
FPGA Power Reduction by Guarded Evaluation

Jason H. Anderson
Dept. of Electrical and Computer Engineering

University of Toronto
janders@eecg.toronto.edu

Chirag Ravishankar
Dept. of Electrical and Computer Engineering

University of Toronto
chirag.ravishankar@utoronto.ca

ABSTRACT
Guarded evaluation is a power reduction technique that in-
volves identifying sub-circuits (within a larger circuit) whose
inputs can be held constant (guarded) at specific times dur-
ing circuit operation, thereby reducing switching activity
and lowering dynamic power. The concept is rooted in the
property that under certain conditions, some signals within
digital designs are not “observable” at design outputs, mak-
ing the circuitry that generates such signals a candidate
for guarding. Guarded evaluation has been demonstrated
successfully for custom ASICs; in this paper, we apply the
technique to FPGAs. In ASICs, guarded evaluation entails
adding additional hardware to the design, increasing sili-
con area and cost. Here, we apply the technique in a way
that imposes minimal area overhead by leveraging existing
unused circuitry within the FPGA. The primary challenge
in guarded evaluation is in determining the specific condi-
tions under which a sub-circuit’s inputs can be held con-
stant without impacting the larger circuit’s functional cor-
rectness. We propose a simple solution to this problem based
on discovering “non-inverting paths” in the circuit’s AND-
inverter graph representation. Experimental results show
that guarded evaluation can reduce switching activity by
22%, on average, and can reduce power consumption in the
FPGA interconnect by 14%.

Categories and Subject Descriptors
B.7 [Integrated Circuits]: Design Aids

General Terms
Design, Algorithms

Keywords
Field-programmable gate arrays, FPGAs, power, optimiza-
tion, low-power design, logic synthesis, technology mapping

1. INTRODUCTION
Modern field-programmable gate arrays (FPGAs) are “in-

novation enablers” across a broad spectrum of digital hard-
ware applications, as they reduce product cost, time-to-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’10, February 21–23, 2010, Monterey, California, USA.
Copyright 2010 ACM 978-1-60558-911-4/10/02 ...$10.00.

market, and mitigate risk. However, their use in hand-held
battery powered devices remains elusive, due primarily to
their high power consumption. Programmability in FPGAs
is achieved through higher transistor counts and larger ca-
pacitances, leading to considerably more leakage and dy-
namic power dissipation compared to custom ASICs for im-
plementing a given function [13]. As iPhones, Blackberrys
and other mobile devices gain an ever greater penetration
in today’s society, FPGAs remain wholly absent in such de-
vices. Power consumption stands as the key barrier prevent-
ing FPGAs from cracking into the lucrative mobile electron-
ics market.

Recent years have seen intensive research activity on re-
ducing FPGA power through innovations in CAD, architec-
ture, and circuits. In this paper, we attack FPGA dynamic
power consumption in the logic synthesis stage of the CAD
flow using an approach known as guarded evaluation, which
has been used successfully in the custom ASIC domain [24].
Recall that dynamic power in a CMOS circuit is defined by:

Pavg = 1
2

∑

i∈nets

Ci · fi · V
2, where Ci is the capacitance of

a net i; fi is the toggle rate of net i, also known as net i’s
switching activity ; V is the voltage supply. Guarded evalua-
tion seeks to reduce net switching activities by modifying the
circuit netlist. In particular, the approach taken is to elimi-
nate toggles on certain internal signals of a circuit when such
toggles are known to not propagate to overall circuit out-
puts. This reduces switching activity on logic signals within
the interconnection fabric. Prior work has shown that inter-
connect comprises 60% of an FPGA’s dynamic power [23],
due primarily to long metal wire segments and the para-
sitic capacitance of used and unused programmable routing
switches.

At a high-level, guarded evaluation comprises first identi-
fying an internal signal whose value does not propagate to
circuit outputs under certain conditions. A straightforward
example is an AND gate with two input signals, A and B. Val-
ues on signal A do not propagate to circuit outputs when B

is logic-0 (the condition). Thus, toggles on A are an unneces-
sary waste of power when B is logic-0. Having found a signal
and condition, guarded evaluation then modifies the circuit
to eliminate the toggles on the signal when the condition is
true. Returning to the example, the inputs to the circuitry
that produces A can be held at a constant value (guarded)
when the condition is true, reducing dynamic power. The
computationally difficult aspect of the process is in find-
ing signals (such as A) and computing the conditions under
which they are not observable, as these steps depend on an
analysis of the circuit’s logic functionality.

We modify the technology mapping stage of the FPGA
CAD flow to produce mappings with opportunities for guarded
evaluation. After mapping, we modify the LUT functions

C
1

C
2

x

m

l

s

t

r

i0 i1

Figure 1: Cuts in circuit graph.

and connectivity to incorporate guards, reducing switching
activity and dynamic power. In our approach, identifying
the conditions under which a given signal can be guarded is
accomplished by analyzing properties of the logic synthesis
netlist, which is an AND-inverter graph (AIG). In particu-
lar, we show that the presence of non-inverting paths in
the AIG can be used to drive the discovery of guarding op-
portunities. Moreover, unlike guarded evaluation in ASICs,
which involves adding additional circuitry (increasing area
and cost), our approach uses unused circuitry that is already
available in the FPGA fabric, making it free from the area
perspective. Specifically, input pins on LUTs are frequently
not fully utilized in modern designs, and we use the available
(free) inputs on LUTs for guarded evaluation. The remain-
der of the paper is organized as follows: Section 2 presents
background and related work on technology mapping for FP-
GAs, power optimization, and describes guarded evaluation
in the ASIC context. The proposed approach is described
in Section 3. An experimental study appears in Section 4.
Conclusions and suggestions for future work are offered in
Section 5.

2. BACKGROUND

2.1 FPGA Technology Mapping
Here we review the approach used by modern FPGA tech-

nology mappers, which are based on finding cuts in Boolean
networks [22, 8]. The first step is to represent the com-
binational portion of a circuit as a directed acyclic graph,
G(V, E). Each node in G represents a logic function, and
edges between nodes represent dependencies among logic
functions. Before mapping commences, the number of in-
puts to each node must be less than the number of inputs
of the target look-up-table (K).

Fig. 1 illustrates cuts for a node x in a circuit graph. A
cut for x is a partition, (V, V), of the nodes in the subgraph
rooted at x, such that x ∈ V . For x’s cut C1 in Fig. 1,
V consists of two nodes, x and m. For x’s cut C2 in the
figure, V consists of x,m, t, and l. A cut is called K-feasible
if the number of nodes in V that drive nodes in V is less
than or equal to K. In the case of cut C1, there are 3
nodes that drive nodes in V and, the cut is 3-feasible. For
a cut C = (V, V), Inputs(C) represents the nodes in V that
drive a node in V . For the cut C1 in Fig. 1, Inputs(C1) =
{l, s, t}. Nodes(C) represents the set of nodes, V . In Fig. 1,
Nodes(C1) = {x, m}.

