
Analysis and Evaluation of Greedy Thread Swapping Based Dynamic
Power Management for MPSoC Platforms

Chirag Ravishankar1, Sundaram Ananthanarayanan1,2, Siddharth Garg1, Andrew Kennings1

1 University of Waterloo, Waterloo, ON Canada
2 Anna University, Chennai, India

Corresponding Author E-mail: siddharth.garg@uwaterloo.ca

Abstract— Thread migration (TM) is a recently pro-
posed dynamic power management technique for heteroge-
neous multi-processor system-on-chip (MPSoC) platforms
that eliminates the area and power overheads incurred
by fine-grained dynamic voltage and frequency scaling
(DVFS) based power management. In this paper, we take
the first step towards formally analyzing and experimen-
tally evaluating the use of power-aware TM for parallel
data streaming applications on MPSoC platforms. From an
analysis perspective, we characterize the optimal mapping
of threads to cores and prove the convergence properties of
a complexity effective greedy thread swapping based TM
algorithm to the globally optimal solution. The proposed
techniques are evaluated on a 9-core FPGA based MPSoC
prototype equipped with fully-functional TM and DVFS
support, and running a parallelized video encoding bench-
mark based on the Motion Picture Experts Group (MPEG-
2) standard. Our experimental results validate the pro-
posed theoretical analysis, and show that the proposed TM
algorithm provides within 8% of the DVFS performance
under the same power budget, and assuming no overheads
for DVFS. Assuming voltage regulator inefficiency of 80%,
the proposed TM algorithm has 9% higher performance
than DVFS, again under the same total power budget.

Keywords— Power management, Thread migration,
DVFS, Multi-core, FPGA

I. Introduction

Highly parallel multi-processor system-on-chip (MPSoC)
platforms are increasingly being used in embedded and mo-
bile computing devices, where, besides performance, the
system power dissipation is a first-class design constraint.
Dynamic power management techniques aim to exploit the
spatial and temporal variations in application character-
istics to either save power within a performance budget,
or maximize performance for a specified power level. To
provide effective dynamic power management capabilities,
a number of researchers [16], [9], [11] have proposed the
use of fine-grained dynamic voltage and frequency scaling
(DVFS) for MPSoC platforms. At the finest granularity,
DVFS allows each core to independently adapt its voltage
and frequency at run-time to suit the requirements of the
thread executing on that core. For example, performance
critical threads can be run at high voltage and frequency
levels to maintain performance, while non-critical threads
can be run at lower voltage and frequency to save power.

However, while DVFS can be an effective dynamic power

management technique, it comes with associated overheads
in terms of: (i) the area and power dissipation of the ad-
ditional circuitry needed to support DVFS, (ii) the inef-
ficiency of the voltage regulators required to dynamically
scale the supply voltage at run-time, and (iii) constraints
on the voltage regulator switching speed which limits how
frequently the supply voltage can be scaled. The area and
power overheads scale with the number of cores in the MP-
SoC platform, if fine-grained DVFS support is provided.

As an alternative, thread migration (TM), originally pro-
posed as a mechanism to balance the thermal profile of
multi-core chips [10], [7], [4], has been proposed as a low-
overhead dynamic power management solution for hetero-
geneous multi-core platforms [17], [6]. The key idea is to
statically set the voltage and frequency value of each core
at design time (resulting in a heterogeneous system where
different cores operate at different power and performance
levels), and then, to dynamically migrate threads to ap-
propriate cores at run-time. This is in contrast to DVFS,
where the thread mapping remains fixed, but the voltage
and frequency of each core is dynamically updated based
on the performance requirements of the thread running
on it. Rangan et al. [17] have evaluated, using software
simulations, the use of thread migration based dynamic
power management for a multi-core system running multi-
programmed workloads, i.e., where each thread represents
an independent application. More recently, Dighe et al. [6]
have implemented and evaluated the benefits of thread mi-
gration on an 80-core hardware prototype using a simple
synthetic application that consists of only three indepen-
dent threads and a hard-coded migration sequence. While
these works illustrate the potential of TM as an alternate
or complementary power management solution to DVFS,
the efficacy of power-aware TM for parallel, multi-threaded
applications (as opposed to multi-programmed or synthetic
applications used by prior work) has not been analyzed and
experimentally evaluated before.

