The acoustics of [voice] in infant-directed speech and implications for phonological learning

Chandan Narayan

University of Toronto

Kyle Gorman University of Pennsylvania

Daniel Swingley University of Pennsylvania

BUCLD 33

Conflicting facts

- Infant-directed speech (IDS) provides the learner with *enhanced* cues to phonological contrast
 - Expanded F1 x F2 space (Kuhl et al., 1997)
 - Larger f_0 range in tones (Liu et al. 2007)
 - Modally distributed cues to vowel length and quality (Werker et al., 2007)
- In early infancy, caregivers' production of VOT shows more overlap between [+voice] and [-voice] than in late infancy (Sundberg & Lacerda, 1999; Baran et al., 1977)

How do infants get [voice]? A challenge to enhancement

- Plenty of evidence that by 10-12 months, infants "know" the phonological categories (including [voice]) of their ambient language (Werker & Tees, 1984; numerous others)
- So, if IDS is providing infants with sloppy acoustic cues to phonological contrast, how might infants get to be so good at what they do?

Secondary cue to [voice]: f₀ perturbation

Acoustics

- Following [+voice] stops, the fundamental frequency (f_0) of the vowel in a CV syllable is lower than when following [-voice] stops

Perception

When VOT is ambiguous, listeners report [+voice]
 when V has low f₀ and [-voice] when V has high f₀
 (Lisker & Abramson, 1970; Abramson & Lisker, 1980; many others)

f₀ control

- Kingston & Diehl (1994; Francis et al., 2007) suggest that listeners control f₀, giving listeners extra low-frequency information in the vicinity of the stop closure for [+voice] perception
- *f*₀ is an "enhance-able" acoustic feature that mothers might exploit when conveying [voice] information to their children

Corpora

- Brent Corpus (IDS) (Brent and Siskind, 2001)
 - 4 mothers using infant-directed English speech
 - Natural mother-infant interactions at 9 months of age
 - 500 utterances/mother \rightarrow over 1200 word-initial CVs
- Buckeye Corpus (ADS) (Pitt et al., 2007)
 - 4 women (3 with young infants, 1 with an older toddler) speaking a Midlands dialect with an adult
 - 20 minutes of speech/speaker \rightarrow over 1000 CVs

Results: VOT

- Register (IDS vs. ADS) x Voicing ([+voice] vs. [-voice]) x Place (bilabial, alveolar, velar) ANOVA
- Voicing x Register interaction
 - Suggests that the difference in VOT between
 [+voice] and [-voice] is greater in ADS than in IDS

Results: VOT

• VOT in each register was used in a linear discriminant analysis to classify [voice]

	Predicted (%)			
IDS	[+voice]	[-voice]		
[+voice]	72.7 $(n=365)$	27.3 $(n = 137)$		
[-voice]	11.2~(n = 78)	88.8 $(n = 620)$		
ADS				
[+voice]	88.3 ($n = 432$)	11.7 $(n = 57)$		
[-voice]	10.9~(n = 62)	$89.1 \ (n = 507)$		

Results: *f*₀ perturbation

- Peak f_0 (z-Mel) following release of stop
- Voicing x Register ANOVA
- <u>Significant effect of [voice] on f₀ but no interactions</u>

- Mean f_0 is higher following [-voice] stops [+voice] = 0.16 vs. [-voice] = 0.38

Modeling [voice]

- Predict presence of [voice] given VOT and f_0
- Hierarchical logistic regression
 - Allow speakers to vary in implementations of VOT and f_0 cues to [voice]
 - Random (per-subject) slopes for VOT and f_0
 - We'll attempt to interpret subject effects to show the relative degree to which subjects implement the two cues

Hierarchical model

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	2.4272	0.1166	20.82	<2e-16
VOT	-6.3426	0.4264	-14.87	<2e-16
f_0	-0.0872	0.1352	-0.64	0.519
VOT: f ₀	-1.1257	0.5419	-2.08	0.038

- No main effect of f_0 but it inversely covaries with VOT, as expected
- The effect size for f_0 is equivalent to about a semitone in mean pitch region

Random effects

	VOT	f_0	VOT: f_0	
1	-0.3072	0.193	-1.10	
2	0.3237	0.260	-1.47	
3	-0.4676	0.073	-0.38	
4	-0.1164	-0.218	1.20	IDS
5	-0.0031	0.085	-0.49	ADS
6	-1.3383	-0.232	1.31	
7	0.9212	-0.119	0.68	
8	1.3105	-0.076	0.43	

Register-specific (pooled) models of [voice]

IDS	β	Std. Error	95% CI	z	Sig.
(Intercept)	0.01	0.08	(-0.16, 0.17)	0.11	0.91
VOT ratio	-6.39	0.40	(-7.21, -5.64)	-15.91	< 0.0001
Peak f_0	-0.59	0.10	(-0.80, -0.40)	-5.82	< 0.0001
VOT ratio x Peak f_0	-2.03	0.44	(-2.91, -1.17)	-4.59	< 0.0001
ADS					
(Intercept)	0.35	0.11	(0.15, 0.56)	3.32	< 0.001
VOT ratio	-6.82	0.47	(-7.79, -5.95)	-14.58	< 0.0001
Peak f_0	-0.36	0.13	(-0.55, -0.09)	-2.62	< 0.01
VOT ratio x Peak f_0	0.30	0.60	(-0.92, 1.41)	0.41	0.61

ADS

IDS

Predicting [voice]: Discussion

- Given VOT and f_0 :
 - VOT contributes to a [voice] prediction in *both* IDS and ADS
 - f_0 contributes more to a [voice] prediction in IDS than in ADS!
- There is enough consistent VOT information in ADS which essentially overrides the f_0 regularity
- When VOT is highly variable (with more overlap between categories) as in the case of IDS, f₀ information is useful in predicting [voice]

Misclassification analysis

- What is the practical import of the logistic models?
- The LR models were used as a [voice] classifier with *only* VOT as a predictor

Misclassifications using only VOT

 Twice as many misclassifications in IDS than in ADS

• Majority of misclassifications occur in the 0-0.5 range, which corresponds to the region of overlap in VOT

When misclassified tokens were *re-classified* using *f*0,

69% of IDS tokens were correctly classified (p < 0.001) **52% of ADS** tokens were correctly classified (p = 0.79)

Take home message

- *f*₀ in the IDS sample preserves [voice] information when VOT information alone is ambiguous
- The emergence of f₀ as a stable contributor to [voice] prediction suggest a *covert contrast* that the learner might recover

Take this home too!

 So far, distributional models of phonetic category learning, that rely on *enhancement* as a hallmark of learning, are dimensionally *flat* when it comes to multiple cues to phonologically relevant features such as [voice] A comprehensive theory of phonetic category learning (in infancy) must consider:

- The changing nature of the IDS across development: [voice] as presented to 9 month olds is different from [voice] to 14 month olds
- Multiple cues to relevant features: such as covarying VOT and f_0 for [voice], F2 onset and burst frequency for place, etc.

Thank you

Chandan Narayan

chandan.narayan@utoronto.ca

Kyle Gorman

kgorman@ling.upenn.edu

Daniel Swingley

swingely@psych.upenn.edu

Funded by IGERT(NSF) to CN & KG and the NIH to DS. Thanks to Penn Baby Lab.