For a K-feasible cut, C, the logic function of the subgraph
of nodes, V , can be implemented by a single K-LUT. The

Shifter

Subtract

Sel

0

1

A

B

data

registers

Shifter

Subtract

Sel

0

1

A

B

data

registers
Sel=1

Sel=0

guard logic

a) Before guarded evaluation b) After guarded evaluation

transparent latches

Figure 2: Guarded evaluation (adapted from [24]).

reason for this is that the cut is K-feasible and a K-LUT
can implement any function of up to K inputs. Hence, the
problem of finding all of the possible K-LUTs that generate
a node’s logic function can be cast as the problem of finding
all K-feasible cuts for the node. There are generally many
K-feasible cuts for each node in the network, corresponding
to multiple potential LUT implementations.

Enumerating all cuts for each node in the circuit graph
is a well-studied problem with an established solution: The
cuts for each node in the network can be generated in a
topological network traversal, from inputs to outputs. As
each node is visited in the traversal, its complete set of K-
feasible cuts is generated by merging cuts from its fanin
nodes, using the method described in [8, 22].

Having computed the set of K-feasible cuts for each node
in the circuit graph, the graph is traversed in topological
order again. During this traversal, a “best cut” is chosen for
each node. The best cut reflects design optimization criteria,
typically, area, power, delay or routability. The best cuts
define the LUTs in the technology mapped circuit.

2.2 Power-Aware Mapping
Power-aware cut-based technology mapping has been stud-

ied recently (e.g., [14, 12]). The core approach taken is to
keep signals with high switching activity out of the FPGA’s
interconnection network (which presents a high capacitive
load). This is achieved by costing cuts to encourage such
high activity signals to be captured within LUTs, leaving
only low activity inter-LUT connections. A second aspect
of power-aware mapping pertains to logic replication. Logic
replication is needed to achieve mappings with low depth
(high speed), however, replication is generally negative from
the power angle [14], as replication increases signal fanout
and capacitance. Replications can therefore be detected and
cost accordingly, trading off their power “cost” with their
depth “benefit”.

2.3 Guarded Evaluation
A highly cited work on guarded evaluation in the ASIC

context is by Tiwari et al. [24]. The key idea is shown in
Fig. 2. Part (a) of the figure shows a multiplexer receiving
its inputs from a shifter and a subtraction unit, depend-
ing on the value of select signal Sel. Fig. 2(b) shows the
circuit after guarded evaluation. Guard logic, comprised of
transparent latches, is inserted before the functional units.
The latches are transparent only when the output of the
corresponding functional unit is selected by the multiplexer,
i.e., depending on signal Sel. When the output of a func-
tional unit is not needed, the latches hold its input constant,

eliminating toggles within the unit. Here, one can view Sel

as the“guarding signal”. Tiwari applied this concept to gate-
level netlists, where the difficulty was in determining which
signals could be used as guarding signals for particular sub-
circuits. Tiwari used binary decision diagrams to discover
logical implications that permit certain sub-circuits to be
disabled at certain times.

Abdollahi et al. proposed using guarded evaluation in ASICs
to attack both leakage and dynamic power [3]. The guard-
ing signals were used to drive the gate terminals of NMOS
sleep transistors incorporated into CMOS gate pull-down
networks, putting sub-circuits into low-leakage states when
their outputs were not needed. Recently, Howland and Tessier
studied guarded evaluation at the RTL level for FPGAs [10].
Their approach produced encouraging power reduction re-
sults, however, its application is limited to using select sig-
nals on multiplexers as guarding signals, and it therefore
only applies to specific types of circuits.

In contrast to prior works, which discover only a lim-
ited number of candidate guarding opportunities, our ap-
proach exposes many guarding opportunities through easy-
to-compute properties of the logic synthesis netlist. Fur-
thermore, while prior approaches required additional hard-
ware to be added to the design (e.g., transparent latches in
Fig. 2), our approach incurs no overhead by using existing
yet unused FPGA circuitry.

2.4 ABC Logic Synthesis
Recently, a new publicly available framework for logic syn-

thesis, called ABC, has been developed and has spurred a
renewed focus on synthesis research [1]. In ABC (devel-
oped primarily by Alan Mishchenko at UC Berkeley), the
key data structure is an AND-inverter graph (AIG). In an
AIG, the circuit functionality is represented solely as a net-
work of 2-input AND gates and inverters. An example of an
AND-inverter graph is shown in Fig. 3. Observe that invert-
ers are not represented explicitly as nodes in the graph, but
rather as properties on graph edges. Research has demon-
strated the utility of AIGs for many logic synthesis trans-
formations (e.g., [18, 15]). AIGs have shown value in LUT
mapping as well [19]. The best published results today for
area-oriented FPGA mapping were produced with ABC [19,
17]. We therefore choose to investigate guarded evaluation
within the ABC framework.

2.5 Gating Inputs and
Non-Inverting AIG Paths

Technology mapping covers the circuit AIG with LUTs
– each LUT in the mapped network implements a portion

z

p q r s

complemented

edge

AND-inverter graph (AIG)

z

p q r s

Original circuit

Figure 3: AND-inverter graph (AIG) example.

LUT
Z

I J K Q M

Figure 4: Identifying gating inputs on LUTs using
non-inverting AIG paths.

of the underlying AIG logic functionality. Our recent work
used properties of the AIG to discover gating inputs to LUTs [5].
A gating input to a LUT has the property that when the
input is in a particular logic state (either logic-0 or logic-
1), then the LUT output is logic-0, irrespective of the logic
states of the other inputs to the LUT. We borrow the idea of
gating inputs for our activity reduction approach and there-
fore briefly review the concept here.

Fig. 4 gives an example of a LUT and the corresponding
portion of a covered AIG. The logic function implemented
by the LUT is: Z = I · J · K · Q · M . Examine the AIG
path from the input I to the root gate of the AIG, Z. The
path comprises a sequence of AND gates with none of the
path edges being complemented. Recall that the output of
an AND gate is logic-0 when either of its inputs is logic-0. For
the path from I to Z, when I is logic-0, the output of each
AND gate along the path will be logic-0, ultimately producing
logic-0 on the LUT output. We therefore conclude that I

is a gating input to the LUT. The LUT in Fig 4, in fact,
has three gating inputs, I , J , and K. Input J is the same
form as input I in that there exists a path of AND gates from
J to root gate Z and none of the edges along the path are
inverted.