In this paper, we take the first step towards formally ana-
lyzing the optimality and convergence properties of power-
aware TM for parallel applications running on heteroge-
neous MPSoC platforms. In particular, we focus on stream-
ing applications [18] for which the execution semantics are
specified as homogeneous synchronous data flow graphs.
This model encompasses a wide range of applications com-
monly used in embedded and mobile platforms including
video processing, base-band communications and digital
signal processing. Based on this analysis, we propose a

complexity-effective TM algorithm — greedy thread swap-
ping —- and evaluate its performance on a 9-core FPGA
prototype enabled with per-core static and dynamic fre-
quency scaling, and full support for run-time thread swap-
ping between any two cores. As a representative bench-
mark, we use a custom, parallel implementation of a
video encoder based on the Motion Picture Experts Group
(MPEG-2) standard that runs on eight of the nine cores
on the FPGA platform, while the ninth core is used to im-
plement the TM (or DVFS) algorithm and to orchestrate
the thread migration. Our experimental results illustrate
that TM is indeed a promising, low overhead alternative
to fine-grained DVFS for MPSoC platforms — in particu-
lar, we observe that compared to ideal DVFS with no over-
heads, the performance of TM is only 8% lower than DVFS
within the same power budget. Accounting for the power
overheads of the voltage regulators required to implement
DVFS, the performance of TM is actually 9% higher than
the DVFS performance, again within the same power bud-
get. Compared to a static mapping of threads on to a
heterogeneous MPSoC platform, TM results in up to 3×
higher throughput.

II. Related Work

Dynamic power management for MPSoC platforms has
primarily been addressed in the context of fine-grained or
clustered DVFS, for which a number of algorithms have
been proposed in literature based on non-linear optimiza-
tion [14], [15] and control theory [16], [9], [1], among other
techniques. While an exhaustive survey of work in this
area is outside the scope of this paper, we note that these
DVFS algorithms can not be simply extended for the case
of power-aware TM. This is because DVFS is fundamen-
tally an assignment problem, i.e., the goal is to assign a
voltage and frequency value to each thread to meet the
desired objective. On the other hand, power-aware TM is
an instance of a bipartite matching problem, i.e., the goal
is to match each thread to an available set of statically
determined voltage and frequency values.

TM has been proposed as a low-overhead solution for
thermal balancing in multi-core systems [12], [7], [10], [4]
and more recently, to minimize the inter-thread communi-
cation costs [13]. Compared to these related works, this
paper has a different objective, i.e., dynamic power man-
agement for heterogeneous MPSoC platforms, where each
core can have different statically set voltage and frequency
values.

The recent work by Rangan et al. [17] and Dighe et al.
[6] is the most closely related to the work presented in this
paper. Compared to these papers, this work makes the
following novel contributions:
• We address power-aware TM for truly parallel applica-
tions as opposed to the multi-programmed and synthetic
workloads that are used by [17] and [6]. We present our
results on an 8-thread parallel implementation of a video
encoding algorithm based on the MPEG-2 standard.
• We formally characterize the optimal mapping of a par-

Fig. 1. MPSoC architecture and application models assumed in this
paper.

allel application — the mapping that maximizes applica-
tion throughput within a power budget — on a hetero-
geneous MPSoC platform and prove that a complexity-
effective greedy thread swapping algorithm is guaranteed
to converge to the optimal solution in a bounded number
of steps.
• We experimentally evaluate our proposed solutions on an
FPGA prototype of 9-core MPSoC running the VE bench-
mark. The prototype fully supports thread swapping be-
tween arbitrary pairs of cores and therefore, in contrast to
simulation based studies [17], our results accurately reflect
any performance overheads associated with TM that would
be observed in a real system.

III. Preliminaries and Assumptions

We now discuss the details of the MPSoC architecture
and parallel application model that is assumed in this work.
MPSoC Architecture. As shown in Figure 1, we as-
sume a heterogeneous MPSoC architecture consisting of
N cores, where the supply voltage of core i is given by
Vi, its clock frequency by fi, and the cycle time Ti = 1

fi
.

Also, we assume (as assumed by [17] and [6]) that the cores
are architecturally identical, and that the only source of
heterogeneity is that the cores operate at different volt-
age and frequency levels. Finally, the communication be-
tween cores occurs via dedicated point-to-point, mixed-
clock FIFO queues between each pair of cores. The FI-
FOs are used to communicate both application data and
for swapping architectural state during TM.

