requiring the manipulator’s

belief to be IID, we allow that the manipulator has some uncertainty regarding the ag-

gregate distribution of preferences φ in the population; but conditional on the realization

of φ, the opponent-profile P is drawn IID(φ). Then, for any such belief, the manipulator

3It would be easy to extend the model, say, to allow each voter to have separate beliefs about a small
number of other voters, representing his friends and family.
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still cannot gain more than σ expected utility by manipulating. Indeed, suppose he ma-

nipulates by reporting ≻′ instead of the true preference ≻. Conditional on any value of

the aggregate preference distribution φ, the expected gain from manipulating is at most σ

(by definition). So, by the law of iterated expectations, the unconditional expected utility

gain from manipulating is again at most σ.

Thus, we could have defined susceptibility in (2.1) using conditionally-IID beliefs,

rather than pure-IID beliefs; the two definitions would be equivalent. However, the pure-

IID definition is easier to work with, so we stick to it, and refer to the conditionally-IID

definition only for motivation.

We next introduce a useful alternative formulation of the definition of susceptibility.

To work toward this alternative definition, we first use continuity to rewrite the supremum

over Z in (2.1) as a maximum over the closure cl(Z), and also take the difference inside

the expectation:

σ = sup
(≻,≻′,u,φ)∈Z

(
E(IID(φ)[u(f(≻′, P ))]− EIID(φ)[u(f(≻, P ))]

)

= max
(≻,≻′,u,φ)∈cl(Z)

(
EIID(φ)[u(f(≻′, P ))− u(f(≻, P ))]

)
. (2.2)

Here the maximum is over the set

cl(Z) = {(≻,≻′, u, φ) | u weakly represents ≻}.

For given ≻,≻′, φ, the maximand in (2.2) is a linear function of the values of u, so

the maximum is attained at an extreme point of the simplex of utility functions u weakly

representing the given ≻. The extreme points are those that take the value 1 for the

highest-ranked L candidates, for some L, and 0 for the remaining candidates. Hence, we

can also write

σ = max
(≻,≻′,C+,φ)

(
EIID(φ)[I(f(≻′, P ) ∈ C+)− I(f(≻, P ) ∈ C+)]

)
, (2.3)

where I(E) is the indicator function of event E, and the maximum is taken over all

≻,≻′∈ L, φ ∈ ∆(L), and C+ ⊆ C such that C+ consists of the L highest-ranked candidates

under ≻ for some L. This is our alternative definition.

Expression (2.3) can be suggestively interpreted as the probability of being pivotal —

that is, the probability (under the critical belief φ) of drawing an opponent-profile P for
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which the manipulation ≻′ changes the outcome from an undesirable one to a desirable one

(f(≻, P ) /∈ C+, f(≻′, P ) ∈ C+). Indeed, many of our results, especially in Section 3, will

be built on this interpretation. We stress however that the interpretation is not exactly

correct, since for some opponent-profiles P the manipulator is “antipivotal,” changing the

outcome from desirable to undesirable (f(≻, P ) ∈ C+, f(≻′, P ) /∈ C+). Thus, (2.3) can be

more accurately described as the net probability of being pivotal.4

2.2 Analytical tools

When each voter’s preference is drawn IID, the resulting profile follows a multinomial

distribution. Consequently, it will be essential to have a compact notation for such dis-

tributions. We will write M(K;α1, . . . , αr) to denote the multinomial distribution with

K trials and per-trial probabilities α1, . . . , αr, with
∑

i αi = 1. We likewise write

P(x1, . . . , xr | K;α1, . . . , αr) =
K!

x1! · · · xr!
αx1

1 · · ·αxr

r , (2.4)

the probability that the values (x1, . . . , xr) are realized in such a distribution. (This

applies when the xi are nonnegative integers with
∑

i xi = K. For any other values of the

xi, we define P(x1, . . . , xr | K;α1, . . . , αr) = 0.)

If P is an (unordered) list of K preferences and φ a distribution on L, then we will

write P(P | K;φ) with the same meaning.5 As before, we may notate P by simply writing

out each preference with its multiplicity. Similarly φ may be represented by writing each

preference, preceded by its probability. More generally, we can concatenate probability

distributions, preceded by weights, to represent convex combinations: if φ, φ′ ∈ ∆(L) and
λ ∈ [0, 1], we may write (λ φ, 1− λ φ′) rather than λφ+ (1− λ)φ′. These concatenations

will sometimes be written vertically rather than horizontally, as in

P




K1 ABC

K2 ACB

N −K1 −K2 BCA

∣∣∣∣∣∣∣
N ;

α1 ABC

α2 ACB

α3 BCA


 .

4Expression (2.3) is also reminiscent of the notion of influence developed by Al-Najjar and Smorodin-
sky [2]. However, there are some important differences. Influence in [2] is defined with respect to a
specific belief φ, whereas we take the max over beliefs. The analysis in [2] imposes a noise assumption on
φ — every voter must report every possible preference with probability bounded away from 0 — whereas
we make no such assumption.

5We often use the letter α for a vector, or α1, . . . , αr for its components, to denote the parameters of
the multinomial distribution thought of as abstract quantities, and φ for this same vector thought of as
a probability distribution on L or C.
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If S is a set of profiles, we may write P(S | K;φ) for
∑

P∈S P(P | K;φ).

Many of our results will concern asymptotics as N → ∞, so we should establish con-

venient notation accordingly. We are concerned not only with how quickly susceptibility

declines to zero as N → ∞, but also with the constant factors involved (when we are

able to estimate them). This calls for somewhat nonstandard notation. We will write

F (N) ∼ G(N) to indicate that F (N)/G(N) → 1 as N → ∞. If F and G depend on both

N and M , then it is understood that M is held fixed. We will write F (N) . G(N), or

equivalently G(N) & F (N), to indicate lim supN→∞ F (N)/G(N) ≤ 1.

Now that we have finished introducing notation, we can lay out the main analytical

tools that will be used in the rest of the paper. We present here a conceptual overview

and a few of the most important technical results. The proofs of these results, as well as

other useful technical computations, are given in Appendix C.

The single most important conceptual tool for our asymptotic analysis is the central

limit theorem approximation of multinomial distributions: When K is large, the distri-

bution M(K | α1, α2, . . . , αr) is approximately normal with mean (Kα1, Kα2, . . . , Kαr)

and variance matrix




α1(1− α1)K −α1α2K · · · −α1αrK

−α2α1K α2(1− α2)K · · · −α2αrK
...

...
. . .

...

−αrα1K −αrα2K · · · αr(1− αr)K



.

This has numerous implications. For example, if 0 < β < 1 and x is an integer with

x ≈ βN , then P(x,N − x | N ; β, 1− β) ≈
√
1/(2πNβ(1− β)). For a precise statement:

Lemma 2.1 Let 0 < β < 1, and let c be a constant. For each positive integer N , let xN

be an integer with |xN − βN | < c, and let βN ∈ [0, 1] satisfy |xN − βNN | < c. Then

P

(
xN

N − xN

∣∣∣∣∣ N ;
βN

1− βN

)
∼
√

1

2πNβ(1− β)
.

Another set of implications that will be extremely useful for Section 3, where we bound

the susceptibility of specific voting rules, is given by the following lemma. Its statement

is notationally intense, but the content is intuitive, as we explain momentarily.

Lemma 2.2 Let I be a finite collection of strict linear inequalities in r free variables

β1, . . . , βr, each of the form c0+c1β1+ · · ·+crβr > 0. Let J be a compact set of probability
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distributions (α1, . . . , αr), satisfying all the inequalities in I. For each positive integer N ,

let SI
N be the set of all r-tuples of nonnegative integers (x1, . . . , xr) summing to N , such

that the numbers x1/N, . . . , xr/N satisfy the inequalities in I.

(a) There is some λ > 0 such that

1− min
(α1,...,αr)∈J

P(SI
N | N ;α1, . . . , αr) . e−λN .

(b) Fix (α1, . . . , αr) ∈ J , and suppose further αi = αj ∈ (0, 1/2) for some i, j; and let y

be any (integer) constant. Let Tij,y = {(x1, . . . , xr) | xi − xj = y}. Then

P(SI
N ∩ Tij,y | N ;α1, . . . , αr) ∼

1

2

√
1

παiN
.

Part (a) is just a strengthened form of the law of large numbers. It states that when

(x1, . . . , xr) ∼ M(N ;α1, . . . , αr), then each xi is close to αiN , with probability converging

exponentially fast to 1 for large N . Part (b) estimates the further probability that xi−xj
takes on a particular constant value. The estimate follows from the fact that xi − xj is

approximately normal with mean 0 and variance 2αiN , and is approximately independent

of all other components of x.

In many of the examples we will consider in Section 3, the manipulator is pivotal

when the number of other voters reporting some preference order ≻i is exactly equal to

the number of voters reporting another order ≻j. In these cases, Lemma 2.2(b) is useful

for estimating the probability of being pivotal.

We note for future reference that the pivotal probability in Lemma 2.2(b) declines in

N at rate 1/
√
N , but that the constant factor depends on αi. In particular, the smaller

αi is, the higher the probability is. This is because the population shares of ≻i and ≻j

have smaller variance, so are more likely to differ by exactly the required constant y.

We draw attention to one peculiarity: Consider r = 2, α1 = α2 = 1/2. This is a

limiting case of Lemma 2.2(b), and so one might expect that the corresponding probability

would be ∼ (1/2)
√

1/π · (1/2) ·N =
√
1/2πN . However, the probability is actually 0 if

N is the opposite parity from y, and ∼
√
2/πN if N is the same parity as y (this follows

from Lemma 2.1). The discontinuity occurs because the equality x1 + x2 = N constrains

the difference x1 − x2 to be the same parity as N , whereas in Lemma 2.2(b), as long as

αi = αj < 1/2, the parity of xi − xj is unrestricted.

Finally, in view of our worst-case approach to susceptibility — and particularly inter-
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pretation (2.3), the worst-case probability of being pivotal — it is natural to be interested

in identifying the critical probability distributions for which some vote profile is most

likely.

Lemma 2.3 For given nonnegative integers x1, . . . , xr with sum K, the maximum value

of P(x1, . . . , xr | K;α1, . . . , αr) with respect to the αi is attained at αi = xi/K.

Lemma 2.4 The expression

max
α∈[0,1]

P

(
K

N −K

∣∣∣∣∣ N ;
α

1− α

)

is strictly decreasing in K for K ≤ N/2 and strictly increasing for K ≥ N/2. In particu-

lar, it is minimized over K at K = N/2 if N is even, and (N ± 1)/2 if N is odd.

3 Susceptibility of specific voting systems

Now that we have developed the basic tools, we can begin applying our measure of sus-

ceptibility to manipulation to various voting systems.

We first develop intuitions in Subsection 3.1 by studying the susceptibility of four

simple voting systems: (super)majority with status quo, plurality, Q-approval voting, and

Borda count. Then, in Subsection 3.2, we consider several voting systems that have been

identified in previous literature as resistant to manipulation, and find that by our measure,

they are all more susceptible than simple plurality rule. In the process, we uncover several

qualitative properties that make a voting rule relatively susceptible. Finally, the result of

Subsection 3.2 raises the question of whether there are well-behaved voting systems that

are less susceptible than plurality rule; in Subsection 3.3, we give an example of such a

voting system for the case of three candidates.