Observe, however, that the situation is slightly different
for input K. For input K, the “frontier” edge crossing into
the LUT is inverted, however, aside from this frontier edge,
the remaining edges along the path from K to the root node
Z are “true” edges. This means that when K is logic-1, the
output of the AND gate it drives will be logic-0, eventually
making the LUT’s output signal Z logic-0. K is indeed a
gating input, though it is K’s logic-1 state (rather than its
logic-0 state) that causes the LUT output to be logic-0. In
contrast with inputs I, J and K, LUT inputs Q and M are
not gating inputs to the LUT as neither logic state of these
inputs causes the LUT output to be logic-0. The question of
which inputs are gating inputs is also apparent by inspection
of the LUT’s Boolean equation.

In [5], we generalized the gating input idea and observed
that the defining feature of such inputs is the presence of a
non-inverting path from the input through the AIG to the
root node of the AIG. Since by definition, an AIG contains
only AND gates with inversions on some edges, one does not
need to be concerned with other gates appearing in the AIG
(e.g. EXOR). Non-inverting paths are therefore chains of AND
gates without edge inversions. Gating inputs to LUTs can be
easily discovered through a traversal of a LUT’s underlying
AIG. In [5], the notions of gating inputs and non-inverting
paths were applied to map circuits into a new logic block

. . .

.

. . .

LUT Z

LUT L

LUT N

LUT M LUT G

G

H

gating input

to LUT Z

original

logic function

of LUT L:

f(H, …, N)

. . .

.

. . .

LUT Z

LUT L

LUT N

LUT M LUT G

G

H

NEW

logic function

of LUT L:

G ∧ f(H, …, N)

a) Original LUT network b) Network after guarded evaluation

NEW connection

Figure 5: Guarded evaluation for FPGAs.

architecture that delivers improved area-efficiency. Here, we
apply the ideas for a different purpose, namely, power re-
duction through guarded evaluation.

3. GUARDED EVALUATION FOR FPGAS
We now describe our approach to guarded evaluation, be-

ginning with a top-level overview, and then describing how
guarding opportunities can be created during technology
mapping, and finally discussing the post-mapping guarding
transformation.

3.1 Overview
Fig. 5(a) illustrates how gating inputs to LUTs can be

applied for guarded evaluation. Without loss of generality,
assume that logic-0 is the state of the gating input, G, that
causes LUT Z’s output to be logic-0. When G is logic-
0, Z is also logic-0, and any toggles on the other inputs
of Z are guaranteed not to propagate through Z to circuit
outputs. Now, consider the case of LUT L which drives
LUT Z. Since L’s single fanout is to Z, any transitions on
L’s output will not affect overall circuit outputs when G is
logic-0. Toggles that occur on L’s output when G is logic-0
are an unnecessary waste of dynamic power.

In Fig. 5(a), L is a candidate for guarded evaluation by
signal G. If LUT L has a free input, we modify the mapped
netlist by attaching G to L, and then modifying L’s logic
functionality as shown in Fig.5(b). The new logic function
for L is set equal to the logical AND of its previous logic func-
tion and signal G. After guarding, switching activity on L’s
output signal may be reduced, lowering the power consumed
by the signal. Note, however, that guarding must be done
judiciously, as guarding increases the fanout (and likely the
capacitance) of signal G. The benefit of guarding from the
perspective of activity reduction on L’s output signal must
be weighed against such cost.

The guarded evaluation procedure can be applied recur-
sively by walking the mapped network uphill (in reverse
topological order). For example, after considering guard-
ing LUT L with signal G, we examine L’s fanin LUTs and
consider them for guarding by G. Since LUT N in Fig. 5(a)
only drives LUT L, N is also a candidate for guarding by sig-
nal G. We traverse the network to build up a list of guarding
options.

There may exist multiple guarding candidates for a given
LUT. For example, if signal H in the Fig. 5(a) were a gat-
ing input to LUT L, then H is also a candidate for guard-
ing LUT N (in addition to the option of using G to guard
N). Furthermore, if a LUT has multiple free inputs, we can
guard it multiple times. We discuss the ranking and selec-
tion of guarding options in the next section. The ease with
which we can use AIGs to identify gating inputs (via finding
non-inverting paths) circumvents one of the key difficulties
encounted by Tiwari et al. [24], specifically, the problem of
determining which signals can be used to guard which gates.

While we can guard L with G in Fig. 5, we cannot nec-
essarily guard LUT M with G. The reason is that M is
multi-fanout, and it fans out to LUTs aside from Z. In
Section 3.4, we discuss using circuit “don’t cares” to enable
guarding in some cases such as M . Note, however, that
there do exist multi-fanout LUTs in circuits where guard-
ing is “obviously” possible, such as LUT Q in Fig. 6. LUT
Q fans out to two LUTs, however, both fanout paths from
Q pass through LUT Z. LUT Q is said to have reconver-
gent fanout. If all fanout paths from a LUT pass through
the “root” LUT that receives the gating input, then guard-
ing the multi-fanout LUT can be done without damaging
circuit functionality. A fast network traversal can be used
to determine if all transitive fanout paths from a LUT pass
through a second LUT. Such a traversal is applied to qualify
multi-fanout LUTs as guarding candidates. In general, for
a guarding signal G driving a LUT Z, we can safely use G

to guard any LUT within Z’s fanout-free fanin cone.
It is worthwhile to highlight an important difference be-

tween our approach and the prior ASIC approach, shown in
Fig. 2. In Fig. 2, transparent latches are used to hold inputs
to blocks constant while the blocks are guarded. Our ap-
proach, on the other hand, takes the logical AND of an exist-
ing LUT function with the guarding signal, making the LUT
output logic-0 while guarded. Consider that at the instant
prior to guarding, the LUT’s output could conceivably have
been at logic-1. In our case, therefore, guarding can poten-
tially induce additional transitions on LUT outputs, versus
the technique that uses transparent latches. Nevertheless,
results below show that despite this “weakness”, our method
is effective in power reduction. Moreover, our method has
the advantage of imposing little hardware overhead.

Since our guarding approach relies on there being free in-
puts on LUTs, it is also worth mentioning that LUTs in
today’s commercial FPGAs have 6 inputs [4, 25], which
provide better speed performance than the 4-LUTs used
traditionally. Many logic functions in circuits require less
than 6 variables and consequently, LUTs in mapped circuits
commonly have unused inputs. A recent work from Xilinx
demonstrated that in commercial 6-LUT circuits, only 39%
of the LUTs in the mappings use all 6 inputs [11]. The con-
siderable number of LUTs with unused inputs bodes well for
our guarding scheme.

3.2 Creating Guarding Opportunities During
Mapping

Having introduced how guarded evaluation can be applied
to a mapped netlist, we now consider the influence of the
mapping step itself on guarding. We aim to encourage the
creation of LUT mapping solutions containing“good”guard-
ing opportunities, as well as we seek to maintain the quality
of other circuit criteria, such as area and depth. We propose
a cost function for cuts to reflect cut value from the guarding
perspective.