Application Model. In this paper, we model applications
as homogeneous synchronous data-flow (HSDF) graphs [5],
which is a commonly used model for a large number of
streaming data applications. In particular, the application
is modeled as a (possibly cyclic) graph, G(V,E), where the
vertices V represent computational tasks, and the edges
represent the data-flow dependencies between tasks. We
assume that the number of tasks is strictly less than or
equal to the number of available cores on this MPSoC plat-
form, i.e., |V | ≤ N . Each time a task executes, it consumes
one token of data and produces one token of data at each
output edge. We assume that task i takes Ci clock cycles

to process one token of data, and for now, assume also that
Ci does not change with time.

The mapping function, M , maps application tasks to
the cores in the MPSoC platform — M(i) = j implies that
task i is executing on core j. Given a mapping M , we
can write the execution latency of task i, Li = CiTM(i) =

Ci

fM(i)
. Finally the steady-state throughput of a mapping

M , TP (M), can be written as [5]:

TP (M) = min
∀Q∈G

|Q|∑
i∈Q CiTM(i)

where Q represents cycles in the HSDF graph G1. Note
that besides data flow cycles in the graph G, for example
the one from task 2 → 3 → 4 → 2 in Figure 1, each
task also has a self-loop that models the fact that multiple
instances of the task cannot execute simultaneously.

Note that in practice, the number of execution cycles for
each task are data dependent and will change with time
— the goal of the TM algorithm is to dynamically update
the mapping of tasks to cores, M , so as to maximize the
application throughput within a power budget. To this
end, we begin by determining the optimal mapping M∗

assuming that the number of execution cycles for each core
is known, and then outline a complexity-effective greedy
thread swapping algorithm that is guaranteed to converge
to this optimal mapping in a finite number of steps.

IV. Power-aware Thread Migration

We begin by showing that for the case in which each task
in the data-flow graph is mapped to an individual core, the
application throughput is limited by self-loops, in other
words, the worst-case throughput is limited by the thread
that has the largest execution latency.

Lemma 1: The steady-state throughput of a HSDF
graph G mapped onto an MPSoC platform using the map-
ping M can be written as TP (M) = 1

maxi∈V (CiTM(i))
.

Proof: For any cycle Q in G not including self loops,

we note that
∑

i∈Q
CiTM(i)

|Q| ≤ maxi∈Q(CiTM(i)). This
shows that the cycles in G that are not self loops can not be
throughput constraining. Therefore, the throughput con-
straining cycle must be one of the |V | ≤ N self loops in
the graph, i.e., TP (M) = 1

maxi∈V (CiTM(i))
.

Based on Lemma 1, we can now characterize an optimal
mapping M∗ that maximizes throughput for an applica-
tion under a power budget. Note that the power budget
is implicitly determined by the statically set voltage and
frequency values of each core.

A. Globally Optimal Mapping

Theorem 1: Given a parallel application with N tasks
specified as an HSDF graph, G(V,E), (without loss of gen-
erality, assume that the number of execution cycles are
ordered as follows: C1 ≤ C2 ≤ . . . ≤ CN), and an MPSoC

1Note that we implicitly assume, as assumed by [5] and [8], that
each incoming edge has an initial token.

platform with N cores (without loss of generality, assume
that the cycle times of the cores are ordered as follows:
T1 ≥ T2 ≥ . . . ≥ TN), the optimal mapping of threads to
cores, M∗, is given by M∗(i) = i.

Proof: We will prove the result via induction on N ,
the number of threads and cores in the system. For N = 2,
we can show that max(C1T1, C2T2) ≤ max(C1T2, C2T1).
This is because max(C1T2, C2T1) = C2T1, and C2T1 is
greater than both C1T1 and C2T2.

Assume the statement is true for P threads and P cores,
where P < N . We show that, given this assumption, it is
also true for a system with N threads and N cores.

Assume an arbitrary mapping, M , of N threads to N
cores. Without loss of generality, assume that thread 1
runs on core i. Now, we define a new mapping M ′ such
that:

M ′(1) = i

M ′(j) = j − 1 ∀j ∈ [2, i]

M ′(j) = j ∀j ∈ [i + 1, N]

In the mapping M ′, thread 1 is mapped to core i which
is also the case in mapping M , but note that the remain-
ing N − 1 threads are optimally mapped on the remaining
N−1 cores, based on the induction assumption. For exam-
ple, thread C2, the least computationally expensive of the
remaining N − 1 threads is mapped on core 1, the slow-
est of the remaining N − 1 cores, and so on. Therefore,
TM(M ′) ≥ TM(M).