For each of the voting systems studied in this section, the winner can be identified

by checking a fixed set of inequalities (independent of N) in the population shares of the

various possible preference orderings. In thinking about such systems, the most useful

interpretation of susceptibility is (2.3), the probability of being pivotal.

3.1 Four simple voting systems

Supermajority with status quo. We begin by studying a rule for which we can

compute the susceptibility exactly. Let K be an integer with (N + 1)/2 < K ≤ N + 1,
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and choose any fixed candidate, without loss of generality say A. The supermajority rule

with status quo associated to K and A is the tops-only voting system defined as follows: if

any candidate other than A receives at least K first-place votes, this candidate is chosen;

otherwise A wins. (Recall Figure 2.1.) If K = ⌊(N + 3)/2⌋ then we have the majority

rule with status quo. If K = N + 1 then we have unanimity rule.

Proposition 3.1 The supermajority rule with status quo has susceptibility

σ
smaj(K)
N = P

(
K − 1

N − (K − 1)

∣∣∣∣∣ N ;
(K − 1)/N

1− (K − 1)/N

)
.

The basic approach to calculating susceptibility is to identify the profiles where op-

portunities for manipulation occur, and then identify a particular belief for which such

opportunities are especially likely. For supermajority rule, we can actually identify the

critical distribution that exactly maximizes the probability of being pivotal. Manipula-

tion is possible only when the manipulator is pivotal between candidate A and some other

candidate (say C), and his true first choice (say B) cannot get elected. The manipulator

is pivotal when C has K − 1 votes among the other voters. This is most likely to occur

when each other voter chooses C with probability (K − 1)/N .

We give the full proof here.

Proof: Consider the formulation of susceptibility (2.3), as the probability that the

manipulation changes the outcome from an undesirable one to a desirable one. If the

manipulator’s first choice is A, then manipulation cannot have such benefits: for any

opponent-profile P , either the manipulator can ensure A wins by voting for A, or else some

other candidate has at least K votes and the manipulator cannot change the outcome.

If his first choice is some other candidate, say B, then manipulating to A cannot affect

whether or not any candidate different from A and B wins, and therefore cannot change

the outcome except by adversely switching it from B to A.

So the only possible beneficial manipulation is when the true first-choice is some non-

A candidate, and the manipulator votes for some other non-A candidate. Without loss

of generality, these are B and C. The manipulation can be advantageous only if the

opponent-profile P is such that the manipulation changes the winner from A to C. This

in turn happens only if C has exactly K − 1 first-place votes in P . Let SC be the set

of such profiles. Thus, the maximand in (2.3) is bounded above by PrIID(φ)(P ∈ SC) =

P(SC | N ;φ). If P is distributed according to IID(φ), and φC is the probability (under

φ) of ranking C first, then the total probability that P ∈ SC is P(K − 1, N − K +
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1 | N ;φC , 1− φC). So, combining these observations, we have

σ ≤ max
φ

Pr
IID(φ)

(P ∈ SC) = max
φC

P(K − 1, N −K + 1 | N ;φC , 1− φC). (3.1)

On the other hand, suppose the manipulator’s true preferences are BCA . . . and the

opponents’ votes are distributed (φC C, (1−φC) A), with φC = (K−1)/N . A manipulation

from B to C changes the outcome from A to C if P ∈ SC , which happens with probability

P(K − 1, N −K + 1 | N ;φC , 1− φC), and leaves the outcome unchanged otherwise. By

taking C+ = {B,C} in definition (2.3), then, we get the reverse inequality of (3.1). Thus

the inequality must hold as an equality.

From Lemma 2.3, the maximum in (3.1) is attained when φC = (K−1)/N , giving the

result of the proposition. �

From Lemma 2.4, the susceptibility σ
smaj(K)
N is increasing in K. In particular, it is

maximized for unanimity rule. This contrasts with results for (nonanonymous) profile-

counting measures, where the number of manipulable profiles is lower for higher K (com-

pare in particular with [33, 35, 36], who identify the least-manipulable voting rules by

such measures; they look qualitatively like unanimity rules). Likewise, the value of K that

minimizes σ
smaj(K)
N is K = (N+1)/2 (for N odd) or N/2 (for N even). The corresponding

value will actually come up again several times, so we establish a separate notation for it:

The susceptibility of majority rule with status quo is given by

σ∗
N =





(
N
N/2

)
·
(
1
2

)N
if N is even

(
N

(N−1)/2

)
·
(

(N−1)/2
N

)(N−1)/2 (
(N+1)/2

N

)(N+1)/2

if N is odd

By Lemma 2.1, σ∗
N ∼

√
2/πN . This quantity will in fact appear again in the analysis of

plurality rule, which we turn to next.

Plurality rule. The definition is as follows: For each candidate, we consider the

number of first-place votes, and whoever has the most votes wins. For concreteness, ties

are broken “alphabetically” — that is, in favor of earlier-numbered candidates; or earlier-

lettered, when we use the notation A,B,C, . . . for candidates. (Most of our results are

not actually sensitive to how ties are broken).

Proposition 3.2 Let σplur
N denote the susceptibility of plurality rule.

(a) For each N , σplur
N ≥ σ∗

N .
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(b) σplur
N satisfies

1

2

√
1

π
· M
N

. σplur
N .

√
1

π
· M
N
.

The lower bounds come from considering some potential critical distributions. One

case where the manipulator has a relatively high probability of being pivotal is essentially

when the manipulator’s preferences are ABC . . . and the other voters split their first-

place votes evenly between B and C. Note that either B or C is sure to win, and the

manipulator may want to vote for B instead of A in order to increase the chance of B

winning. This underlies part (a).

Another, related case is when the other voters split their votes almost evenly among

all M candidates, but with slightly higher (and equal) probabilities of voting for B and C

than any of the others. In this case, again the outcome will almost certainly be either B or

C (by Lemma 2.2(a)), incentivizing a vote for B instead of A. Since the vote probabilities

of B and C are equal and are approximately 1/M each, we can estimate the probability

of being pivotal using Lemma 2.2(b); this probability is approximately (1/2)
√
M/πN .

The lower bound in (b) follows.

It is not immediate, however, that the lower bound is sharp: By manipulating to B,

the manipulator not only has a chance of changing the outcome from C to B but also a

chance of changing from other undesirable outcomes D,E, . . . to B. Any upper bound on

susceptibility must take account of all these possibilities.

The argument behind our upper bound runs as follows. Suppose the manipulator’s

true first choice is A but he considers voting for B as above. Consider the critical belief

φ ∈ ∆(C) that maximizes his probability of being pivotal. There must be at least one

other candidate, say C, for which φC is close to φB; otherwise the manipulator is unlikely

to be pivotal. Now, beginning from any arbitrary opponent-profile, move along the B−C
axis — that is, hold constant the number of votes for all candidates except B and C,

and vary the breakdown of the remaining votes into B and C. We show that only one

pivotal opponent-profile can be reached in this way. Consider the conditional probability

of drawing this pivotal profile, given the number of votes for all candidates other than B

and C. Either the pivotal profile either has B getting far more votes than C, in which

case it is very unlikely; or it has both of them getting at least 1/M of the votes, in which

case its probability is at most .
√
M/πN . So in either case, the conditional probability

of the pivotal profile is .
√
M/πN . It follows that the unconditional probability of being

pivotal is also .
√
M/πN , giving the upper bound.

The full proof of the proposition is in Appendix D.
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Proposition 3.2 gives two different lower bounds on σplur
N , using two different beliefs.

For small M , the bound in (a) is stronger than that in (b). Pivotality depends on the

balance between larger population shares (1/2 for the belief used in (a), versus 1/M in

(b)), which would tend to make the manipulator less likely to be pivotal under the belief

used for (a), by the logic of Lemma 2.2(b) (the difference between these two shares has

higher variance). On the other hand, in the case of (a), parity considerations add an

extra factor of 2 to the probability of being pivotal, exactly as in the discussion following

Lemma 2.2 above.

For the case of three candidates, we are able to extend this idea to show that the

bound from (a) is exact — that is, the critical belief for a manipulator with preferences

ABC is that the opponents are split evenly between B and C. However much or little

probability of A is introduced into the belief, the decrease in variance of the B − C split

is outweighed by the uncertainty over parity.

Proposition 3.3 If M = 3, σplur
N = σ∗

N .

The proof is in Appendix D.

Q-approval voting. Next, we consider the voting system known asQ-approval voting,

for any given Q with 2 ≤ Q ≤ M − 1. Each voter gives a point to each of his Q favorite

candidates. The candidate with the most points wins; ties are broken alphabetically. In

the case Q =M − 1, this system is often known as antiplurality voting.

Despite the superficial resemblance to plurality voting, this system is much easier to

analyze, and also gives quite different results.

Proposition 3.4 For each Q, the susceptibility of Q-approval voting is 1.

Proof: Let the manipulator’s true preference be BA . . . and let φ be the distribution

putting probability 1 on a preference of the form AB . . .. So the manipulator’s belief is

that everyone else will report this preference, with probability 1. If the manipulator tells

the truth, then A receives N+1 points, the maximum possible, and hence (by alphabetical

tie-breaking) A wins, regardless of the other candidates’ scores. If the manipulator instead

reports any preference withB ranked first and A ranked last, then A receives onlyN points

and B receives N + 1, so (again by alphabetical tie-breaking) B must win. Thus, this

manipulation improves the outcome from A to B with probability 1.

This example shows that the susceptibility of Q-approval voting is at least 1. Since

susceptibility can never be more than 1, the result follows. �
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The result is perhaps surprising, since standard approval voting (in which each voter

approves any set of candidates, and whoever receives the most approvals wins) has often

been specifically advocated as resistant to manipulation [10, 21]. We do not analyze this

version of approval voting here, because it does not fit directly into our framework — in

particular, it is unclear how a voter’s default truthful vote should be defined. Appendix

B discusses possible ways of extending our methods to treat approval voting.

Borda count. Another often-discussed voting system is the Borda count, which

determines a winner as follows. Each voter assigns M(M +1)/2 points to the candidates:

M points to his first choice, M − 1 to his second choice, . . ., 1 point to his last choice.

For each candidate, we compute a score by totaling across voters. The candidate with

the highest score wins. Ties are again broken alphabetically.

We content ourselves to give a lower bound on susceptibility.

Proposition 3.5 The Borda count has susceptibility

σBorda
N &

⌈
M − 2

2

⌉√
2

πN
.

The argument is analogous to that of Proposition 3.2(a). Consider a manipulator with

preferences ABC . . .. Let the belief be as follows: opponents are evenly split between

ABC . . . and BAC . . .. Then the winner is surely either A or B. By moving B to the

bottom of his reported preference ordering, instead of being truthful, the manipulator can

improve the score of A relative to B by M − 2 points. Hence, the manipulator is pivotal

if, among the other voters, A trails B by more than 1 point but not more than M − 1.

Our lower bound follows by estimating the probability of this event.

The full detailed proof is in Appendix D.

To segue into the next section, we compare the results of Propositions 3.1, 3.2(b), and

3.5. Supermajority with status quo, plurality, and Borda count all have susceptibility

declining as N → ∞ at rate 1/
√
N ; but the constant factors (relative to N) are different.