For a set of inputs to a cut C, Inputs(C), define
Gating[Inputs(C)] to be the subset of inputs that are gating
inputs, as defined in Section 2.5. We define a GuardCost for
a cut, such that minimization of GuardCost will encourage
the creation of mapping solutions containing high-quality
guarding opportunities, while at the same time minimizing
the power of the mapped netlist:

GuardCost(C) =
1 +

∑
i ∈ Inputs(C) α(i)

1 + |Gating[Inputs(C)]|
(1)

where α(i) represents the switching activity on LUT input i.
The numerator of (1) tallies the switching activities on cut
inputs, minimizing activity on inter-LUT connections in the
mapped netlist. Higher input activities yield higher values
of GuardCost. A similar approach to activity minimization
has been used in other works on power-aware FPGA tech-
nology mapping [14, 12]. The denominator of (1) reflects
the desire to have LUTs with gating inputs (i.e., inputs that
drive non-inverting paths in the AIG). The signals on such
inputs can naturally be used to guard other LUTs, as de-
scribed in Section 3.1. Cuts with higher numbers of such
non-inverting path inputs will have lower values of (1).

3.3 Post-Mapping Guarded Evaluation
Following mapping, the circuit is represented as a net-

work of LUTs. Consider a guarding option, O, comprising

. . .

.

LUT Z

LUT L

LUT Q

LUT M LUT G

G

gating input

to LUT Z

. . .

Figure 6: Guarding with reconvergent fanout.

G

LUT L

. . . .

.

. . . .

Figure 7: Illustration of how guarding can create a
combinational loop.

L as the candidate LUT to guard, and G being the candi-
date guarding signal (produced by some other LUT in the
design). We score guarding option O as follows:

Score(O) = |Outputs(L)| · α(L) · P (G) − α(G) (2)

where |Outputs(L)| represents the fanout of LUT L; α(L)
and α(G) are the switching activities on L and G’s outputs,
respectively; and, P (G) is the static probability of G, which
is the fraction of time that G spends in the “gating state”
under typical input vectors. Static probability is a prop-
erty of logic signals widely used in the power estimation
domain [20]. The first term of (2) represents the benefit of
guarding, which increases in proportion to L’s fanout, its ac-
tivity and the fraction of time G is in the gating state. The
more time that G spends in the gating state, the higher the
likely activity reduction on L. The second term of (2) rep-
resents the cost of guarding, which is an increase G’s fanout
(and likely capacitance). The cost is proportional to the ac-
tivity of signal G, as it is less desirable to increase the fanout
of high activity signals. Higher values of (2) are associated
with what we expect will be better guarding candidates.

For a mapped netlist, we capture all possible guarding op-
tions in an array and sort the array in descending order of
each option’s score, as computed through (2). The guarding
then proceeds as follows: We iteratively walk through the
list of guarding options and for each one, we consider intro-
ducing the guard into the mapping. To guard some LUT L

with some signal G, the following rules must be obeyed:

1. LUT L must have a free input (to attach G).

2. Attaching G to an input of L must not form a combi-
national loop in the circuit.

3. Signal G must not already be attached to an input of
LUT L.

4. The guard should not increase the depth of the mapped
network beyond a user-specified limit.

5. The guard must not affect the circuit’s functional cor-
rectness (discussed in Section 3.4 below).

A few of the conditions warrant further discussion. Rule #2
is illustrated in the LUT network of Fig. 7. The candidate
guarding option is illustrated by the dashed line. If we were
to introduce the guard, a combinational loop would be cre-
ated, as the LUT producing the guarding signal G lies in the
transitive fanout of the LUT being guarded, L. We detect
and disqualify such guarding options.

In the case of rule #3, where G is already connected to
an input of L, we can alter L’s logic function to make G a

G. . . .

.

LUT L

Level t

Level t-1 Level t-1

LUT Z

LUT M

Figure 8: Example showing how guarding can in-
crease network depth.

gating input of L, if it is not already so. We can attain the
benefit of guarding without routing G to an additional load
LUT (i.e., without increasing G’s fanout).

Regarding rule #4, guarding can have a deleterious im-
pact on network depth, as illustrated by the example in
Fig 8. In this case, a root LUT Z at level t receives in-
puts from two LUTs at level t−1: L and M . The candidate
guarding option is again shown using a dashed line. If the
signal G produced by M is used to guard LUT L, the net-
work depth is increased to t + 1. Generally, if the level of
the LUT producing the guarding signal G is less than the
level of the guarded LUT L, the maximum network depth
is guaranteed not to increase. Conversely, if the level of the
LUT producing G is greater than or equal to the level of
L, the network depth may increase, depending on whether
the LUT L has any slack in the mapping (i.e., depending
on whether L lies on the critical path of the mapped net-
work). Naturally, if more flexibility is permitted with re-
spect to increasing network depth, more guarding options
can be applied. The allowable increase to network depth is
a user-supplied parameter to our guarding procedure.

Introducing a guard on a LUT may reduce the switching
activity on the LUT’s output and may also reduce activities
throughout the LUT’s transitive fanout cone. Consequently,
activity and probability values become “stale” after guards
are introduced. This is akin to timing slacks becoming stale
and needing periodic updates in FPGA placement and rout-
ing (e.g., as done in [16]). To deal with this, we periodically
update activity and probability values during guarding. In
particular, after introducing T guards into the mapped cir-
cuit, we recompute the switching activities and probabilities
for all circuit signals. We score the remaining guarding op-
tions with the revised activities and probabilities using (2),
and then re-sort the list of guarding options. We resume iter-
ating through the newly sorted list and introducing guards.
T is a parameter that permits a user to trade-off run-time
with guarding quality. Lower T values will result in better
activity reduction, at the expense of additional computation.

The overall post-mapping guarding process terminates when
either there are no profitable guards remaining, or there are
no remaining guarding candidates with a free LUT input.

3.4 Leveraging Non-Obvious “Don’t Cares”
“Don’t cares” are an inherent property of logic circuits

that can be exploited in circuit optimization. Combina-
tional don’t cares are tied to the idea of observability. Un-
der certain input conditions, the output of a particular LUT
does not affect overall circuit outputs; that is, the LUT out-
put is not observable under certain conditions. Sequential
and combinational don’t care-based circuit optimization has
been an active research area recently. Don’t cares were ap-

plied for power optimization in [12], wherein high activity
connections in a mapped network were removed from the
network, or interchanged with other low activity connections
in the network. Don’t cares can also be used to achieve
a considerable reduction in the area of LUT mapped net-
works [17].

As noted in Section 3.2, gating inputs on LUTs can be
identified though non-inverting paths in AIGs and the sig-
nals attached to such inputs can be applied to guard certain
single and multi-fanout LUTs in the mapped network. This
takes advantage of don’t cares that are easily discoverable
through non-inverting paths. We refer to these as obvious
don’t cares. For cases like that of Fig 5(b), where LUT
L is guarded with signal G, we can be confident that the
transformation does not impact the circuit’s overall logic
functionality. The reason is that G is a gating input to Z in
the figure, and L is in the fanout-free fanin cone of Z.