Now comparing mapping M∗ to M ′, we can observe
that in both cases, M ′(j) = M∗(j) = j (∀j ∈ [i + 1, N]).
However, based on the induction assumption, the remain-
ing i threads are optimally mapped on the remaining i
cores in the mapping M∗, but not in M ′. As a result,
TM(M∗) ≥ TM(M ′), and thus, TM(M∗) ≥ TM(M),
where M is any arbitrary mapping of threads to cores. This
completes the desired proof.

Theorem 1 proves that the intuitive mapping solution,
i.e., mapping the most computationally expensive thread
to the fastest core, the second most computationally ex-
pensive thread to the second fastest core (and so on), is
indeed the globally optimal solution for the parallel data
streaming application model that we study in this paper.

B. Greedy Thread Swapping

From a practical perspective, switching from an arbitrary
initial mapping M to the optimal mapping M∗ within one
step might require multiple threads or, in the worst case,
each thread to be migrated to a different core. We refer
to this scenario as global thread migration. For example,
consider the scenario in Figure 2, where Thread 2, Thread
3 and Thread 4 all participate in migration, and form a
cyclic dependency chain. Such migrations can be complex
to implement in practice — in fact, global thread migra-
tion is impractical for many reasons: (i) increased perfor-
mance overheads because of the amount of network traffic
required to perform the migration, and because a larger
number of cores start with cold caches [3]; (ii) increased

Fig. 2. Example illustrating both global thread migration (high
overhead and implementation complexity) and complexity-effective
thread swapping.

implementation complexity, for example, in our prototype
implementation we observed a marked increase in imple-
mentation complexity moving from two-core thread migra-
tion (i.e., thread swapping) to global thread migration for
three cores; and (iii) potential for deadlocks, as observed
by [2].

Therefore, as a number of prior researchers have done, we
focus on simple thread swapping where, during any migra-
tion interval, an arbitrary pair of cores in the MPSoC can
swap threads. This is illustrated in Figure 2. Thread swap-
ping addresses many of the performance overhead, imple-
mentation complexity and deadlock issues related to global
thread migration, but also implies that it is no longer possi-
ble to switch from an arbitrary low performance mapping,
M , to the optimal mapping, M∗, in a single control inter-
val.

We now present a simple Greedy Thread Swapping
(GTS) algorithm, and then prove, analytically, that, start-
ing from a sub-optimal initial mapping M , GTS is guaran-
teed to converge to M∗ in a finite number of steps. While
similar algorithms have been proposed by prior researchers
[17], this is, to the best of our knowledge, the first for-
mal proof of the convergence properties of this al-
gorithm to the globally optimal solution.

1: Given C = {C1, C2, . . . , CN}
2: Given T = {C1, C2, . . . , CN}
3: Given a mapping M : C → T
4: p = arg maxi∈[1,N](CiTM(i))
5: ∆max = 0
6: for j = 1 → N do
7: ∆ = CpTM(p) −max(CpTM(j), CjTM(p))
8: if ∆ ≥ ∆max then
9: s = j
10: ∆max = ∆
11: end if
12: end for
13: swap(p,s)

Algorithm 1: Greedy Thread Swapping (GTS)

We now prove that, starting from any initial mapping
M , where TP (M) < TP (M∗), GTS always converges to

the mapping M∗ in a finite number of steps, i.e., thread
swaps. To prove this, it is sufficient to prove that, given
any arbitrary mapping M , there always exists at least one
swap that increases the application throughput — in other
words, that the throughput as a function of the space of
possible mappings has no local maxima.

Theorem 2: Given an arbitrary mapping M where
TP (M) < TP (M∗), there exists a new mapping M ′, where
(i)M ′(p) = M(s), (ii) M ′(s) = M(p), and (iii) M ′(k) =
M(k) (s 6= p and ∀k 6= s, p), such that TP (M ′) > TP (M).

Proof: We will again assume, without loss of gener-
ality, that C1 ≤ C2 ≤ . . . ≤ CN and that T1 ≥ T2 ≥ . . . ≥
TN .

Let p = arg maxi∈[1,N](CiTM(i)), i.e., p represents the
throughput constraining thread in the mapping M . Since
TP (M) < TP (M∗), we know that TM(p) > TM∗(p), i.e.,
TM(p) > Tp. Thus, there must exist an s ∈ [p + 1, N] for
which M(s) < p. In other words, there exists a thread s
which is more computationally intensive than the through-
put constraining thread p, and is mapped to a slower core
compared to p. Thus, a new matching, M ′ obtained from
swapping these threads will have a higher throughput, i.e.,
T (M ′) > T (M).