In particular, the constant factor for supermajority is constant in M ; that for plurality is

on the order of
√
M ; and that for Borda count is linear in M . This allows unambiguous

comparisons between these rules for sufficiently large M . For example, the comparison

between Propositions 3.2(b) and 3.5 shows that, when M ≥ 5, Borda count is more

susceptible than plurality rule if the number of voters N is large.
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3.2 Low manipulability revisited

Next, we consider voting systems which have been specifically identified as resistant to ma-

nipulation in previous literature, using different measures, and ask whether they continue

to fare well under our measure of susceptibility. To decide which voting systems to exam-

ine, we turn for guidance to the work of Aleskerov and Kurbanov [1], which appears to

be the most extensive prior comparison of voting rules in terms of strategic manipulation.

Aleskerov and Kurbanov used Monte Carlo simulations, with small numbers of voters

and candidates, to compare 25 voting systems according to several profile-counting-based

measures of manipulability. We will consider the systems highlighted by their analysis,

and give lower bounds on the susceptibility of each of these systems. As a benchmark

for comparison, we use plurality rule, which is surely the most widespread voting rule

in practice. Our lower bounds will imply that each of the systems picked out by [1] is

actually more susceptible than plurality rule, under our measure. Table 3.1 gives a quick

summary of our findings, and the details are explained below.

Like most of our results, the comparisons will be asymptotic (in the number of voters).

For givenM , we say that a voting system f is more susceptible than g if there is a positive

constant c such that the susceptibility of f is at least 1+c times the susceptibility of g, for

all sufficiently large N . Thus, for example, we say that Borda count is more susceptible

than plurality rule (for M ≥ 5), even though both have susceptibility decaying at rate

1/
√
N .

The comparison paper by Aleskerov and Kurbanov [1] does not conclusively favor

some particular voting system. Instead, we consider all the systems that are identified

by name in their concluding section. In addition to the Borda and Q-approval voting

systems, which we have already considered, these include the Black, Copeland, Fishburn,

minimax, and single transferable vote systems.

We will define these voting systems momentarily, but we first need a couple prelimi-

nary definitions. Given an (N + 1)-profile P , we say that candidate Ai majority-defeats

candidate Aj — notated Ai → Aj — if

• more than (N + 1)/2 of the voters rank Ai above Aj, or

• exactly (N + 1)/2 of the voters rank Ai above Aj, and i < j.

(The second case is used to ensure that among any two candidates, one majority-defeats

the other. Again, our results are not sensitive to how such ties are broken.) A Condorcet
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winner is a candidate that majority-defeats every other candidate; if a Condorcet winner

exists, she is unique.

The voting systems we consider are defined as follows:

• Black’s system: If a Condorcet winner exists, that candidate is chosen; otherwise,

Borda count is applied.

• Copeland’s system: Define the score of each candidate Ai to be the number of

candidates Aj such that Ai → Aj. Choose the candidate with the highest score as

the winner; break ties alphabetically.

• Fishburn’s system (also known as the uncovered set system [55]): Say that a candi-

date Ai covers another candidate Aj if, for all k such that Ak → Ai, we also have

Ak → Aj. (In particular, this requires Ai → Aj.) This is a partial ordering on

the set of candidates, so there must exist at least one uncovered candidate. This

candidate is the winner. If there is more than one uncovered candidate, we choose

the alphabetically earliest.

• Minimax system (also known as Simpson’s system): For each candidate Ai, let

the score be the maximum, over all j 6= i, of the number of voters ranking Aj

above Ai. Choose the candidate with the lowest score as the winner, breaking ties

alphabetically as usual.

• Single transferable vote system (also known as successive elimination or Hare’s sys-

tem): Each voter has one vote, initially assigned to his first-choice candidate. For

each candidate, we determine the number of votes she receives. The candidate Ai1

with the fewest votes is eliminated; ties are broken alphabetically (that is, in favor

of keeping alphabetically earlier candidates). Each voter who ranked Ai1 first has

his vote reassigned to his second-choice candidate. Then, among the remaining can-

didates and new votes, we again eliminate the candidate Ai2 with the fewest votes,

reassign these votes, and so forth. The last candidate to escape elimination is the

winner.

These voting systems are listed in the first column of Table 3.1. In the second column,

we give an asymptotic lower bound on the susceptibility of each system. In each case, we

prove the lower bound for all M except possibly some small values. The table indicates

exactly for whichM we prove the bound. (For the minimax system, the statement is that

there is some absolute constant c such that σ & c/ 4
√
N for all N and M .)
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System Susceptibility Bound σN & (1 + c) · σplur
N ?

Black σBlack
N & ⌈M−2

2
⌉
√

2
πN

for M ≥ 5 M ≥ 5

Copeland σCopeland
N & ⌊M+1

3
⌋
√

2
πN

for M 6= 5 M ≥ 6

Fishburn σFishburn
N & (M − 3)

√
2

πN
M ≥ 5

Minimax σminimax
N & c

4
√
N

for M ≥ 4 M ≥ 4

STV σSTV
N &

√
2M−1

πN
all M

Table 3.1: Comparison of voting systems identified in [1] against plurality rule. The
second column gives lower bounds on susceptibility. Each system is more susceptible
than plurality, for the values of M indicated in the third column.

For most of the voting systems, our lower bound is decreasing in N at rate 1/
√
N , but

with different constant factors. Each such constant factor grows at least linearly in M —

faster than the
√
M factor for plurality rule (from Proposition 3.2(b)). Therefore, each

voting system is more susceptible than plurality rule whenM is large enough. Specifically,

by comparing the second column of the table with Proposition 3.2(b), we get the results

shown in the third column: each voting system listed is more susceptible than plurality

rule for the indicated values of M .

In particular, our lower bound for single transferable vote is exponential in M , so that

it is substantially more susceptible than plurality rule for moderately large numbers of

candidates; and our lower bound for minimax is on the order of N−1/4 rather than N−1/2,

so it is much more susceptible than plurality rule, in large populations, as long as M ≥ 4.

Proposition 3.6 The five voting systems listed in Table 3.1 satisfy the asymptotic lower

bounds on susceptibility listed in the table. (In particular, all of them are more susceptible

than plurality rule when M ≥ 6.)

The proof of Proposition 3.6 is in Appendix E. Here we give a sketch of the arguments

used. In the process, we highlight the insights gained about the properties of these voting

systems that make them particularly susceptible.

Broadly, the approach is the same as for the lower bounds in Propositions 3.2(b) and

3.5. For each system, we prove the lower bound by constructing a particular belief φ and

proposed manipulation, and estimating the probability of being pivotal.

For minimax and single transferable vote, the crucial intuition is that a rule is highly

susceptible if it is sensitive to the balance between two very small shares of the population.
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In more detail: We construct the belief φ in such a way that pivotality occurs when

the numbers of opponents reporting preferences ≻ and ≻′ are equal, for some particular

≻,≻′∈ L. In this belief, ≻ and ≻′ occur with equal probability α. Then, from Lemma

2.2(b), the probability of being pivotal is ∼ (1/2)
√

1/παN . In particular, for small α,

the probability of being pivotal is high. For these two voting systems, we can construct

beliefs with the relevant α quite small. In particular, in the case of minimax, we achieve

the N−1/4 convergence rate by varying the belief as N increases, so that the population

shares of the two relevant preference orders go to zero. Plurality rule, on the other hand,

does not suffer from this sensitivity to small population shares, since the opportunity to

be pivotal between some two potential winners only arises when each of them is the first

choice of at least 1/M of the voters.

The Copeland and Fishburn systems are defined in terms of the majority defeat rela-

tion, which cannot hinge on small population shares, so we cannot use a similar construc-

tion to show that these systems have high susceptibility. Instead, the intuition we use

here is that a rule is highly susceptible if the manipulator can simultaneously be pivotal

in many independent ways.

Specifically, for each of these systems, we construct a belief with the following property:

there are many pairs {Ai, Aj} over which the population is close to evenly split, and if

the manipulator is pivotal for any one of these pairs, he can manipulate advantageously.

For each such pair, the probability of being pivotal is ∼
√
2/πN . The number of pairs is

linear in M , and pivotality for any pair is independent of pivotality for any other pair, so

that the overall probability of being pivotal is ∼
√

2/πN times a coefficient linear in M .

One might at first think that plurality rule allows the same construction, since, as

pointed out in the discussion preceding Proposition 3.2, it is possible to be pivotal in

many ways simultaneously: a manipulation from Ai to Aj can change the outcome from

Ak to Aj, for each k 6= j. But these pivotality conditions are not independent of each

other, since the manipulator can only be pivotal from Ak to Aj when Ak, Aj are the two

candidates with the most first-place votes.

Finally, for Black’s system, we exploit the same intuition as for the Borda count: a

manipulation can have a large effect on the relative standing of two candidates, so that the

slice of the vote simplex for which the manipulator is pivotal has “thickness” proportional

to M . Indeed, the construction we give for Black’s system is based on our construction

for Borda count, with some extra foolery added to prevent the existence of a Condorcet

winner.

Before closing this subsection, we should comment on the practical significance of a
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comparison like Proposition 3.6. Is it not enough to simply know that each voting system’s

susceptibility tends to zero for N large?

In the context of our motivating model, with the ǫ cost of strategic behavior, a result

comparing the susceptibility of two voting systems is most cogent if we believe that a

plausible cost of behaving strategically would be on the same order of magnitude as the

susceptibility of the two rules. In this case, there would be agents who would consider

manipulating under one system but not the other.

Consider a six-candidate election, in an organization with 2, 000 members (this could

correspond to, say, a leadership election in a modest-sized professional organization).

Treating the asymptotic bounds as exact, we have from Proposition 3.2 an upper bound

of 0.031 for the susceptibility of plurality rule, whereas the lower bounds from Proposition

3.6 are 0.036 for Black and Copeland, 0.054 for Fishburn, and 0.071 for single transferable

vote. These numbers are economically distinguishable from zero. More precisely, the

differences in susceptibility between the voting systems are important if the voters’ cost

of behaving strategically is on the order of 3 to 7 percent of their concern about the

outcome. This seems a reasonable estimate in many organizations, where most members’

interest in the outcome of elections is modest.

3.3 A new voting system

We have now shown that a number of voting systems, previously identified as resistant to

manipulation under profile-counting definitions, are in fact more susceptible to manipula-

tion than the benchmark of plurality rule under our worst-case measure. A question which

naturally presents itself is: is there any reasonable voting system that is less susceptible

than plurality?

There are a couple of easy, but not entirely satisfactory, answers. In Section 4, we will

indicate how to construct a unanimous voting system whose susceptibility is on the order

of 1/Nκ, for some κ > 1/2. Thus, such a rule is considerably less susceptible than any of

the voting systems we have considered, for large N . However, that rule will be arguably

artifical and violates almost any standard regularity condition.

Another possible answer is one we have already given, namely majority rule with status

quo; our bounds imply that it is less susceptible than plurality rule if M ≥ 9. However,

this voting system treats the candidates in a very asymmetric manner.

We will give below a voting system that is less susceptible than plurality rule, for the

special case M = 3. This voting system is well-behaved, in the sense of being unani-
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mous and monotone, and arguably treats the candidates as fairly as possible. (Complete

symmetry among candidates — often called neutrality in social choice theory — would

be complicated by the need to break ties. Rather than formally define neutrality with

exceptions for tie-breaking, we just argue intuitively that our rule breaks symmetry only

in knife-edge cases.)