Surprisingly, however, we have observed that due to don’t
cares, it is possible to perform guarding in additional non-
obvious cases, such as guarding LUTs like M with signal G

in Fig. 5(a). Here, M is not in the fanout-free fanin cone
of Z, so it is not obvious that guarding M with G should
be possible. If we can indeed guard M with G, we refer
to this as leveraging non-obvious don’t cares. We experi-
mented with allowing non-obvious guarding cases to be ex-
ecuted. In Section 3.1 above, we described the process by
which we identify guarding opportunities, namely, by iden-
tifying a gating input, G, to a LUT, Z, and then walking
the mapped network uphill from Z’s other inputs. We em-
ploy the same procedure to discover non-obvious guarding
options, except that the uphill traversal is more extensive.
Specifically, we consider using G to guard LUTs that lie
outside of Z’s fanout-free fanin cone.

We use simulation and combinational logic verification (in
ABC) to check that guarding (in the case of non-obvious
don’t cares) does not damage functional correctness (we
“undo” the guarding if needed). In particular, we use a fast
random vector simulation to ascertain if correct function-
ality was disrupted. SAT-based formal verification is used
if the simulation check was successful. Certainly, perform-
ing a full circuit-wise verification after guarding is compute-
intensive. However, our aim in this work is to demonstrate
the potential of guarded evaluation for activity and power
reduction. Moreover, recent work on scalable window-based
verification strategies, such as [17], can be incorporated to
mitigate run-times for large industrial circuits1. Power op-
timization is frequently done as a post-pass conducted after
other design objectives are met, specifically, performance
and area. Power optimization algorithms are likely not ex-
ecuted during the initial iterative design process, making
longer run-times acceptable for such algorithms. The next
section presents results both with and without leveraging
non-obvious don’t cares in guarded evaluation.

4. EXPERIMENTAL STUDY
We implemented guarded evaluation within the ABC logic

synthesis framework and target 6-LUTs. We compare the
guarded mappings with several different baseline mappings:
1) LUT mapping based on priority cuts [19] (the if com-
mand in ABC), 2) WireMap [11], and 3) activity-driven

1The scalable verification work in [17] has not been released
publicly.

WireMap. WireMap is a technique that reduces the num-
ber of inter-LUT connections, which is likely beneficial for
power. For activity-driven WireMap, we altered the WireMap
cut selection cost function to break ties using the sum of
switching activity on LUT (cut) inputs. In all cases, prior to
mapping, we execute the choice command in ABC to per-
form technology independent optimization. Consequently,
our technology mapping executes with “choices” [7], which
provides added mapping flexibility and has been shown to
provide superior results. Guarded evaluation was applied
to a modified WireMap mapper, where ties in cut selection
were broken with the values returned by equation (1). Com-
binational equivalence after guarding was verified using the
cec command in ABC.

We measure the impact of guarded evaluation using two
power metrics: 1) switching activity, and 2) power dissipated
in the FPGA interconnect, considering interconnect capaci-
tance. For switching activity, we sum the activity across all
nets of a circuit. For power, we target an architecture with
length-4 wire segments and logic blocks containing four 6-
LUT/FF pairs per block. We use the power-aware packing,
placement and routing framework described in [14], which is
integrated with the power model of [21]. Our power numbers
therefore account for post-routed interconnect capacitance.
We do not allow the number of routing tracks per channel
(W) to “float” during our runs. Instead, for each circuit,
we compute the minimum W needed for the priority cuts
mapping. We then increase this W by 30% and use the re-
sulting W for the circuit across all runs. The routing fabric
is therefore invariant for a given circuit across all different
mappings, allowing us to fairly evaluate the impact of the
mapping.

To generate switching activities, we used the simulator
built-in to ABC. Each combinational input (primary input
or register output) was first assigned a random toggle proba-
bility between 0.1 and 0.5. Random input vectors were then
generated in a manner consistent with the input toggle prob-
abilities. ABC’s logic simulator was used to produce activity
values for internal signals, considering the logic functional-
ity. The same set of input vectors was used for each circuit
across all runs.

Lastly, since the core mapper in ABC (based on priority
cuts) can operate in depth or area mode, we consider the
consequences of guarding on both area and depth-oriented
mappings, and for the case of depth, we consider the trade-
offs between power and depth.

4.1 Results
Fig. 9 shows results for switching activity, averaged across

20 benchmark circuits2. Part (a) of the figure gives results
for area-oriented mappings (if -a command in ABC). Part
(b) of the figure shows results for depth-oriented mappings.
Focusing first on the area-oriented mappings, the left-most
bar shows switching activity values for mapping based on
priority cuts [19]. The second bar shows activity values for
WireMap [11]. Observe that WireMap reduces switching
activity by 10% on average, versus mapping based on pri-
ority cuts. The third bar shows results for activity-driven
WireMap; activity is reduced by an additional 4% relative
to the priority cuts mapping, on average.

The fourth and fifth bars in Fig. 9(a) show results for
guarding without and with consideration of the non-obvious

2Reported averages are geometric means.

1.00

0.90
0.86

0.81

0.68

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Priority Cuts WireMap Activity-
Driven

WireMap

Guarded Guarded
(DC)

1.00

0.96 0.96

0.87
0.85

0.81

0.75

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Priority Cuts WireMap Activity-
Driven

WireMap

Guarded Guarded +20% Guarded (DC) Guarded +20%
(DC)

N
or

m
al

iz
ed

 a
ct

iv
ity

N
or

m
al

iz
ed

 a
ct

iv
ity

a) Area-Oriented

b) Depth-Oriented

Figure 9: Switching activity reduction results.

“don’t cares” (described in Section 3.4), respectively. It is
most relevant to compare these data points with activity-
driven WireMap, shown as a bolded bar in Fig. 9 (i.e. we
compare guarded evaluation to a good quality activity-driven
baseline mapping). Observe that without non-obvious don’t
cares, guarded evaluation reduces switching activity by 6%,
on average, versus activity-driven WireMap. Using the non-
obvious don’t cares, activity is reduced by 21%, on average.
There is a strong benefit to activity reduction when the full
flexibility of don’t cares can be exploited for guarded eval-
uation. Table 1 shows the activity results on a circuit-by-
circuit basis. The left side of the table shows results for area-
oriented mappings. For some circuits, e.g. bigkey, guarded
evaluation provided little benefit. Further analysis of bigkey
showed very few LUTs with free inputs and therefore limited
guarding opportunities.

