MAT351 Partial Differential Equations
Christian Ketterer, David Pechersky

Fall, Assignment 11
January 18, 2021

Hand-in Problems (Due till January 25 before lecture, via crowdmark)

1. (a) Show that

$$
\Phi_{n}(x)= \begin{cases}\frac{1}{2 \pi} \log |x| & \text { if } n=2 \\ -\frac{1}{n(n-2) \operatorname{vol}\left(B_{1}(0)\right)} \frac{1}{|x|^{n-2}} & \text { if } n \in \mathbb{N}, n \geq 3\end{cases}
$$

solves the Laplace equation in $\mathbb{R}^{n} \backslash\{0\}$.
(b) Given $f \in C^{2}\left(\mathbb{R}^{3}\right)$ with compact support show that

$$
u(x)=\int_{\mathbb{R}^{n}} \Phi_{n}(y-x) f(y) d y
$$

solves the Poisson equation $\Delta u=f$ on \mathbb{R}^{3}.
Hint: Follow the proof of the Representation formula.
2 . Let $\Omega \subset \mathbb{R}^{n}$ be open with smooth boundary. Show that
(a) Green's function $G(x, y), x, y \in \Omega$, is uniquely determined by its properies,
(b) $G(x, y)<0, x, y \in \Omega$.

Problems for discussion

1. Derive the mean value property for a harmonic function u on $\Omega \subset \mathbb{R}^{3}$ (with smooth boundary) from the representation formula

$$
u(x)=\int_{\partial \Omega}\left[-\left.u(y) \frac{\partial}{\partial N}\right|_{y}\left(\frac{1}{|\cdot-x|}\right)+\left.\frac{1}{|y-x|} \frac{\partial u}{\partial N}\right|_{y}\right] d s(y) .
$$

2. Let $\Omega \subset \mathbb{R}^{n}$ be open with smooth boundary. A function $u \in C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$ solves the Neumann Problem for the Laplace equation if

$$
\begin{aligned}
\Delta u & =0 \text { on } \Omega \\
\frac{\partial u}{\partial N} & =0 \text { on } \partial \Omega
\end{aligned}
$$

where N is the unit normal vector field on $\partial \Omega$. The kinetic energy of u is

$$
E(u)=\frac{1}{2} \int_{\Omega}|\nabla u|^{2} d x
$$

Use the energy method to show uniqueness up to addition of constants of the Neumann problem.
3. Find the 1-dimensional Green's function $G\left(x, x_{0}\right)$ for the interval $(0, l)$ defined by the following 3 properties:
(i) $\frac{d}{d x} G\left(x, x_{0}\right)=0, x \neq x_{0}$,
(ii) $G\left(0, x_{0}\right)=G\left(l, x_{0}\right)=0$,
(iii) $G(x)$ is continuous a x_{0} and $G\left(x, x_{0}\right)+\frac{1}{2}\left|x-x_{0}\right|$ is harmonic at x_{0}.

To Read

1. Section 7.4 in Partial Differential Equations: An Introduction by W. Strauss.