The construction is based on the following observation: Under plurality rule with

M = 3, the strongest incentive to manipulate arises when voters split evenly between two

candidates (see Proposition 3.3). In this case, however, deciding by majority rule between

these two candidates (ignoring the third candidate), rather than using plurality, would

eliminate the incentive to manipulate. This suggests constructing a voting rule such that

• when two candidates are “far ahead” of the third in terms of first-place votes, the

winner is chosen by majority rule between the two leading candidates;

• when all three candidates are roughly evenly matched, plurality rule is used; and

• the transition between the two preceding cases is smooth enough to avoid creating

other opportunities for manipulation.

We now construct a voting system f along these lines, which we will call the pair-

or-plurality voting system. For N sufficiently large, let K,L be positive integers with

2K < L < N/6. (These values can depend on N , in ways to be specified later.)

Say that a candidate Ai is viable if Ai receives at least K first-place votes. The winner

is determined as follows:

(a) If there is only one viable candidate, she wins.

(b) If there are two viable candidates, the winner is determined by majority vote between

them (with ties broken alphabetically).

(c) If all three candidates are viable, then we compute a score for each candidate. For

each candidate Ai, consider the voters ranking her first. Let the number of voters

reporting preferences AiAjAk, AiAkAj be x, y respectively. We will award x + y

corresponding points to the three candidates, as follows:

– If x+ y ≥ L, then all x+ y points are awarded to Ai.

– If x+ y < L, then we award

L(x+ y −K)

L−K
points to Ai,

27



A i A j A k

y

x

y

x

y

x

Figure 3.1: Scoring system in case (c) of the pair-or-plurality voting rule. The level plots
show what fraction of the x+ y points are allocated to each candidate, as a function of x
and y. Darker regions represent more points for the candidate indicated. For reference,
the gray lines connect the points (x, y) = (K, 0), (0, K), (L, 0), (0, L), and (L/2, L/2).

max

{
0,min

{
x− (x+ y −K)L

2(L−K)
,
K(L− x− y)

L−K

}}
points to Aj,

max

{
0,min

{
y − (x+ y −K)L

2(L−K)
,
K(L− x− y)

L−K

}}
points to Ak.

After doing this for each candidate Ai, ultimately we have allocated N + 1 points,

corresponding to the N + 1 voters. Then the candidate with the most points wins.

Ties are broken alphabetically.

The scoring system in case (c) is illustrated in Figure 3.1, which shows the allocation

of points as a function of x and y. This system achieves a smooth transition between

majority rule (in the case x + y = K, where the x + y points are awarded to Aj and Ak

based on pairwise preference) and plurality rule (when x+ y ≥ L, where all x+ y points

go to Ai).

Lemma 3.7 For each N , the pair-or-plurality voting rule constructed above is monotone

and Pareto efficient.

We now give our main result for the pair-or-plurality voting rule. It applies when K

and L are chosen to vary in the appropriate way as functions of N .

Proposition 3.8 If K,L are chosen for each N so that L/K → ∞ and K → ∞ as

N → ∞, then

σPOP
N .

1

2

√
3

πN
.
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Comparing this upper bound to Proposition 3.2(a), we see that the pair-or-plurality

rule is indeed less susceptible than plurality rule.

The proofs of both of the above results are in Appendix F.

Unfortunately, there is no obvious way to generalize the construction of the pair-or-

plurality voting rule to a system that is less susceptible than plurality rule for arbitrary

M . For largeM , the critical distribution for plurality no longer has opponents evenly split

between two candidates, so our motivating idea does not apply. Finding a well-behaved

voting system that is less susceptible than plurality rule for arbitrary M , or showing that

no such voting system exists (under an appropriate definition of “well-behaved”), is a task

for future research.

4 General lower bounds

The previous section gave comparisons of several specific voting systems. However, a

mechanism designer may often approach her problem not with particular mechanisms in

mind, but rather with a list of desired properties that a mechanism should satisfy, and

then ask how well she can do in terms of strategic incentives while satisfying those other

properties. In this section, we give several illustrative results to show how our measure

of susceptibility can be used to address such questions. Each of our results is of the

following form: for some combination of (efficiency, regularity, informational) properties,

we provide an asymptotic lower bound on the susceptibility of any voting rule satisfying

them. The properties we use are those defined in Subsection 2.1.

These lower bounds (together with some partial tightness results) offer insights into

the quantitative tradeoffs between susceptibility to strategic manipulation and other

desiderata. They can also be viewed, more pessimistically, as quantitative versions of

the Gibbard-Satterthwaite theorem, analogous to the recent results of Isaksson, Kindler,

and Mossel [25] and Mossel and Racz [39] which used a profile-counting measure. (A

version of the Gibbard-Satterthwaite theorem for our IID setting was first proved by

McLennan [37].)

For expositional smoothness, we begin by presenting all of the results, in Subsection

4.1. That subsection ends with a very brief sketch of the tools used in the proofs. Ensuing

subsections give more careful outlines of the proofs. These outlines are of interest in

themselves, as they illustrate more general techniques for working with our measure of

susceptibility. The full proofs are for the most part left to Appendix G.

As before, our results are asymptotic in N , so we treat M as fixed. Thus when any
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result in this section refers to a “constant,” it is understood that the constant may depend

on M but not N .

4.1 Statement of results

The discussion here will explain the motivation behind each result. A quick summary of

the results is provided in Table 4.1 near the end of this subsection.

Since any constant voting rule obviously has susceptibility zero, some efficiency con-

dition needs to be imposed to obtain any interesting results. A minimal such restriction

is weak unanimity, which leads to the following general lower bound:

Theorem 4.1 There exists a constant c > 0 such that, for every value of N , every weakly

unanimous voting rule f has susceptibility σ ≥ cN−3/2.

If we add tops-onliness, then we can improve the exponent from −3/2 to −1. (Note

that a less negative exponent of N means a higher value, thus a stronger lower bound.)

Theorem 4.2 There exists a constant c > 0 such that every unanimous, tops-only voting

rule has susceptibility σ ≥ cN−1.

(We simply say unanimous because weak and strong unanimity coincide for tops-only

voting rules.)

It is unknown whether the bounds in Theorems 4.1 and 4.2 are tight. The voting

systems considered in Section 3, which all had susceptibility of order N−1/2 or larger,

might suggest that a tight lower bound should have an exponent of −1/2. The following

result shows that such a bound actually does not hold in general:

Theorem 4.3 There exist a number κ > 1/2 and a Pareto-efficient, tops-only voting

system with susceptibility σ . N−κ.

The slower rate of decline in Section 3 exploited the interpretation of susceptibility

as the probability of being pivotal. Theorem 4.3 instead depends on a construction for

which the pivotal intuition does not apply.

Instead, we construct a low-susceptibility voting system based on the following ideas.

Imagine temporarily that we allow voting rules to specify probabilistic outcomes. Thus

instead of being a function f : LN+1 → C, a voting rule is a function f : LN+1 →
∆(C). With expected utility over lotteries, our definition of susceptibility (2.1) remains
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applicable. But now the random dictatorship voting rule, which picks a voter uniformly

at random and then chooses that voter’s first choice as the winner, has susceptibility zero.

In this paper, we have forbidden explicitly random voting rules, so the random dic-

tatorship is disallowed. However, there is still room for implicit randomization, via the

manipulator’s IID uncertainty about others’ votes. This allows us to construct an f that

looks approximately like random dictatorship from the manipulator’s point of view: For

any (N + 1)-profile P , we choose the values f(Q) for profiles Q close to P , so that the

fraction of such profiles at which any candidate Ai wins is close to the fraction of the

population voting for Ai at P . This is illustrated in Figure 4.1. The construction in Ap-

pendix H in effect achieves this for all P simultaneously, to within an error of order strictly

smaller than N−1/2. (That construction requires some additional details not reflected in

the figure.)

A

A

B

B

C

C

Figure 4.1: The approximate random dictatorship voting rule

This approximate random dictatorship is extremely sensitive to the exact vote profile,

so that the pivotal intuition does not apply. However, one might argue that it is not a

realistic voting rule, and impose a regularity condition to rule out such a construction. For

example, monotonicity does the trick, at least as long as we are also willing to strengthen

unanimity to Pareto efficiency. This restores the N−1/2 rate of decline in susceptibility

that we saw in Section 3:

Theorem 4.4 There exists a constant c such that every Pareto efficient and monotone

voting rule f has susceptibility σ ≥ cN−1/2.
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If we impose both monotonicity and tops-onliness, the problem becomes structured

enough so that we can compute the minimum susceptibility exactly. Moreover, we can

partially characterize the voting rules attaining the minimum. Say that a tops-only voting

rule f is a majority rule if it satisfies the following: for every profile P at which more

than half the voters rank the same candidate Ai first, f(P ) = Ai.

Theorem 4.5 Every unanimous, monotone, tops-only voting rule f has susceptibility

σ ≥ σ∗
N . Moreover, if equality holds, and N ≥ 4, then f must be a majority rule.

Equality is attained, for example, by majority rule with status quo (Proposition 3.1).

Again, this contrasts with the results of [33, 36], using a profile-counting measure of manip-

ulation; the least-manipulable voting rules they identify look qualitatively like unanimity

rules, not majority rules.

Theorems 4.4 and 4.5 both give bounds on the order of N−1/2. The example of Section

3.3 shows that Theorem 4.5 is not redundant: the bound there would not hold if we did

not require tops-onliness.

Finally, we give two theorems showing that the relatively mild regularity condition of

simplicity already makes some demands on incentives. By itself, it is enough to imply an

N−1 bound (where we had N−3/2 otherwise); and combined with tops-onliness, it gives

N−1/2, the same order of magnitude as monotonicity.6

Theorem 4.6 There is a constant c > 0 such that every weakly unanimous voting rule

that is simple over some pair of candidates has susceptibility σ ≥ cN−1.

Theorem 4.7 There is a constant c > 0 such that every unanimous, tops-only voting

rule that is simple over some pair of candidates has susceptibility σ ≥ cN−1/2.

In proving all of these lower bounds, we focus on profiles and beliefs φ that are con-

centrated on just two or three preference orderings. To understand why, recall that if we

had not imposed any restrictions on beliefs in the definition (1.1) of susceptibility, then

every voting rule would have susceptibility 1. Lower susceptibility is made possible by

the smoothing of beliefs that the IID restriction achieves. A belief placing non-negligible

6The latter result, Theorem 4.7, does not even require an explicit efficiency condition: simplicity
imposes enough efficiency to yield the bound. Note that even though simplicity only concerns two
candidates, the usual method of giving perfect incentives by using majority vote between these two
candidates is unavailable, because it violates tops-onliness.
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probability on many preference orders is smoothed along many dimensions. Beliefs concen-

trated on a small number of orderings give coarser smoothing, and thus are more powerful

in translating the discreteness of local changes in f into lower bounds on susceptibility.

For the theorems involving monotonicity (4.4 and 4.5), the most important intuition

behind the lower bounds is the interpretation of susceptibility as the probability of being

pivotal. For the others, the main driving force is the coarseness of discrete approximation

described in the previous paragraph.

Efficiency Regularity Information Bound Theorem #

Weakly unanimous σ ≥ cN−3/2 4.1
Weakly unanimous Simple σ ≥ cN−1 4.6

Pareto Monotone σ ≥ cN−1/2 4.4
Unanimous Tops-only σ ≥ cN−1 4.2

Simple Tops-only σ ≥ cN−1/2 4.7

Unanimous Monotone Tops-only σ ≥ σ∗
N (∼ cN−1/2) 4.5

Table 4.1: Summary of lower-bound theorems

The remaining subsections sketch these proofs. Instead of following the order of ex-

position above, they are arranged in a more convenient way for presenting the tools.