Fig. 9(b) gives activity results for depth-oriented map-
pings. The first, second and third data points in the figure
are for optimal-depth mappings created using flows analo-
gous to the first, second and third data points in Fig. 9(a).
Observe that WireMap and activity-driven WireMap pro-
duce less benefit in switching activity reduction than in the
area-oriented mappings. On average, these mappings have
4% less activity compared with priority cuts mapping. The
“Guarded” data point in Fig. 9(b), gives the activity for
mappings subjected to guarded evaluation that are opti-
mal depth. The “Guarded + 20%” data point, gives the
activity for mappings whose depth was allowed to grow by
20% during guarded evaluation, in terms of the number of
logic levels3. This permits us to study depth/power trade-
offs in guarded evaluation. Guarding can reduce activity by
9%, while maintaining optimal depth, versus activity-driven
WireMap. Further switching activity reductions are possible
(12%) when depth is permitted to grow by 20%.

The two right-most data points in Fig. 9(b) give results
when non-obvious don’t cares may be exploited. In this

3If the optimal mapped circuit depth was originally L levels,
the depth was permitted to grow to dL · 1.2e levels.

Table 1: Switching activity reduction results.

Area-Oriented Depth-Oriented

Circuit
Priority

Cuts WireMap

Activity-
Driven

WireMap Guarded
Guarded

(DC)
Priority

Cuts WireMap

Activity-
Driven

WireMap Guarded
Guarded

+20%
Guarded

(DC)

Guarded
+20%
(DC)

alu4 133.79 130.54 122.7 105.3 81.12 146.29 143.66 141.32 109.86 104.76 104.81 92.41
apex2 62.76 54.49 50.76 40.48 28.95 59.54 60.77 60.25 51.03 48.89 43.06 36.25
apex4 75.39 54.66 50.08 47.57 41.17 94.09 54.14 54.09 48.55 47.77 48.29 43.26
bigkey 223.82 223.82 223.82 223.82 223.82 223.82 223.82 223.82 223.82 223.82 223.82 223.82
clma 760.03 739.81 713.43 564.11 303.63 751.69 750.8 716.61 570.32 561.24 361.13 322.4
des 225.44 244.18 252.83 248.68 247.49 267.16 261 270.59 255.87 255.19 255.63 253.58
diffeq 239.4 243.19 245.73 246.08 243.91 246.04 251.23 259.52 260.65 260.34 259 258.67
dsip 265.57 265.57 264.67 264.67 264.67 268.53 248.58 264.67 247.64 247.66 247.64 247.66
elliptic 685.17 673.49 681.28 681.27 680.67 686.36 696.56 699.7 701.68 701.63 700.91 700.64
ex1010 239.79 122.78 107.82 105.79 69.41 163.28 123.45 131.64 119.24 107.05 113.65 78.92
ex5p 118.39 94.86 86.19 83.42 69.85 121.25 116.77 106.35 106.58 102 102.14 88.3
frisc 493.32 499.38 485.5 479.81 477.49 497.9 509.5 492.65 491.16 491.16 487.71 487.43
misex3 90.86 90.59 82.55 71.91 60.36 102.56 101.85 100.84 87.3 81.87 81.91 69.31
pdc 159.31 107.76 93.94 85.16 56.92 140.91 140.36 139.69 102.47 97.42 89.23 74.6
s298 69.47 69.56 63.65 52.78 45.99 76.97 79.92 74.65 62.07 60.46 58.46 57.23
s38417 772.89 781.37 782.69 783.55 780.89 774.97 783.08 797.22 801.3 800.82 799.12 798.04
s38584.1 686.22 681.83 677.46 675.28 674.43 692.97 686.66 689.59 682.28 681.86 681.21 678.79
seq 88.78 78.3 78.1 69.11 48.36 90.28 87.87 97.72 90.2 83.89 77.88 65.69
spla 199.02 145.77 136.37 122.77 93.22 194.86 193.98 180.22 146.08 138.31 131.64 109.83
tseng 237.79 247.7 251.62 251.61 250.32 240.02 250.68 253.89 254.79 254.71 253.56 253.44

Geomean: 211.86 190.75 182.96 170.61 144.40 214.25 205.12 204.97 186.39 181.35 174.60 159.84
Ratio: 1.00 0.90 0.86 0.81 0.68 1.00 0.96 0.96 0.87 0.85 0.81 0.75
Ratio: 1.00 0.93 0.79 1.00 0.91 0.88 0.85 0.78

1.00

0.83
0.81 0.80

0.72

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Priority Cuts WireMap Activity-
Driven

WireMap

Guarded Guarded
(DC)

1.00

0.89 0.90
0.87

0.85

0.81

0.77

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Priority Cuts WireMap Activity-
Driven

WireMap

Guarded Guarded +20% Guarded (DC) Guarded +20%
(DC)

N
or

m
al

iz
ed

 p
ow

er

N
or

m
al

iz
ed

 p
ow

er

a) Area-Oriented

b) Depth-Oriented

Figure 10: Interconnect power reduction results (re-
ported by [14, 21]).

case, guarded evaluation can reduce activity by 15%, on av-
erage, without compromising depth, and 22% when mapped
depth is allowed to increase by 20% (compared with activity-
driven WireMap). Results again demonstrate the benefit
of leveraging non-obvious don’t cares, and also show the
trade-off between power and depth in guarded evaluation.
The right side of Table 1 gives circuit-by-circuit results for
depth-oriented mappings and guarded evaluation.

While the results above demonstrate a benefit to switching
activity, dynamic power scales with the product of activity

and capacitance. Guarded evaluation increases the fanout
of signals in the netlist, likely increasing their capacitance
and power. Consequently, it is not adequate to focus solely
on activity reduction to evaluate the power benefit of the
technique. Fig. 10 gives the average power consumed in the
FPGA interconnect, considering post-routing interconnect
capacitance. Table 2 gives the same results on a circuit-by-
circuit basis. Recall that dynamic power in the interconnect
comprises ∼60% of total power in commercial FPGAs [23].
The power numbers across all columns reflect a single clock
frequency for each circuit. Thus, the data allows us to eval-
uate the power consumption of different implementations of
each circuit clocked at a specific frequency. Below, we will
discuss the impact of guarded evaluation on critical path
delay. The data points in Fig. 10 are analogous to those
in Fig. 9; the columns in Table 2 are analogous to those in
Table 1.

Looking first at the area-oriented mappings (Fig. 10(a)),
observe that WireMap and activity-driven WireMap provide
significant power benefits over mapping with priority cuts.
Power is reduced by 17%, on average, with WireMap, and
19% with activity-driven WireMap. The fourth and fifth
bars in Fig. 10(a) give power numbers for guarded evalu-
ation. Without non-obvious don’t cares, guarded evalua-
tion provides only 1% power reduction versus activity-driven
WireMap. With the additional don’t cares, however, con-
siderable power reductions are possible – power is reduced
by ∼11%, on average, relative to activity-driven WireMap.
Compared with priority cuts mapping, guarded evaluation
and WireMap reduce power by ∼20% and 28%, without and
with non-obvious don’t cares, respectively. We consider this
to be a promising result that should keenly interest power-
sensitive FPGA vendors and customers.