Theorem 2 is an automatic proof of convergence to opti-
mality, since (i) there exists an upper bound on throughput
TP (M∗); (ii) the space of possible mappings is finite; and
(iii) there always exists a swap that increases throughput
given a mapping that has sub-optimal throughput.

It is important to note that the proof is valid under the
implicit assumption that the thread characteristics, i.e.,
the number of execution cycles remain constant. In real-
ity, the thread characteristics are workload dependent and
vary with time. However, all dynamic power management
algorithms, including ours, are predicated on a notion of
temporal locality, i.e., that the workload variations are cor-
related in time, or do not change “too quickly”. In the
context of GTS, the key question is if the workload varies
faster than the number of iterations GTS takes to converge
to optimality. In the experimental results section, we show
that, in fact, for the workloads evaluated, GTS is able to
effectively adapt to workload variations.

V. FPGA Based Evaluation Platform

System-level or cycle-accurate simulations of MPSoC are
commonly used to evaluate the performance of dynamic
power management algorithms, often at the expense of fi-
delity. In the TM context, for example, Brooks et al. [17]
use cycle-accurate simulations of a clustered multi-core pro-
cessor, but only estimate the overheads of TM by assuming
a certain on-chip bandwidth for data transfer during thread
migration. To ensure the highest fidelity in evaluating the
performance of the proposed TM algorithms, we have de-
veloped a multi-core FPGA based platform consisting of
nine embedded processors that communicate via a point-to-
point FIFO based interconnect. In addition, the frequency
of each core can be independently set, either statically or
dynamically — the latter enables us to use the same plat-

form to evaluate and contrast TM with fine-grained DVFS.
To enable thread swapping on the FPGA platform, one

of the nine cores acts as a dedicated monitor core that
orchestrates TM, while the other eight user cores execute
application threads. The monitor core periodically raises
an interrupt to signal thread migration events (the period
between two thread migration events is called the control
interval Tcont), upon which user cores call a custom inter-
rupt routine that performs the actions required to swap
threads. The overheads of TM come from two sources - (i)
the private instruction and data caches of each cores are
flushed during TM and (ii) for correctness, the data in the
inter-core FIFOs needs to be migrated to the appropriate
FIFOs post swap.
Modeling Power Consumption. The FPGA platform
currently does not have support for measuring either full-
chip or per-core power consumption. We therefore use a
coarse-grained power model to estimate the power con-
sumption of each core. In particular, the instantaneous
power consumed by core i, Poweri, is computed as:

Poweri ∝ V 2
i fi

Since the FPGA board supports only frequency scaling
and not voltage scaling, the voltage, Vi, corresponding to
a frequency level fi is estimated using published data for
the voltage frequency relationship of embedded cores in the
single cloud chip SCC [11] platform. The exact values used
are discussed in the experimental results section, but we
note that the the lack of voltage scaling does not impact
the fidelity of the performance measurements on the FPGA
platform, since the performance of each core depends only
on its operating frequency.

VI. Experimental Results

We now discuss our experimental results that evaluate
the performance of the proposed greedy thread swapping
algorithm (GTS) on the FPGA based MPSoC prototype
running a parallel video encoding (VE) benchmark. We
focus specifically on validating the convergence properties
of GTS starting from arbitrary initial mappings, illustrat-
ing the benefits of dynamic thread migration compared to
static mapping, and comparing the performance of GTS to
fine-grained DVFS. We begin by discussing the details of
the VE benchmark.

A. Video Encoding Benchmark

Figure 3 shows the data flow graph of the VE benchmark
(≈ 3000 lines of C++ code) that consists of a Source core
that sends raw video frames to the remaining cores, seven
parallel processing threads, and the Frame Buffer which is
implemented using on-chip memory. In our implementa-
tion, the VE encodes two types of frames:- (i) I-Frames
that do not make use of the motion estimator (ME) and
are directly compressed; and (ii) P-Frames in which the
ME block is used to determine the macro-blocks (MB) in a
previously processed frame that are in the neighborhood of
the current MB being processed. The ME is the primary

Fig. 3. Data flow graph of the VE benchmark.

Fig. 4. Execution times for the ME thread.

source of workload variations for the VE benchmark, as
shown in Figure 4. We can observe that while the execu-
tion time for ME can vary significantly for different MBs,
the variations are temporally correlated, i.e., the execution
time of a MB can typically be used as a good predictor for
the execution time of the succeeding MBs. Both the DVFS
and proposed GTS algorithms make use of this property to
optimize performance.