Subsection 4.2 covers Theorem 4.5. Since this is an exact bound, the proof is combinato-

rial. The remaining proofs are at least partly analytic, building on a lemma introduced in

Subsection 4.3 that bounds the variation in local averages of f in terms of the susceptibil-

ity σ. Subsection 4.4 proves Theorem 4.4 for monotone voting rules, using the lemma to

help formalize the pivotal intuition. Subsection 4.5 covers the results for tops-only voting

rules, Theorems 4.2 and 4.7, while Subsection 4.6 proves the more general Theorems 4.1

and 4.6. These last two subsections exhibit a “meta-technique” for proving lower bounds

on susceptibility: Begin with a proof by contradiction showing that susceptibility cannot

be zero; then introduce error terms, and calculate how large the error terms need to be in

order for the contradiction to disappear. In particular, Subsection 4.6 builds on Gibbard’s

[23] classic characterization of strategyproof probabilistic voting rules by including error

terms in this way.

As for Theorem 4.3, we have already sketched the main idea of the construction;

further details are left to Appendix H.

33



C

B

A

CB

A

Figure 4.2: A unanimous, monotone, tops-only voting rule

4.2 Monotone, tops-only voting rules

We begin with the proof of Theorem 4.5. Notice that for tops-only voting rules, mono-

tonicity means that if a candidate Ai wins at some profile P , and we change P by replacing

votes for candidates other than Ai with votes for Ai, then Ai remains the winner.

For intuition, consider the case of three candidates; an example of a monotone, tops-

only voting rule is shown in Figure 4.2. Such a rule carves the simplex of possible vote

profiles into a region where A is chosen, a region where B is chosen and a region where

C is chosen. Focus on the B − C edge of the simplex. There is exactly one profile along

this edge where the manipulator can be pivotal between B and C — either by changing

his vote from A to B, he changes the outcome from C to B, or else (as in the figure)

by changing his vote from A to C, he changes the outcome from B to C. Thus, if his

true first choice is A, he can change the outcome from his third to second choice by

manipulating. The critical distribution φ is then chosen to maximize the probability of

this pivotal profile, and the bound follows via Lemmas 2.3 and 2.4.

The full proof, which is in Appendix G, modifies this argument to allow for arbitrarily

many candidates. The proof also requires some extra work to deal with extreme shapes

for the boundaries between regions, particularly when proving the equality case.
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4.3 A crucial lemma

For the remaining results, we use analytic methods rather than purely combinatorial ones.

Henceforth, we will need to refer to N +1 more often than N directly, so put Ñ = N +1.

The following definitions will be useful throughout the rest of this section. For any

distribution φ ∈ ∆(L), write f(φ) for the distribution over candidates induced by f when

all N + 1 votes are drawn IID from φ. Also write fAi
(φ) for the probability of candidate

Ai in this distribution. Rather than studying f directly, it will be more convenient to

work with f : the latter, being a continuous object, lends itself to analytic techniques.

From the point of view of the manipulator, reporting a preference ≻′, the distribution

over outcomes is similar, but not identical, to f(φ): the manipulator reports ≻′ for sure,

while the other N preferences are drawn from φ. The incentives to manipulate involve

a comparison between two such distributions. As it turns out, this difference between

two distributions is exactly equal to the directional derivative of f , in the direction of

changing preferences from ≻ to ≻′, up to a scaling factor. More precisely:

Lemma 4.8 Let ≻,≻′ be any two orderings; let φ ∈ ∆(L) and α ∈ [0, 1]. For x ∈ [0, 1],

define

φx = α(x ≻′ +(1− x) ≻) + (1− α) φ.

Then, the components of the derivative of the function f(φx) are given by

d

dx

(
fAi

(φx)
)
= αÑ · EIID(φx)[I(f(≻′, P ) = Ai)− I(f(≻, P ) = Ai)].

The proof, by direct computation, is in Appendix D.

This leads to the following key lemma, which relates rates of change of f to the

susceptibility of f .

Lemma 4.9 (Local Average Lemma) Suppose the voting rule f has susceptibility σ.

There exists a constant c, independent of N (or f or σ), such that the following hold:

(a) Let ≻,≻′ be any two orderings; let φ ∈ ∆(L) and α ∈ [0, 1]. Then for any set C+

consisting of the L highest-ranked candidates under ≻, for some L, we have

∑

Ak∈C+

fAk
(α ≻′ +(1− α)φ)−

∑

Ak∈C+

fAk
(α ≻ +(1− α)φ) ≤ Ñασ. (4.1)

(b) Let ≻,≻′ be two orderings differing only by a switch of the adjacent candidates

Ai, Aj; let φ ∈ ∆(L) and α ∈ [0, 1]. Then for any set C ′ of candidates not containing
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Ai or Aj,

∣∣∣∣∣
∑

Ak∈C′

fAk
(α ≻′ +(1− α)φ)−

∑

Ak∈C′

fAk
(α ≻ +(1− α)φ)

∣∣∣∣∣ ≤ cÑασ. (4.2)

(c) Suppose f is tops-only. Let φ ∈ ∆(C) and α ∈ [0, 1]. Then for any set C ′ of

candidates not containing Ai or Aj,

∣∣∣∣∣
∑

Ak∈C′

fAk
(α Ai + (1− α)φ)−

∑

Ak∈C′

fAk
(α Aj + (1− α)φ)

∣∣∣∣∣ ≤ cÑασ. (4.3)

Proof: We focus on proving (a), then check that the other parts follow immediately.

Using the notation of Lemma 4.8, put g(x) =
∑

Ak∈C+ fAk
(φx). We then have

dg

dx
= αÑ · EIID(φx)[I(f(≻′, P ) ∈ C+)− I(f(≻, P ) ∈ C+)].

From (2.3), the expectation on the right side is at most σ. So dg
dx

≤ αÑσ for all x, hence

∑

Ak∈C+

fAk
(α ≻′ +(1− α)φ)−

∑

Ak∈C+

fAk
(α ≻ +(1− α)φ) = g(1)− g(0) ≤ αÑσ.

This proves (a).

For (b), notice that if C ′ consists of the L highest-ranked candidates under ≻ (and

hence also under ≻′) for some L, then (4.2) with c = 1 follows from part (a), applied once

directly and once with ≻ and ≻′ reversed. If C ′ consists of the L lowest-ranked candidates,

then (4.2) with c = 1 likewise follows from part (a), taking C+ = C \C ′. Finally, any C ′ not

containing Ai or Aj can be obtained by taking unions and differences of at most M − 2

such highest- or lowest-ranked sets. Hence in general (4.2) holds with c = M − 2, using

the triangle inequality.

Part (c) is immediate from (b).

�

4.4 Monotone voting rules

We now take on Theorem 4.4, for monotone voting rules. Clearly it suffices to show the

result when N is sufficiently large.
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Monotonicity again allows us to carve the simplex of vote profiles into regions where

each candidate wins. The intuition of susceptibility as the probability of being pivotal

then applies: for the appropriate critical distribution, the probability of being on the

boundary of two regions is of order N−1/2, and we show that some such boundary is

sloped so that a non-negligible fraction of the boundary profiles are in fact ones where

manipulation is advantageous.

Lemma 4.10 formalizes this pivotal intuition, in the form that we need. The lemma

focuses on a portion of the vote simplex spanned by three particular preferences ≻,≻′,≻′′.

We suppose that there are two candidates Ai, Aj who are ranked in the same way by ≻′

and ≻′′; and that this simplex contains an Ai region adjacent to an Aj region, with the

boundary between them sufficiently sloped relative to the ≻′ − ≻′′ edge of the simplex.

If the manipulator expects the vote profile to lie near the boundary, he has an incentive

to manipulate from ≻′ to ≻′′ or vice versa, in order to help the more-preferred of the two

candidates win. The size of this incentive is of order N−1/2.

The formal statement of the lemma below is lengthy, but the idea is as above. The

statement focuses on a parallelogram-shaped portion of the ≻ − ≻′ − ≻′′ simplex, and

assumes that throughout this parallelogram, f chooses either Ai or Aj, as illustrated in

Figure 4.3. (The parallelogram shape makes the lemma easier to state, but is not crucial

to the result.)

Condition (iii) of the lemma says the relevant regions are well-behaved enough to talk

about the boundary between them. When applying the lemma, we use monotonicity to

verify this condition. Conditions (iv) and (v) express that the boundary’s slope is bounded

below by κ > 0.

Lemma 4.10 Let κ > 0 be a constant. There exists a constant c(κ) > 0, depending only

on κ, for which the following holds.

Suppose there are Ñ voters. Let ≻,≻′,≻′′ be any three preference orderings. Let

0 ≤ J ≤ J ≤ Ñ with J − J > κÑ . Let 0 ≤ K ≤ Ñ − J . Define

R = {(J,K) | J ≤ J ≤ J ; 0 ≤ K ≤ K; J +K ≤ Ñ};

and PJ,K =




J ≻
K ≻′

Ñ − J −K ≻′′


 for (J,K) ∈ R.

Let Ai, Aj be two different candidates. Suppose that f is a voting rule with susceptibility

σ, and the following conditions are satisfied:
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Figure 4.3: Illustration of Lemma 4.10

(i) f(PJ,K) ∈ {Ai, Aj} for all (J,K) ∈ R;

(ii) ≻′ and ≻′′ rank Ai, Aj in the same way relative to each other;

(iii) if (J,K) ∈ R and f(PJ,K) = Ai, then f(PJ+1,K) = Ai and f(PJ+1,K−1) = Ai

(whenever the relevant index pairs are in R);

(iv) f(PJ,K) = Aj whenever K = 0; and

(v) f(PJ,K) = Ai whenever K = K.

Then for N large enough,

σ ≥ c(κ)N−1/2. (4.4)

The lemma is proven by identifying two distributions φ1, φ2 on either side of the

boundary, with the distance between them on the order of N−1/2, such that f(φ1) ≈ Ai

and f(φ2) ≈ Aj (see the figure); and then applying the local average lemma. The proof

is in Appendix G, as is the full proof of Theorem 4.4.

We proceed to describe the proof of Theorem 4.4 itself. The main strategy is illustrated

in Figure 4.4, for the case of three candidates A,B,C. We focus on the behavior of f on the

ABC−BCA−CAB, ABC−ACB−CAB, ACB−CAB−CBA, and ACB−CBA−BAC
simplices, which are shown unfolded into a single plane in the figure. Monotonicity and

Pareto efficiency give us A, B, and C regions, with the shapes indicated. Note that B

cannot win anywhere in the middle two simplices, by Pareto efficiency. Consider the

boundary between the A and C regions. If (as in the figure) the slope of this boundary
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is far from zero, then we can apply Lemma 4.10 to obtain the desired cN−1/2 bound on

susceptibility. (Actually, the application of the lemma is straightforward when the portion

of the boundary in the middle two simplices of the figure is sloped. But when the sloped

portion appears in the leftmost or rightmost simplex, a more detailed case analysis is

needed, as sketched in Figure G.1 in the online appendix.)