Fig 10(b) gives results for depth-oriented mappings. First,
observe that WireMap and activity-driven WireMap provide

Table 2: Interconnect power reduction results (power given in Watts reported by [14, 21]).

Area-Oriented Depth-Oriented

Circuit
Priority

Cuts WireMap

Activity-
Driven

WireMap Guarded
Guarded

(DC)
Priority

Cuts WireMap

Activity-
Driven

WireMap Guarded
Guarded

+20%
Guarded

(DC)

Guarded
+20%
(DC)

alu4 0.084 0.080 0.080 0.079 0.072 0.083 0.085 0.085 0.079 0.080 0.079 0.075
apex2 0.085 0.061 0.060 0.057 0.047 0.091 0.076 0.079 0.073 0.072 0.066 0.061
apex4 0.061 0.046 0.046 0.045 0.044 0.062 0.048 0.047 0.046 0.046 0.046 0.044
bigkey 0.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119 0.119
clma 0.359 0.303 0.292 0.287 0.157 0.421 0.353 0.364 0.315 0.313 0.225 0.190
des 0.168 0.170 0.175 0.175 0.170 0.191 0.182 0.182 0.177 0.183 0.184 0.179
diffeq 0.077 0.071 0.068 0.071 0.064 0.083 0.074 0.079 0.079 0.080 0.073 0.073
dsip 0.139 0.139 0.139 0.139 0.139 0.142 0.130 0.139 0.125 0.125 0.125 0.125
elliptic 0.291 0.286 0.283 0.281 0.252 0.305 0.290 0.276 0.281 0.282 0.246 0.245
ex1010 0.248 0.127 0.119 0.118 0.106 0.199 0.146 0.153 0.143 0.142 0.141 0.132
ex5p 0.050 0.038 0.036 0.036 0.033 0.052 0.046 0.044 0.044 0.044 0.043 0.040
frisc 0.279 0.236 0.241 0.246 0.239 0.288 0.251 0.256 0.257 0.260 0.245 0.241
misex3 0.076 0.069 0.067 0.068 0.062 0.078 0.076 0.078 0.075 0.074 0.073 0.070
pdc 0.175 0.100 0.089 0.087 0.083 0.183 0.142 0.134 0.115 0.113 0.111 0.096
s298 0.057 0.058 0.059 0.058 0.054 0.061 0.062 0.061 0.060 0.059 0.058 0.058
s38417 0.277 0.267 0.269 0.268 0.270 0.281 0.274 0.278 0.418 0.276 0.276 0.278
s38584.1 0.300 0.282 0.285 0.287 0.282 0.305 0.301 0.299 0.301 0.299 0.300 0.295
seq 0.085 0.065 0.065 0.062 0.040 0.086 0.077 0.078 0.076 0.075 0.068 0.059
spla 0.172 0.088 0.080 0.077 0.069 0.186 0.142 0.144 0.102 0.104 0.097 0.087
tseng 0.068 0.061 0.060 0.059 0.057 0.073 0.062 0.062 0.061 0.061 0.058 0.058

Geomean: 0.131 0.108 0.106 0.105 0.094 0.135 0.121 0.121 0.117 0.115 0.109 0.104
Ratio: 1.000 0.827 0.810 0.803 0.723 1.000 0.891 0.896 0.867 0.848 0.807 0.769
Ratio: 1.000 0.991 0.892 1.000 0.968 0.946 0.900 0.858

a smaller power benefit (versus priority cuts mapping) in
comparison with the area-oriented runs. Both WireMap and
activity-driven WireMap yield a ∼10-11% power reduction,
on average. Turning to the guarded evaluation results, the
“Guarded” data point shows that power is reduced by 3%,
with optimal depth and without non-obvious don’t cares.
The “Guarded +20%” data point shows that power is re-
duced by 5% when circuit depth can be increased. The last
two data points in Fig. 10(b) give the power reduction results
when the larger set of don’t cares can be utilized. Power
reductions of 10% over activity-driven WireMap are possi-
ble without any increase in mapped circuit depth. Guarded
evaluation can reduce power by 14% when depth can be
increased by 20%. Compared with priority cuts mapping,
which is not power aware, the combination of WireMap and
guarded evaluation reduces power by 13-23%, depending on
the don’t cares model, and speed performance. Again, the
power reduction results are encouraging and exhibit a clear
trade-off between power and depth.

Lastly, we report the impact of guarded evaluation on
post-routed critical path delay (as reported by VPR [6]).
Table 3 shows the geometric mean (across all circuits) of
critical path delay for the key mapping solutions presented
above. Part a) of the table shows results for area-oriented
mappings. Without the full set of don’t cares, guarded eval-
uation increases critical path delay by 28%, on average, ver-
sus activity-driven WireMap. However, when non-obvious
don’t cares can be exploited, critical path delay is increased
by 43% versus activity-driven WireMap, on average. We en-
forced a hard limit of at most a 50% increase in the number
of logic levels in area-oriented guarded evaluation. With-
out the hard limit, the speed performance degradation was
considerably worse, with little added power benefit.

Part b) of Table 3 gives results for depth-oriented map-
pings. Observe that even when the number of logic levels was

restricted to remain optimal, critical path delay increased by
6-9%, on average, relative to activity-driven WireMap. This
is likely due to routing congestion caused by increases to net
fanout. When depth increases of 20% were permitted, criti-
cal path delay increased by 8% and 21% (vs. activity-dirven
WireMap), without and with considering the non-obvious
don’t cares, respectively. Although not shown in the ta-
ble, the depth-oriented activity-driven WireMap solutions
have 20% higher performance, on average, versus the area-
oriented activity-driven WireMap solutions.

It is important to recognize that many FPGA designs do
not need to run at the maximum possible device perfor-
mance. Despite the reduction in maximum achievable circuit
speed, guarded evaluation does indeed produce implemen-
tations having lower power. We believe that guarded evalu-
ation is an important power reduction strategy that will be
useful in many applications where power consumption is a
top tier concern.

5. CONCLUSIONS AND FUTURE WORK
Guarded evaluation reduces dynamic power by identifying

sub-circuits whose inputs can be held constant at certain
times during circuit operation, eliminating toggles within
the sub-circuits. In this paper, we proposed guarded evalu-
ation for FPGAs and used non-inverting paths in a circuit’s
AND-inverter graph to discover guarding opportunities. Our
approach leverages unused circuitry that is already part of
the FPGA fabric, and thus imposes little area overhead.
Experimental results demonstrate that guarded evaluation
can reduce switching activity by 7-22%, on average, depend-
ing on whether the mapping is area or depth-oriented and
whether guarded evaluation can exploit don’t cares and can
relax mapping depth. Compared with a good power-aware
baseline mapping, dynamic power in the FPGA interconnect
is reduced by between 1-14%, again depending on the map-

Table 3: Critical path delay results.

a) Area-Oriented b) Depth-Oriented

Mapping Flow

Normalized
Critical Path

Delay
(Geomean) Mapping Flow

Normalized
Critical Path

Delay
(Geomean)

Activity-Driven
WireMap 1.00

Activity-Driven
WireMap 1.00

Guarded 1.28 Guarded 1.06
Guarded (DC) 1.43 Guarded +20% 1.08

Guarded (DC) 1.09
Guarded +20%
(DC) 1.21

ping conditions and the willingness to trade-off performance
for power.

