MAT351 Partial Differential Equations
Fall, Assignment 13
Christian Ketterer, David Pechersky

Hand-in Problems (Due till March 8 before lecture, via crowdmark)

1. Let u solve

$$
\begin{aligned}
u_{t, t}=\Delta u & \text { in } \mathbb{R}^{3} \times(0, \infty) \\
u=\phi, u_{t}=\psi & \text { on } \mathbb{R}^{3} \times\{0\}
\end{aligned}
$$

where ϕ and ψ are smooth and have compact support.
Show there exists a constant $C>0$ such that

$$
u(x, t) \leq \frac{C}{t} \forall x \in \mathbb{R}^{3}, t>0
$$

2. The solution of the wave equation $u_{t, t}=c^{2} \Delta u$ in $2 D$ is given by Poisson's formula. Use Hadamard's method of descent to recover D'Alembert's formula for the solution of the wave equation in space dimension $n=1$.

Problems for practice and discussion

1. Maxwell's equations of electromagnetism in vacuum are

$$
\nabla \times E=-\frac{\partial B}{\partial t}, \nabla \times B=\mu_{0} \epsilon_{0} \frac{\partial E}{\partial t}, \nabla \cdot E=0, \nabla \cdot B=0
$$

where ϵ_{0} is the vacuum permitivity, μ_{0} is the vacuum permeability, $\nabla \cdot V$ is the divergence $\operatorname{div} V$ of a vectorfield V and

$$
\nabla \times V=\left(\begin{array}{l}
\frac{\partial V_{2}}{\partial x_{3}}-\frac{\partial V_{3}}{\partial x_{2}} \\
\frac{\partial V_{3}}{\partial x_{1}}-\frac{\partial V_{1}}{\partial x_{3}} \\
\frac{\partial V_{1}}{\partial x_{2}}-\frac{\partial V_{2}}{\partial x_{1}}
\end{array}\right)
$$

is the rotation vectorfield of V.
Show that E_{i} and $B_{i}, i=1, \ldots 3$, solve the wave equation $u_{t, t}=\frac{1}{\mu_{0} \epsilon_{0}} \Delta u$. Hint: Check first that $\nabla \times(\nabla \times V)=\nabla(\operatorname{div} V)-\operatorname{div} \nabla V$ where $V: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ is a smooth vectorfield. The divergence $\operatorname{div} \nabla V$ is the vectorfield that is formed of the divergences of the components $V_{i}, i=1,2,3$, of V.
2. Derive the conservation of energy for the wave equation on a domain Ω (with smooth boundary) with Dirichlet or Neumann boundary conditions. What about Robin conditions?

To Read

1. Section 9.3, 9.4 and 9.5 in Partial Differential Equations: An Introduction by W. Strauss.