It may be that the A − C boundary is not sloped enough to apply the argument

directly. However, Figure 4.4 shows only a part of the vote simplex. We can repeat

the construction of this figure, replacing A,B,C by B,C,A, respectively, or by C,A,B,

respectively. Thus we obtain two more such figures. The proof of Theorem 4.4 shows that

at least one of these figures contains a boundary whose slope is bounded away from zero,

and then the argument goes through.

C

B

A

BCA

ABC

CAB CBA

ACB BAC

Figure 4.4: Proof of Theorem 4.4

4.5 Tops-only voting rules

Next, we show how to prove Theorems 4.2 and 4.7, on tops-only voting rules.

For Theorem 4.7, which gives a cN−1/2 bound when the voting rule is simple, we take

the approach of first sketching a proof that σ > 0, and then introducing error terms to

find out explicitly how large σ needs to be. Without loss of generality, suppose f is simple

over B and C, and consider the values of f at several distributions in the A − B − C

simplex, as shown in Figure 4.5. We choose φ1 and φ2 so that f(φ1) puts high probability

on B, f(φ2) puts high probability on C, and the distance between φ1 and φ2 is on the

order of N−1/2.

Suppose for contradiction σ = 0. Then f(φ1) and f(φ3) must put the same total
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Figure 4.5: Proof of Theorem 4.7

weight on A and B, by Lemma 4.9(c). Similarly, f(φ2), f(φ3) put the same total weight

on A and C. We conclude that f(φ3) puts high probability on A. Next, again using

Lemma 4.9(c), f(φ3), f(φ4) put equal weight on A; and f(φ1), f(φ4) put equal weight on

B. Then f(φ4) puts high weight on both A and B, which is a contradiction.

Now, repeat the argument without assuming σ = 0. Each time we apply Lemma 4.9,

the conclusion remains the same as before, to within an approximation error of order

σN−1/2. As long as the total approximation error accumulated in the course of the proof

is smaller than some positive constant, we end with the same contradiction as before.

Thus, the contradiction arises unless σ > cN−1/2.

The formal proof of Theorem 4.7, following the above sketch, is short enough that we

can include it here in the text.

Proof of Theorem 4.7: Assume that f is simple over B and C, and assume the

threshold K∗ is ≤ Ñ/2 (otherwise switch B and C). Also let c0 be the constant from

Lemma 4.9.

We will assume that f has susceptibility

σ <

√
2

32c0
· Ñ−1/2 (4.5)

and obtain a contradiction.
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Let

φ1 = (α1 B, 1− α1 C) with α1 =
K∗ +

√
2Ñ

Ñ
.

Then f(φ1) = (γ1 B, 1 − γ1 C), where γ1 is the probability that at least K∗ voters vote

B. The number K of such voters is binomial with mean Ñα1 = K∗ +
√
2Ñ and variance

Ñα1(1− α1) ≤ Ñ/4, so by Chebyshev’s inequality,

Pr(K < K∗) ≤ Pr(|K − E[K]| ≥
√
2Ñ) ≤ 1

8
.

Thus, γ1 ≥ 7/8.

Let

φ2 = (α2 B, 1− α2 C) with α2 = max

{
K∗ −

√
2Ñ

Ñ
, 0

}
.

Then f(φ2) = (γ2 B, 1 − γ2 C), where now γ2 ≤ 1/8 (this follows again by Chebyshev if

α2 > 0, and if α2 = 0 then f(φ2) = C).

Write ∆ = α1 − α2 ≤ 2

√
2/Ñ . Then we have φ1 − φ2 = ∆(B − C), as an equality

of vectors in R
M (where we have identified each candidate with the corresponding unit

vector).

By (4.5),

c0Ñ∆σ <
1

8
.

Let φ3 = φ1+∆(A−B) = φ2+∆(A−C) (this is again a valid probability distribution).

Applying Lemma 4.9(c) to φ1 and φ3, with the set of candidates C \ {A,B}, we find that

f(φ3) places total weight at most 1/8+ c0Ñ∆σ < 1/4 on candidates other than A and B.

Likewise, applying Lemma 4.9(c) to φ2 and φ3, with C ′ = C \ {A,C}, we conclude that

f(φ3) places total weight < 1/4 on candidates other than A and C. Consequently, f(φ3)

places weight > 1/2 on A.

Now let φ4 = φ1 +∆(A−C) = φ3 +∆(B −C). This is a valid distribution as long as

φ1 places probability at least ∆ on C. If Ñ is large enough then

1− α1 ≥
Ñ/2−

√
2Ñ

Ñ
≥ 2

√
2Ñ

Ñ
≥ ∆

so this requirement is satisfied.

Applying Lemma 4.9(c) to φ1 and φ4 with C ′ = {B} gives that f(φ4) places weight

> 3/4 on B. Applying Lemma 4.9(c) again to φ3 and φ4 with C ′ = {A} gives that f(φ4)
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places weight > 3/8 on A. Since 3/4 + 3/8 > 1, this is a contradiction. �

The proof of Theorem 4.2 builds on the above. We begin by considering various

potential manipulations when the belief φ lies on the B − C edge of the vote simplex.

We show that if no such manipulation gives a gain greater than cN−1 in expected utility,

then f is “approximately simple” over B and C. From there we can repeat the proof of

Theorem 4.7. The proof of Theorem 4.2 is in Appendix G.

4.6 General voting rules

Finally, we prove our most general result, Theorem 4.1, for any weakly unanimous voting

rule. As an inexpensive by-product, we will also obtain Theorem 4.6, for simple and

weakly unanimous voting rules.

The proof is closely modeled on Gibbard’s [23] proof of the characterization of strategy-

proof7 probabilistic voting rules. Gibbard shows that any such voting rule is a convex

combination of unilateral rules, in which only one agent’s preference affects the outcome,

and duple rules, where only two distinct outcomes are possible. Under our assumptions

of anonymity and weak unanimity, the only such probabilistic voting rule is random dic-

tatorship.

The connection between Gibbard’s result and ours is made by the local average lemma:

Viewing each profile P as an integer point in R
M ! as usual, we can define a probabilistic

voting rule by f̂(P ) = f(P/Ñ); the local average lemma implies that if f has low sus-

ceptibility then f̂ is approximately strategyproof. We retrace Gibbard’s proof and keep

track of error terms, showing that if f̂ is approximately strategyproof then it must be

approximately a random dictatorship. Finally, we use the coarseness of approximation

(since f is deterministic) to show that f̂ cannot be too close to random dictatorship.

At a technical level, the proof of Gibbard’s characterization of strategyproof proba-

bilistic voting rules g is based on equations of the form

g(≻, P )− g(≻′, P ) = g(≻, P ′)− g(≻′, P ′) (4.6)

for certain pairs of preferences ≻,≻′ and opponent-profiles P, P ′. If (4.6) were to hold

for all ≻,≻′, P, P ′, it would say that g is a linear function of P . Combined with weak

unanimity, this linearity would immediately imply that g is random dictatorship. In fact,

Gibbard’s proof only shows (4.6) for certain ≻,≻′, P, P ′, but these cover enough cases to

7That is, those where truth-telling is a dominant strategy.
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give the needed linearity.

Although Gibbard’s original proof was quite involved, our assumptions of anonymity

and weak unanimity make the argument less difficult. (See also [17] and [58] for stream-

lined versions of Gibbard’s argument under the unanimity assumption only.)

The key tool used in our argument — a version of (4.6) with error terms — is given by

the following lemma. The absolute value notation for vectors here refers to the L1 norm.

Lemma 4.11 Let ≻1,≻2,≻3,≻4 be preference orderings, and let Ai, Aj , Ak, Al be candi-

dates (not necessarily distinct), with the following properties:

• ≻1,≻2 differ only by a switch of the adjacent candidates Ai, Aj;

• ≻3,≻4 differ only by a switch of the adjacent candidates Ak, Al;

• {Ai, Aj} 6= {Ak, Al}.

Let φ ∈ ∆(L), and let α, β, γ ≥ 0 with α + β + γ = 1. Take c0 to be the constant from

Lemma 4.9. Then, if f is a voting rule with susceptibility σ, we have the bound

∣∣∣∣∣∣∣
f




α ≻1

β ≻3

γ φ


− f




α ≻2

β ≻3

γ φ


− f




α ≻1

β ≻4

γ φ


+ f




α ≻2

β ≻4

γ φ




∣∣∣∣∣∣∣
≤ 16c0Ñσ. (4.7)

The proof simply involves decomposing the four-way difference on the left-hand side

of (4.7) into a sum of two differences in two ways, and applying Lemma 4.9 to each of

these differences. The details are in Appendix G.

We now outline the proof of Theorem 4.1, via three lemmas, whose proofs are again in

Appendix G. Focus on candidates A,B,C. We assume a fixed ordering for the remaining

candidates, and write expressions such as CAB . . . to denote a preference beginning CAB,

with the remaining candidates arranged in their fixed order.

We maintain throughout the assumption that f is weakly unanimous, with suscepti-

bility σ.

Lemma 4.12 There is a constant c1 > 0 with the following property: if σ < c1/N , then

f(K CAB . . . , Ñ −K CBA . . .) = C for all K. (4.8)

This is easy to show using beliefs along the CAB . . . − CBA . . . edge. If (4.8) were

violated, we could find some such belief where the manipulator can increase the probability

of C by c1/N by manipulating from CAB . . . to CBA . . . or vice versa.
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Lemma 4.13 Assume (4.8) holds. Let x, y, z, x′, z′ be nonnegative numbers with x+ y+

z = x′ + y + z′ = 1. Then

∣∣∣∣∣

(
f

(
x ABC . . .

y + z BAC . . .

)
− f

(
x+ y ABC . . .

z BAC . . .

))
−

(
f

(
x′ ABC . . .

y + z′ BAC . . .

)
− f

(
x′ + y ABC . . .

z′ BAC . . .

))∣∣∣∣∣ ≤ 192c0Ñσ, (4.9)

where c0 is the constant from Lemma 4.9.

This key step is proven by repeated applications of Lemma 4.11. The bound (4.9) says

that if we start at some distribution concentrated on the preference orderings ABC . . .

and BAC . . ., and move some fixed amount y of mass from ABC . . . to BAC . . ., then

the change in f cannot depend too much on where we started. More simply put, f is

approximately linear along the ABC . . .−BAC . . . edge of the preference simplex.

Lemma 4.14 There exists some absolute constant c2, independent of N , with the follow-

ing property: for any weakly unanimous f , there exist some nonnegative x, y, z, x′, z′ with

x+ y + z = x′ + y + z′ = 1, and

∣∣∣∣∣

(
f

(
x ABC . . .

y + z BAC . . .

)
− f

(
x+ y ABC . . .

z BAC . . .

))
−

(
f

(
x′ ABC . . .

y + z′ BAC . . .

)
− f

(
x′ + y ABC . . .

z′ BAC . . .

))∣∣∣∣∣ ≥ c2/
√
Ñ . (4.10)

This simply quantifies how much the fact that f is deterministic forces f to be far

from linearity along the ABC . . .− BAC . . . edge.

Theorem 4.1 now follows directly.