An interesting direction for future work is to target both
dynamic and leakage power reduction using guarded evalu-
ation. In this paper, we essentially held outputs of guarded
sub-circuits at logic-0 when the outputs of such sub-circuits
did not affect overall circuit outputs (since we altered LUT
functions by taking the logical AND of the LUT’s existing
function with the guarding signal). However, we could have
equally well held outputs at logic-1 (a logical OR would be
applied). Leakage power in CMOS circuits is known to de-
pend strongly on the applied input vector [9]. Consequently,
it is possible that holding a sub-circuit’s outputs at logic-1
or even a combination of 0s and 1s might improve leakage
power. Other directions for future work include integrat-
ing this work with the scalable don’t care analysis described
in [17], and also with the power optimization work of [12]. It
is unclear whether the power benefits of [12] are orthogonal
to the benefits reported here. Lastly, it would be valuable
to study the power benefits of guarded evaluation for a com-
mercial FPGA, perhaps using Altera’s QUIP framework [2]
to bring our guarded mapping solutions into Altera’s com-
mercial tool flow. Beyond the obvious advantage of gauging
power for a “real” commercial FPGA, establishing such a
flow would permit us access to a more accurate switching
activity model, namely one that considers glitches resulting
from post-routed interconnect delays.

ACKNOWLEDGEMENTS
The authors thank Dr. Qiang Wang for his helpful comments
on the manuscript.

6. REFERENCES
[1] ABC – a system for sequential synthesis and

verification.
http://www.eecs.berkeley.edu/∼alanmi/abc/, 2009.

[2] Quartus-II university interface program. Altera Corp.,
2009.

[3] A. Abdollahi, M. Pedram, F. Fallah, and I. Ghosh.
Precomputation-based guarding for dynamic and
leakage power reduction. In IEEE Int’l Conf. on
Computer Design, pages 90–97, 2003.

[4] Altera, Corp., San Jose, CA. Stratix-III FPGA Family
Data Sheet, 2008.

[5] J. Anderson and Q. Wang. Improving logic density
through synthesis-inspired architecture. In IEEE Int’l
Conf. on Field Programmable Logic and Applications,
pages 105 – 111, 2009.

[6] V. Betz and J. Rose. VPR: A new packing, placement
and routing tool for FPGA research. In Int’l

Workshop on Field Programmable Logic and
Applications, pages 213–222, 1997.

[7] S. Chatterjee, A. Mishcenko, R. Brayton, X. Wang,
and T. Kam. Reducing structural bias in technology
mapping. In Int’l Workshop on Logic Synthesis, 2005.

[8] J. Cong, C. Wu, and E. Ding. Cut ranking and
pruning: Enabling A general and efficient FPGA
mapping solution. In Int’l Symp. on
Field-Programmable Gate Arrays, pages 29–35, 1999.

[9] J.P. Halter and F.N. Najm. A gate-level leakage power
reduction method for ultra-low-power CMOS circuits.
In IEEE Custom Integrated Circuits Conf., pages
475–478, 1997.

[10] D. Howland and R. Tessier. RTL dynamic power
optimization for FPGAs. In IEEE Midwest Symp. on
Circuits and Systems, pages 714–717, 2008.

[11] S. Jang, B. Chan, K. Chung, and A. Mishchenko.
Wiremap: FPGA technology mapping for improved
routability and enhanced LUT merging. ACM Trans.
on Reconfig. Tech. and Systems, 2(2):1–24, 2009.

[12] S. Jang, K. Chung, A. Mishchenko, and R. Brayton. A
power optimization toolbox for logic synthesis and
mapping. In IEEE International Workshop on Logic
Synthesis, San Francisco, CA, 2009.

[13] I. Kuon and J. Rose. Measuring the gap between
FPGAs and ASICs. IEEE Trans. On CAD,
26(2):203–215, February 2007.

[14] J. Lamoureux and S.J.E. Wilton. On the interaction
between power-aware FPGA CAD algorithms. In
IEEE/ACM Int’l Conf. on Computer-Aided Design,
pages 701–708, 2003.

[15] A. Ling, J. Zhu, and S. Brown. Delay driven AIG
restructuring using slack budget management. In
ACM/IEEE Great Lakes Symp. on VLSI, pages
163–166, 2008.

[16] A. Marquardt, V. Betz, and J. Rose. Timing-driven
placement for FPGAs. In ACM Int’l Symp. on
Field-Programmable Gate Arrays, pages 203–213,
2000.

[17] A. Mishchenko, R. Brayton, J.-H. R. Jiang, and
S. Jang. Scalable don’t-care-based logic optimization
and resynthesis. In ACM Int’l Symp. on Field
Programmable Gate Arrays, pages 151–160, 2009.

[18] A. Mishchenko, S. Chatterjee, and R. Brayton.
DAG-aware AIG rewriting: A fresh look at
combinational logic synthesis. In ACM/IEEE Design
Automation Conf., pages 532–536, 2006.

[19] A. Mishchenko, Sungmin Cho, S. Chatterjee, and
R. Brayton. Combinational and sequential mapping
with priority cuts. In IEEE/ACM Int’l Con. on CAD,
2007.

[20] F. Najm. Transition density: A new measure of
activity in digital circuits. IEEE Trans. on CAD,
12:310–323, February 1993.

[21] K. Poon, A. Yan, and S. Wilton. A flexible power
model for FPGAs. In Int’l Conf. on
Field-Programmable Logic and Applications, pages
312–321, 2002.

[22] M. Schlag, J. Kong, and P.K. Chan. Routability-driven
technology mapping for lookup table-based FPGAs.
IEEE Trans. on CAD, 13(1):13–26, 1994.

[23] L. Shang, A. Kaviani, and K. Bathala. Dynamic power
consumption of the Virtex-II FPGA family. In ACM
Int’l Symp. on Field-Programmable Gate Arrays, 2002.

[24] V. Tiwari, S. Malik, and P. Ashar. Guarded
evaluation: pushing power management to logic
synthesis/design. IEEE Trans. on CAD,
17(10):1051–1060, October 1998.

[25] Xilinx, Inc., San Jose, CA. Virtex-5 FPGA Data
Sheet, 2007.