B. FPGA Based MPSoC Prototype Details

TABLE I

Architectural details of the FPGA prototype

Combinational ALUTS 46041/182400 (25%)
Memory ALUTS 272/91200 (<1%)

DSP Blocks 36/128 (3%)
Available Clock Frequencies {50, 37.5, 25, 12.5} MHz

Inter-core FIFO Size 509 Bytes
Nios II I-Cache 4 KBytes
Nios II D-Cache 2 KBytes

Our FPGA prototype is developed on an Altera Stratix
IV GX FPGA board using embedded NIOS II cores. Table
I provides a highlight of the synthesis results and impor-
tant architectural details. Note that there are four fre-

quency values available for static and dynamic frequency
scaling that range from 12.5 MHz to 50 MHz. Since we
can not measure per-core or full-chip power dissipation on
the FPGA platform, we use published data for the voltage
and frequency scaling behavior of embedded cores in the
Intel SCC platform to determine how the voltage scales as
the frequency scales by 4×, i.e., from 50 MHz to 12.5 MHz,
and then used the coarse grained power model described in
the previous section to determine the power consumption
at every frequency level. This data is shown in Table II. As
we can see, the power consumption for the 12.5MHz core
is only 7.5% of the power consumption of a 50 MHz core.

TABLE II

Voltage and power values (in arbitrary units (A.U.))

corresponding to each frequency level.

Frequency (MHz) Voltage (V) Power (A.U.)
12.5 0.75 V 0.075
25 0.83 V 0.2

37.5 1.00 V 0.4
50 1.32 V 1.0

C. Greedy Thread Swapping: Static Workload

We begin by validating the convergence properties of the
GTS based TM algorithm for static workloads, i.e., when
the thread execution latency does not change with time.
Since the ME thread is the only thread that has data de-
pendent execution times, we ran the VE benchmark to pro-
cess each frame as an I-frame, thus shutting off the ME core
and eliminating workload variations. The execution time
of each thread per MB is shown in Table III. With the ME
shut off, the Quant thread is the most computationally ex-
pensive thread in our VE implementation.

TABLE III

Average execution time (in clock ticks) to process a MB for

an I-frame for each thread in VE benchmark.

DCT Quant Zig-Zag VLE I-Quant I-DCT
20590 28290 5447 3796 3268 14506

With this benchmark, we ran an experiment on a het-
erogeneous MPSoC platform with three cores at 12.5 MHz,
two at 25 MHz, one at 37.5 MHz and two at 50 MHz, with
the Source always running at 50 MHz. Figure 5 shows the
throughput increasing with every control interval for three
different sub-optimal initial mappings of threads to cores.
It can be observed that in all three cases, the throughput
converges to its maximum value after a finite number of
control intervals, as predicted by the theoretical analysis
of the GTS algorithm. To illustrate the functioning of the
GTS algorithm, Figure 6 shows the first initial mapping
and the sequence of swaps made by the GTS algorithm to
reach the optimal mapping, after which no swaps are made.

Fig. 5. Throughput (in terms of macro-blocks processed) at each
control interval for different initial mappings using the GTS algo-
rithm. We can see, that as predicted by the theoretical results, the
optimal mapping that maximizes steady-state throughput is reached
in a finite number of steps.

Fig. 6. Sequence of swaps to reach maximum throughput for Initial
Mapping 1. Shaded boxes represent the threads that swap in the
given control interval.

D. Greedy Thread Swapping: Time Varying Workload

To evaluate the performance of GTS for realistic, time-
varying workloads we ran the VE algorithm (this time in
regular mode with both P-frames and I-frames) on the het-
erogeneous MPSoC configuration described in the previous
section. Again, the Source is always statically set to run at
50 MHz. To understand how GTS works for this case, Fig-
ure 7 plots the location of each thread in each control inter-
val during program execution. The application is started
with a “bad” initial mapping of threads to cores. We no-
tice three distinct phases during application execution — in
the start-up phase, a number of swaps are made to switch
to a better thread to core mapping. During P-frame pro-
cessing, the ME and Quant benchmarks run at the two
highest frequencies of 50 MHz and 37.5 MHz and there
are frequent swaps between these two due to variations in
the ME execution time. When I-frames are processed, the
ME execution time drops to zero and the GTS algorithm
quickly swaps ME out to the lowest frequency (12.5 MHz)
to boost performance. Compared to executing with the
initial mapping and no thread migration, the GTS based
TM algorithm provides a 3.03× increase in throughput for
the same power budget. Compared to a high power design
where all cores run at 50MHz the heterogeneous MPSoC
with TM has a 63% lower power dissipation with only 33%
reduction in throughput.