Proof of Theorem 4.1: Let c0, c1, c2 be as in the three preceding lemmas. Either

σ ≥ c1/N , and we are done; or else Lemma 4.12 applies, in which case the ensuing two

lemmas imply that (4.9) and (4.10) both hold, from which σ ≥ c2/192c0Ñ
3/2. �

If we impose the additional requirement of simplicity over candidates A and B, the

bound c2/
√
Ñ on the right side of (4.10) can be sharpened to a constant c3, because f is

not close to linear along the ABC . . .−BAC . . . edge — its values are always close to A

or close to B, except right near the threshold. By repeating the proof of Theorem 4.1, we

then find a lower bound for susceptibility of order N−1 rather than N−3/2, thus proving

Theorem 4.6. The details are in Appendix G.
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5 Conclusion

5.1 Summary

This paper has advanced a new way to quantify the susceptibility of decision-making

mechanisms to strategic misbehavior, and argued its usefulness. We have focused here

on voting rules as a canonical choice of application, but our approach is applicable quite

broadly to other classes of mechanisms. Our measure of susceptibility is defined as the

maximum expected utility an agent could gain by acting strategically rather than truth-

fully. To make this measure operational for voting rules, we needed a normalization of

utility to the range [0, 1], and an IID restriction on beliefs. Our measure has a simple

interpretation in terms of behavior, in which agents trade off the benefits to manipulation

against some (computational or psychological) costs.

To demonstrate the usefulness of this measure of susceptibility, we gave two classes

of results. The first consisted of concrete estimates of the susceptibility of various voting

systems. In particular (Table 3.1), we found that other systems previously identified

as resistant to manipulation, including the Black, Copeland, Fishburn, minimax, and

single transferable vote systems, actually are more susceptible than plurality rule, by our

worst-case measure of incentives. We also identified qualitative properties of these voting

systems that make them susceptible.

The second class of results consisted of lower bounds for the susceptibility of voting

rules satisfying various efficiency, regularity, and informational properties (Table 4.1).

These bounds illustrate how our measure can be used to study tradeoffs between sus-

ceptibility and other properties. The proofs are built on a few, widely generalizable key

ideas — such as susceptibility as the probability of being pivotal, the coarse smoothing

provided by the IID assumption, and the broader technique of introducing quantitative

error terms into impossibility proofs — thus showing how our measure of susceptibility

can be worked with in practice.

5.2 Onwards

This is an appropriate place to discuss directions for future research.

At the most immediate level, there are many ways to extend the analysis here in

technical directions. For example, one could seek lower bounds on susceptibility under

other regularity conditions, or consider probabilistic voting rules. One could also consider

different classes of probabilistic beliefs, in place of the IID model we have used here. For
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example, we have stuck to a model in which the number of other voters, N , is known with

certainty, because this makes conditions such as monotonicity easy to formulate; but one

might find the Poisson model [41, 42], which describes uncertainty about the population

size as well as the distribution of preferences, to be more realistic. Our approach could

also be extended to consider manipulation by coalitions.

A more important direction would be to apply our approach to measuring suscepti-

bility to other classes of mechanism design problems. The companion paper on double

auctions [13], which studies the quantitative tradeoff between incentives to manipulate

and efficiency in that setting, provides an example.

On a conceptual level, the approach to measuring susceptibility presented here would

be greatly improved by incorporating some description of the decision process behind

manipulation. The positive interpretation of our approach is based on a comparison

of costs and benefits to the manipulator, but the modeling of costs here is simplistic

— behaving strategically just always costs ǫ. More realistically, it might be harder to

manipulate in some mechanisms than others. A computational model that captures such

distinctions would help in better understanding manipulative behavior.

Finally, a few words on how our approach fits into a broader agenda. There are two

main paradigms in mechanism design theory. One is the dominant-strategy paradigm

[5, 57, 56]. This paradigm in effect evaluates mechanisms by their worst-case performance.

Positive results, when they exist, are extremely robust to uncertainty about agents’ beliefs,

their assumptions about each other’s strategic behavior, or the details of their preferences

over lotteries; but existence of dominant strategies is a stringent requirement, and for

many problems no dominant-strategy mechanism exists.

The second paradigm is Bayesian: the theorist presumes a common prior distribution

over agents’ types, assumes that agents maximize expected utility, and shows how to con-

struct a mechanism that maximizes the expectation of some objective, such as welfare or

revenue. The Bayesian paradigm allows for more positive results than dominant strategies

(e.g. [15]), but often depends on stringent common knowledge assumptions that limit its

practical usefulness [59].

The space in between the dominant-strategy and Bayesian approaches — explored by

the recent literature on robust mechanism design [8, 14, 60] — may offer new avenues

to obtain robust positive results. The approach of the present paper fits into this in-

termediate space: in the motivating model sketched in Subsection 1.3, we assume that

the voters are Bayesian expected utility maximizers, but the planner takes a worst-case

approach, with no probabilistic assumptions about the voters’ preferences or beliefs (nor
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any requirement that voters’ beliefs about each other correspond to the truth). More gen-

erally, integrating elements of the Bayesian and worst-case approaches will be valuable in

bringing mechanism design theory closer to practice.

A A consequentialist model

This appendix presents a game-theoretic model of voting rule choice by a social planner

who cares about how well the outcome of the vote reflects the voters’ preferences (but not

about whether manipulation occurs per se). The model fleshes out the argument sketched

verbally in Section 1.3 to describe how our measure of susceptibility would be involved

in the choice of a voting rule. It is a formalization of the informal arguments that have

long been used to justify dominant-strategy mechanisms, with a small cost of strategic

behavior added in.

We imagine a planner choosing a voting rule for a society with N voters andM candi-

dates. After the planner chooses the rule, the voters’ types — meaning their preferences,

beliefs, and their individual costs of manipulation — are realized. The voters cast their

votes, and the election result is determined.

In the main model, the planner evaluates voting rules by their worst-case performance

and is totally agnostic about what strategic voters will do, except that she believes voters

will not strategize if they cannot benefit by more than ǫ from doing so. This extreme

agnosticism is meant to represent the idea that the planner finds estimating strategic

incentives to be much easier than predicting in detail how strategic voters will actually

behave. (This models the trend in recent market design literature, such as [3, 11, 26, 27],

which argues that incentives to manipulate in particular mechanisms go to zero, without

going into exactly what the optimal manipulations would be.) However, our general

point — that a quantitative measure of incentives to manipulate is relevant to choice of

mechanism — does not depend on extreme agnosticism, as discussed further in Subsection

A.5.

A.1 Planner’s preferences

We assume the planner cares ultimately about the relationship between the voters’ pref-

erences and the candidate who is elected. Thus, the planner has a utility function

U : C × ([0, 1]M )N+1 → R, specifying her utility for each candidate contingent on all

voters’ preferences. To follow the ordinal framework of the main paper, we assume that
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the planner’s preferences depend only on the voters’ ordinal rankings of candidates. So

let ≻∗: [0, 1]M → L be a given function, such that for each possible utility function

u ∈ [0, 1]M , u weakly represents ≻∗ (u). (The function ≻∗ describes how to convert

cardinal preferences u to ordinal rankings; the choice of ≻∗ (u) is nontrivial only when

tie-breaking is necessary.) We assume there exists a function V : C×LN+1 → R such that

U(Ai; u1, . . . , uN+1) = V (Ai;≻∗ (u1), . . . ,≻∗ (uN+1))

for all Ai and all u1, . . . , uN+1. Let V denote the minimum value attained by V , over all

preference profiles and all outcomes Ai.

The planner is to choose from some nonempty set F of possible voting rules. We

assume that every f ∈ F is surjective. We further assume that every f satisfies

V (f(P );P ) > V

for every profile P . That is, the planner only considers voting rules with the following

property: as long as all voters vote honestly, catastrophically bad outcomes are avoided.

A.2 Mathematical states of nature

The planner expects that voters will behave strategically, if doing so is worth the cost ǫ.

In this case, she expects they will correctly solve their strategic optimization problem.

However, the planner’s task of predicting voters’ behavior is much more complex than

each individual voter’s problem, since there may be many voting rules that the planner

could consider, and many preferences and beliefs that each voter could potentially have.

So we imagine that the planner does not know the solution to each voter’s problem. We

represent the planner’s ignorance by ambiguity about how a voter’s choice of vote maps

to a distribution over outcomes (for a fixed distribution over others’ votes).

More specifically, we model the planner’s ignorance via mathematical states of nature.

A mathematical state is a continuous function

ω : F × L×∆(L) → ∆(C).

(Continuity is relevant only to the third argument, since F and L have discrete topologies.)

Let Ω be the set of all possible mathematical states.

A mathematical state ω has the following interpretation: in this state, if the voting
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rule in use is f , a voter expects others’ votes to follow distribution φ, and he reports

preference ≻, then he expects the outcome of the election will be distributed according to

ω(f,≻, φ). There is one “true” mathematical state ω0, described by the actual outcomes

of each voting rule: for all f,≻, φ, the distribution ω0(f,≻, φ) is equal to the actual

distribution over f(≻, P ) that results if P ∼ IID(φ). But the planner does not know the

true state.

In any state ω, the susceptibility of a voting rule f is given by the analogue of (2.1):

σω(f) = sup
(≻,≻′,u,φ)∈Z

(
u(ω(f,≻′, φ))− u(ω(f,≻, φ))

)
.

(Here, and subsequently, we extend u to lotteries over C by linearity.) This definition

coincides with (2.1) in state ω0.

We assume that, although the planner does not know the true state, she has estimates

on the susceptibility of each voting rule, which serve to narrow down the possible states.

Specifically, for each f ∈ F , she knows that the susceptibility of f is less than some

exogenous upper bound σ(f). We may have σ(f) > 1, which corresponds to no knowl-

edge about the susceptibility of f . (We do not model the process by which the planner

learns of these upper bounds. We could also assume the planner knows lower bounds on

susceptibilities; this would not change our results.) With these upper bounds, the set of

states the planner considers possible is

Ω∗ = {ω ∈ Ω | σω(f) < σ(f) for all f ∈ F}.

We assume that the planner’s bounds are consistent with the truth: ω0 ∈ Ω∗.

We will not need to specify a prior belief for the planner over Ω∗, because we will

assume she has maxmin preferences, as detailed below.

A.3 Voters’ preferences

Each voter has a utility function on candidates, u : C → [0, 1], and a cost of behaving

strategically, ǫ ∈ [ǫ, ǫ]. Thus, the space of basic types of the voters is

T0 = [0, 1]M × [ǫ, ǫ].

The bounds ǫ, ǫ are commonly known parameters, with 0 < ǫ < ǫ and ǫ < 1.

We assume there is some rich type space T of possible types for each voter, a compact
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Polish space, together with two continuous maps: a basic type map ρ : T → T0 and a belief

map β : T → ∆(T ). When a voter has rich type t, ρ(t) is his basic type, and he believes

other voters’ rich types are drawn IID from the distribution β(t). Let ρ : ∆(T ) → ∆(T0)

be the induced map: if t is distributed according to ψ on T , then ρ(ψ) is the distribution

of ρ(t).

We assume the type space is rich enough so that the map

ρ× (ρ ◦ β) : T → T0 ×∆(T0)

is surjective. That is, any combination of own basic type and (first-order) belief about

others’ basic types is possible.

Voters know the true mathematical state ω.8 Thus, each voter’s type in the game-

theoretic sense consists of his type in T as well as the state ω ∈ Ω. A (mixed) strategy

for a voter specifies a distribution over L, as a function of t ∈ T and ω ∈ Ω.

Voters have expected utility with respect to lotteries over candidates. The lottery that

results from any particular vote is determined by the mathematical state. Thus, in state

ω, for a voter with utility function u, if he votes ≻ and expects others to vote according

to φ, then his material payoff is u(ω(f,≻, φ)).

