MAT351 Partial Differential Equations
Christian Ketterer

Fall, Assignment 10
January 15, 2021

Hand-in Problems (Due till January 18 before lecture, via crowdmark)

1. The Dirichlet problem for the exterior of a circle is

$$
\begin{aligned}
u_{x, x}+u_{y, y} & =0 \text { on }\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}>a^{2}\right\} \\
u & =h \text { on }\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=a^{2}\right\} \\
\limsup _{x^{2}+y^{2} \rightarrow \infty}|u(x, y)| & \leq C<\infty
\end{aligned}
$$

Derive the Poisson formula in polar coordinates for this problem:

$$
\tilde{u}(r, \theta)=\frac{r^{2}-a^{2}}{2 \pi} \int_{0}^{2 \pi} \frac{\tilde{h}(\phi)}{a^{2}-2 a r \cos (\theta-\phi)+r^{2}} d \phi
$$

where $\tilde{h}(\theta)=h(a \cos \theta, a \sin \theta)$.
Hint: Follow the derivation of the Poisson formula on the disk $B_{a}(0)$.
2. Let $B_{1} \subset \mathbb{R}^{2}$ be the unit disc and let $B_{1}^{+}=B_{1} \cap\left\{(x, y) \in \mathbb{R}^{2}: y>0\right\}$. Let u be a function that is harmonic on B_{1}^{+}and continuous on $\overline{B_{1}^{+}}$. Assume that u vanishes on $\overline{B_{1}^{+}} \cap\left\{(x, y) \in \mathbb{R}^{2}: y=0\right\}=\left\{(x, 0) \in \mathbb{R}^{2}: x \in[-1,1]\right\}$. Consider the extension of u to the whole disc $\overline{B_{1}}$ by odd reflection

$$
\tilde{u}(x, y)= \begin{cases}u(x, y) & \text { if }(x, y) \in \overline{B_{1}} \text { and } y \geq 0 \\ -u(x,-y) & \text { if }(x, y) \in \overline{B_{1}} \text { and } y<0\end{cases}
$$

Prove that \tilde{u} is harmonic by identifying \tilde{u} as the solution of a suitable boundary-value problem.
Hint: You will need to use uniqueness twice.

Problems for discussion

1. Suppose that u is harmonic on the disk $B_{2} \subset \mathbb{R}^{2}$ and that $u(2 \cos \theta, 2 \sin \theta)=$ $2021+(\sin \theta)^{17}$. Without computing the solution, find
(a) the maximum on $\overline{B_{2}}$;
(b) the value of u in the origin;
(c) the integral of u over the disk.
2. Let $f \in C^{0}(\mathbb{R})$ be 2π-periodic. Show that the full Fourier series of f converges to f in the mean square sense if and only if Parseval's equality holds:

$$
\frac{\pi}{2} A_{0}^{2}+\sum_{n=1}^{\infty}\left(\left|A_{n}\right|^{2} \int_{0}^{2 \pi} \cos (n x) d x+\left|B_{n}\right|^{2} \int_{0}^{2 \pi} \sin (n x) d x\right)=\int_{0}^{2 \pi} f(x) d x
$$

Hint: Least square approximation.
3. Let f be a smooth 2π-periodic function with $\int_{-\pi}^{\pi} f(x) d x=0$. Use Parseval's identity to show that

$$
\sqrt{\int_{0}^{2 \pi}(f(x))^{2} d x}=\|f\|_{2} \leq\left\|f^{\prime}\right\|_{2}
$$

4. (a) Recall the full Fourier series of $f(x)=x$ on $(-\pi, \pi)$. Apply Parseval's inequality to find the value of the sum $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$.
(b) Recall the full Fourier series of $f(x)=x^{2}$ on $(-\pi, \pi)$. Apply Parseval's inequality to find the value of the sum $\sum_{n=1}^{\infty} \frac{1}{n^{4}}$.

To Read

1. Section 7.1, 7.2, 7.3 in Partial Differential Equations: An Introduction by W. Strauss.