Fig. 7. Mapping of threads to cores in every control interval. The Source always runs at 50 MHz and is not shown here for clarity.

E. Greedy Thread Swapping Vs. DVFS

Finally, we compare the performance of GTS to DVFS
for the same power budget. We implemented two versions
of the DVFS algorithm — (1) Optimal DVFS in which,
in every control interval, we exhaustively search all fre-
quency combinations within the power budget and use the
frequency assignment that maximizes performance, and (2)
DVFS-TM where the frequency assigned to each thread is
the same as that which would be assigned by the GTS
based TM algorithm (although we note that GTS migrates
threads instead of assigning frequencies). The former rep-
resents the best performance that can be achieved using
DVFS, assuming 100% efficient voltage regulators. The lat-
ter, DVFS-TM provides insight into the performance lost
by TM due to the overheads of swapping the threads and
starting with cold caches after a TM event.

Figure 8 compares the throughput obtained (in Frames
processed per second) for all three techniques for different
control interval lengths (in clock ticks). Smaller control
interval lengths imply that the thread migration events for
GTS, or voltage/frequency updates for DVFS occur more
frequently. A number of observations can be made from
the figure:

• The throughput of GTS based TM is low for both large
control intervals (no adaptation to workload variations)
and small control intervals (increased overheads of repeated
thread swapping). Compared to Optimal DVFS, the high-
est throughput for GTS is only 8% lower than the highest
throughput for DVFS within the same power budget. It
is important to note that we do not account for any over-
heads related to the additional circuitry required for DVFS
or the voltage regulator inefficiencies, so the DVFS results
are optimistic.
• Comparing DVFS-TM and GTS, we can infer that much
of the performance loss compared to Optimal DVFS results
from the run-time overhead of performing thread swaps.
Without these overheads, the throughput of GTS based

TM would be only 4.5% lower than the optimal DVFS
throughput.
• While TM can be performed as frequently as desired (al-
though the performance drops if it is performed too fre-
quently), the length of the DVFS control interval is limited
in practice by the switching speed of the voltage regulator.
For this benchmark, our results suggest that the optimal
length of a control interval is between 1 million and 5 mil-
lion clock ticks, which, for a real system running at 1 GHz
(as an example) would correspond to a control interval of
between 1 ms and 5 ms.

Fig. 8. Throughput of GTS compared to two DVFS algorithms for
different control interval lengths.

Finally, we note that if the voltage regulator inefficiencies
are accounted for, the power budget available to the cores
for the system equipped with DVFS would reduce. Assum-
ing a voltage regulator with 80% efficiency, the through-
put of the GTS based TM is 9% better than DVFS
for the same total power budget. For 90% regulator effi-
ciency, the performance of DVFS and GTS based TM are
within 2% of each other.

VII. Conclusions and Future Work

In this paper, we have taken the first step towards for-
mally analyzing the optimality and convergence proper-
ties of thread migration based dynamic power manage-

ment for heterogeneous MPSoC platforms running parallel
data streaming applications. To this end, we propose a
complexity-effective greedy thread swapping based thread
migration algorithm, and prove theoretically that it con-
verges to the optimal mapping of threads to cores in a finite
number steps. We have evaluated the proposed techniques
on a fully functional FPGA based MPSoC prototype with
support for static and dynamic frequency assignment, and
interrupt based thread swapping functionality. As a rep-
resentative benchmark, we use a parallelized implementa-
tion of a video encoding application based on the MPEG-2
standard. Our experimental results not only confirm our
theoretical analysis, but demonstrate that GTS based TM
is very competitive with an optimal DVFS implementation
(assuming no overheads for DVFS) and provide a maximum
throughput that is within 8% of the throughput provided
by Optimal DVFS for the same power budget. If voltage
regulator inefficiency is accounted for, GTS based TM is
up to 9% better than DVFS, again within the same power
budget.

There are a number of avenues for future work. We
would like to extend our analysis for more additional mod-
els of parallelism besides data streaming applications. Ad-
ditionally, we would like to explore what impact having a
network-on-chip (NoC) like interconnect, instead of point-
to-point communication, would have on the performance
of TM.

References

[1] A. Alimonda, S. Carta, A. Acquaviva, A. Pisano, and L. Benini.
A feedback-based approach to dvfs in data-flow applications.
Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, 28(11):1691–1704, 2009.