A.4 The game

The full timing of the game is as follows:

• The planner publicly announces a voting rule f ∈ F .

• The voters’ types in T are realized, as is the state ω ∈ Ω∗.

(The fact that the true state is always ω0 will not be relevant, since we are studying

the behavior of the planner, who does not know the true state.)

• Each voter chooses a preference ordering in L to report.

• The winning candidate is determined by applying f to the reported preferences.

Now, we need to specify payoffs. Consider a voter in state ω, with utility function u,

and strategizing cost ǫ. His utility if he truthfully reports preference ≻∗ (u), and other

8This assumption is not intended to mean literally that voters are computationally stronger than
the planner; it is simply a technical shortcut to express that each voter can solve his own optimization
problem.

50



voters’ votes are IID draws from φ, is

u(ω(f,≻∗ (u), φ)).

If the voter reports any other preference ≻′, then his utility is

u(ω(f,≻′, φ))− ǫ.

As for the planner, her ex post preferences (given voters’ utility functions and the

outcome of the vote) are given by the function U . Her ex ante preferences are maxmin

with respect to the voters’ type profile and the mathematical state of nature: she wishes

to maximize

inf
(t1,...,tN+1)∈T N+1

ω∈Ω∗

E[U(f(≻̂1, . . . , ≻̂N+1); u1, . . . , uN+1)] (A.1)

where the inf is over type profiles and mathematical states; each ui is the utility component

of voter i’s basic type ρ(ti); and the expectation is over the reported preferences ≻̂i

determined by the (possibly mixed) strategies of the voters in state ω.

Finally, our solution concept is perfect Bayesian equilibrium, symmetric among the

voters. That is, in each state, the voters play a symmetric Bayesian equilibrium (where

the incomplete information is about each other’s types); and given the strategies of the

voters, the planner chooses a voting rule to maximize her utility (A.1).

With the game laid out in detail, we can finally state the proposition tying suscepti-

bility to the planner’s choice of a rule.

Proposition A.1 If there exists a voting rule f ∈ F whose known susceptibility bound

σ(f) is at most ǫ, then in any equilibrium, the planner will choose such a rule. Specifically,

she will choose f to maximize minP∈LN+1 V (f(P ), P ), subject to σ(f) ≤ ǫ.

If no such f exists, then in any equilibrium, the planner is indifferent among all voting

rules; they all give her utility V .

The full proof is in Appendix D, but the argument is quite straightforward. If the

planner can choose a voting rule with susceptibility less than ǫ, then she will be certain

that all voters will vote truthfully, giving the outcome that the voting rule prescribes.

On the other hand, if the planner cannot choose such a voting rule, then she cannot rule

out the possibility that the voters will manipulate in the worst possible way, because the

mathematical state and the voters’ beliefs may be such that this manipulation is optimal

for each voter.
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A.5 Variants

The preceding positive model gives a simple connection from our measure of susceptibility

to a planner’s choice of voting rule. We briefly sketch here several ways to extend the

model, that would retain or strengthen this connection.

(a) We have considered here a model of a single election, leading to the conclusion that

the planner would choose a voting rule whose susceptibility is known to be less than

ǫ, if one exists. With a large number of elections, the model could justify choosing

a voting rule f whose known susceptibility bound σf is as small as possible.

To be more specific, suppose that the planner anticipates the voting rule being used

for many elections, some more important than others. Importance is represented by

an upper bound u on voters’ utilities from the outcome. Thus for each election there

is a type space Tu, in which voters’ utility functions have range [0, u] rather than

[0, 1]; whereas the bounds ǫ, ǫ on manipulation costs are constant across elections.

The planner has a belief ξ about the distribution of u across elections, with full

support [0,∞]. The planner’s total utility is the long-run average of her utilities

from each election. For a large number of elections, we can express this as an

expectation. Thus the planner’s utility becomes

∫ ∞

0


 inf

(t1,...,tN+1)∈T N+1

u

ω∈Ω∗

E[U(f(≻̂1, . . . , ≻̂N+1); u1, . . . , uN+1)]


 dξ(u).

Then the planner’s choice of voting rule depends on the tradeoff between suscepti-

bility and the desirability of the outcomes that result under honest behavior. If the

planner is very risk-averse in terms of outcomes — i.e. V is very low compared to

other values of V — then in equilibrium she will simply choose a voting rule f ∈ F
whose susceptibility bound is as low as possible.

(b) We could also suppose that the planner has some inherent preference for non-

consequentialist properties of the voting rule — say, regularity properties. This

could be represented by preferences of the form

inf
(t1,...,tN+1)

ω

E[U(f(≻̂1, . . . , ≻̂N+1); u1, . . . , uN+1)] +H(f)

where H : F → R is some function expressing the planner’s preference over these
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other properties. In such a model, the choice of voting rule would depend on the

tradeoff between susceptibility and other properties.

(c) The preceding model makes extreme assumptions in terms of the players’ knowledge.

On one hand, the voters know the mathematical state perfectly: they are able to

optimize their material payoffs exactly (if they choose to do so). On the other hand,

the planner knows nothing about how voters will behave, except that they will not

manipulate when the gain is definitely less than ǫ.

However, in a model where agents might not manipulate optimally, or where the

planner had some idea how agents manipulate, our general approach to quantifying

incentives would remain relevant. Susceptibility would just have to be redefined,

not as the maximum incentive for any manipulation, but as the maximum incentive

specifically for manipulations that could potentially lead to undesirable outcomes

(suitably defined).

The companion paper on double auctions [13] explores the consequences of one

such model in more detail. There, we assume no uncertainty about mathematical

states. On the other hand, rather than optimizing exactly, the agents may poten-

tially attempt any manipulation that gives them at least ǫ expected utility gain

over truthfulness. The planner would like to minimize the maximum amount of

inefficiency that can result from such manipulations. The analysis of this problem

uses quite similar methods to the analysis of the tradeoff between susceptibility (as

originally defined) and inefficiency.

B Approval voting

In approval voting, each voter names a set of candidates, interpreted as the candidates

who receive his approval. Whichever candidate receives the largest number of approvals

wins. (As usual, we assume ties are broken alphabetically.)

Approval voting has often been specifically advocated as resistant to strategic ma-

nipulation [10, 21], so it is natural to ask how it fares under our approach to measuring

susceptibility. We have not addressed approval voting in the main paper because it does

not fit into our framework. It requires voters to submit a set of approved candidates,

rather than a ranking. More importantly, we have presumed that there is an unambigu-

ous way to vote truthfully, for any given utility function u. In the case of approval voting,

it is unclear how a voter should decide how many candidates to approve. This clashes
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with our motivating assumption — that truthful voting is costless — since the need for

strategic calculation is now unavoidable. (Niemi [43] also argued that approval voting

actually encourages strategic behavior for this reason.)

Still, it is possible to adapt our framework to formally cover approval voting, or vice

versa. Here we present two possible ways of doing so. The discussion will be less detailed

than in the main text.

B.1 Multiple truthful strategies

We could simply allow that multiple strategies by voters are deemed truthful. In the

case of approval voting, we might specify that it is truthful to approve a set S ⊆ C if S

consists of the L most-preferred candidates, for some L. That is, S is sincere for a utility

function u if, whenever Aj ∈ S and u(Ai) > u(Aj), then Ai ∈ S as well. (This is the

definition used in previous literature on approval voting [10, 21].) We could then define

the susceptibility of approval voting to be the maximum gain from voting strategically,

relative to voting sincerely.

To be precise, let S denote the set of all subsets of C. The natural modification of the

definition (2.1) for approval voting would then be

σ = sup
u,φ

(
sup
S′

(EIID(φ)[u(f(S
′, P ))])− sup

S
(EIID(φ)[u(f(S, P ))])

)
, (B.1)

where

• the outer supremum is over preferences u ∈ [0, 1]M and beliefs φ ∈ ∆(S);

• the first inner supremum is over arbitrary S ′ ⊆ C;

• the second inner supremum is over S that are sincere for u.

Notice that all suprema are taken over compact sets, so in fact we could write max

instead of sup. (Alternatively, we could continue restricting u to have no indifferences, as

in the main text.)

With this approach, we can show that whenM ≥ 4, approval voting has susceptibility

& 1/4. In particular, its susceptibility does not go to zero as N → ∞.

Let the manipulator’s true preference be BADC . . ., with the utility function

u(B) = 1, u(A) = 1/2 + ǫ, u(D) = 1/2− ǫ, u(any other candidate) ≤ ǫ
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for arbitrarily small ǫ. Suppose the manipulator’s belief φ is that each other voter approves

{A,B} with probability 1/2 and {C,D} with probability 1/2.

With probability ∼ 1/2, a majority of other voters vote {A,B}. In this case, the

manipulator is pivotal between A and B: if he votes for B but not A, then B wins;

otherwise, A wins. With probability ∼ 1/2, a majority of other voters vote {C,D}, and
the manipulator is pivotal between C and D. (The other voters may be exactly evenly

split, but the probability of this event goes to 0 as N → ∞, so we disregard it.)

Hence, if the manipulator votes {B}, his expected utility is ∼ 1
2
u(B) + 1

2
u(C) ≈ 1/2.

If he votes {B,A,D}, then his expected utility is ∼ 1
2
u(A)+ 1

2
u(D) ≈ 1/2. And with any

other sincere vote, his expected utility is ∼ 1
2
u(A) + 1

2
u(C) ≈ 1/4.

However, with the manipulation S ′ = {B,D}, his expected utility is ∼ 1
2
u(B) +

1
2
u(D) ≈ 3/4. Thus the gain from strategic voting expressed in (B.1) is approximately

1/4 as N → ∞. Only by being insincere can the manipulator ensure that he gets the

preferred outcome in both likely situations.

Why do our results here conflict with the view of previous literature, that approval

voting resists manipulation? Unlike in Section 3, where the main issue was how to quantify

manipulation, the basic difference here is one of modeling assumptions. The arguments in

[10, 21] in favor of the strategic properties of approval voting assume that voters partition

the candidates into three or fewer indifference classes. Indeed, in the case M = 3, voting

sincerely is always optimal (σ as defined in (B.1) is zero). However, our argument shows

that this finding breaks down severely as soon as M ≥ 4. Indeed, Brams and Fishburn

[10] were aware of this; they give an example that is almost identical to ours.

B.2 Approval with status quo

An alternative way to model approval voting, without leaving the framework of the main

paper, would be to specify an unambiguous choice of truthful vote for each preference

order. For example, we could choose a particular candidate (here we will use A) as status

quo, and declare that voters should approve all candidates who are preferred to the status

quo.

Thus, the voting system approval voting with status quo is defined as follows: Each

voter submits a preference order. Each candidate receives a score, defined as the number

of voters who prefer her over A. The candidate with the highest score wins; ties are

broken alphabetically. If every voter ranks A first, then A wins.

Then we can apply our usual definition (2.1) of susceptibility. In this case, we find
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that approval voting with status quo has susceptibility 1, similarly to Q-approval voting.

Indeed, suppose that the manipulator has preference CBA . . . but expects that every other

voter will vote BCA . . . with probability 1. Then, with probability 1, sincere voting will

lead to the outcome B (by alphabetical tie-breaking); whereas the manipulation CA . . .

will lead to the better outcome C.

Thus, with this modeling approach, we again find approval voting to be highly sus-

ceptible to manipulation.
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