[2] M.H. Cho, K.S. Shim, M. Lis, O. Khan, and S. Devadas.
Deadlock-free fine-grained thread migration. In Networks on
Chip (NoCS), 2011 Fifth IEEE/ACM International Symposium
on, pages 33–40. IEEE.

[3] T. Constantinou, Y. Sazeides, P. Michaud, D. Fetis, and
A. Seznec. Performance implications of single thread migration
on a chip multi-core. ACM SIGARCH Computer Architecture
News, 33(4):80–91, 2005.

[4] A.K. Coskun, T.S. Rosing, and K. Whisnant. Temperature
aware task scheduling in mpsocs. In Proceedings of the con-
ference on Design, automation and test in Europe, pages 1659–
1664. EDA Consortium, 2007.

[5] A. Dasdan and R.K. Gupta. Faster maximum and mini-
mum mean cycle algorithms for system-performance analysis.
Computer-Aided Design of Integrated Circuits and Systems,
IEEE Transactions on, 17(10):889–899, 1998.

[6] S. Dighe, S. Vangal, P. Aseron, S. Kumar, T. Jacob, K. Bowman,
J. Howard, J. Tschanz, V. Erraguntla, N. Borkar, et al. Within-
die variation-aware dynamic-voltage-frequency scaling core map-
ping and thread hopping for an 80-core processor. In Solid-State
Circuits Conference Digest of Technical Papers (ISSCC), 2010
IEEE International, pages 174–175. IEEE, 2010.

[7] T. Ebi, M.A. Al Faruque, and J. Henkel. Tape: thermal-
aware agent-based power economy for multi/many-core archi-
tectures. In Proceedings of the 2009 International Conference
on Computer-Aided Design, pages 302–309. ACM, 2009.

[8] S. Garg and D. Marculescu. System-level throughput analysis
for process variation aware multiple voltage-frequency island de-
signs. ACM Transactions on Design Automation of Electronic
Systems (TODAES), 13(4):59, 2008.

[9] S. Garg, D. Marculescu, and R. Marculescu. Custom feedback
control: enabling truly scalable on-chip power management for
mpsocs. In Proceedings of the 16th ACM/IEEE international
symposium on Low power electronics and design, pages 425–430.
ACM, 2010.

[10] E. Kursun, C.Y. Cher, A. Buyuktosunoglu, and P. Bose. In-
vestigating the effects of task scheduling on thermal behavior.
In Third Workshop on Temperature-Aware Computer Systems
(TACS06). Citeseer, 2006.

[11] T. Mattson, R. Van der Wijngaart, et al. The intel 48-core
single-chip cloud computer (scc) processor: Programmers view.
In Int. Conf. High Performance Computing, 2010.

[12] P. Michaud, A. Seznec, D. Fetis, Y. Sazeides, and T. Constanti-
nou. A study of thread migration in temperature-constrained
multicores. ACM Transactions on Architecture and Code Opti-
mization (TACO), 4(2):9–es, 2007.

[13] M. Misler and N. Enright Jerger. Moths: mobile threads for on-
chip networks. In Proceedings of the 19th international confer-
ence on Parallel architectures and compilation techniques, pages
541–542. ACM, 2010.

[14] S. Murali, A. Mutapcic, D. Atienza, R. Gupta, S. Boyd, and
G. De Micheli. Temperature-aware processor frequency as-
signment for mpsocs using convex optimization. In Hard-
ware/Software Codesign and System Synthesis (CODES+
ISSS), 2007 5th IEEE/ACM/IFIP International Conference on,
pages 111–116. IEEE, 2007.

[15] K. Niyogi and D. Marculescu. Speed and voltage selection for
gals systems based on voltage/frequency islands. In Proceedings
of the 2005 Asia and South Pacific Design Automation Confer-
ence, pages 292–297. ACM, 2005.

[16] U.Y. Ogras, R. Marculescu, and D. Marculescu. Variation-
adaptive feedback control for networks-on-chip with multiple
clock domains. In Proceedings of the 45th annual Design Au-
tomation Conference, pages 614–619. ACM, 2008.

[17] K.K. Rangan, G.Y. Wei, and D. Brooks. Thread motion: fine-
grained power management for multi-core systems. In ACM
SIGARCH Computer Architecture News, volume 37, pages 302–
313. ACM, 2009.

[18] W. Thies, M. Karczmarek, and S. Amarasinghe. Streamit: A
language for streaming applications. In Compiler Construction,
pages 49–84. Springer, 2002.

