MAT351 Partial Differential Equations
Christian Ketterer, David Pechersky

Fall, Assignment 16
March 29, 2021

Hand-in Problems (Due till April 5, 11:59 pm, via crowdmark)

1. (a) Write Schroedinger's equation $i u_{t}=-\frac{1}{2} \Delta u+V \cdot u$ in two dimensions in polar coordinates where $V=V(r), r^{2}=x^{2}+y^{2}$, is a radial potential funcion. Separate the variables to find special solutions of the form $u(t, r, \theta)=T(t) \cdot R(r) \cdot \Theta(\theta)$.
(b) Assume $V(r)=\frac{1}{2} r^{2}$. Substitute $\rho=r^{2}$ and $R(r)=e^{-\rho / 2} \rho^{-n / 2} L(\rho)$ to show that L satisfies Laguerre's differential equation

$$
L^{\prime \prime}+\left(\frac{\nu+1}{\rho}-1\right) L^{\prime}+\frac{\mu}{\rho} L=0
$$

for some constants μ and ν. Explain how to obtain polynomial solutions.
2. (a) Let $f(x)$ be a function such that

$$
f(0)=f(3)=0, \quad \int_{0}^{3}[f(x)]^{2} d x=1 \text { and } \int_{0}^{3}\left[f^{\prime}(x)\right]^{2} d x=1
$$

Find such a function if you can. If it cannot be found, explain why not?
Let $\Omega \subset \mathbb{R}^{n}$ be a bounded domain with smooth boundary $\partial \Omega$.
(b) Show that the smallest Neumann eigenvalue for $-\Delta$ on Ω is given by $\tilde{\lambda}_{1}=0$. What are the corresponding eigenfunction.
(c) If Ω is connected, show that $\tilde{\lambda}_{1}$ is simple, that is the space of eigenfunctions is 1 -dimensional. To show this argue that $\tilde{\lambda}_{2}$ is strictly positive. You can assume without proof that smooth eigenfunctions exist.

Problems for practice and discussion

1. Derive the recursion relations

$$
J_{s \pm 1}(z)=\frac{s}{z} J_{s}(z) \mp J_{s}^{\prime}(z) \text { and } J_{s-1}(z)+J_{s+1}(z)=\frac{2 s}{z} J_{s}(z)
$$

for the Bessel functions $J_{s}(z), s \in \mathbb{R} \backslash\{-n: n \in \mathbb{N}\}$.
2. Estimate the first eigenvalue of $-\Delta$ with Dirichlet boundary conditions in the triangle

$$
\Omega=\left\{(x, y) \in \mathbb{R}^{2}: x+y<1, x>0, y>0\right\}
$$

using the Rayleigh quotient with trial function $x y(1-x-y)$.
3. Let Ω be a bounded domain in \mathbb{R}^{d} with smooth boundary. Denote by λ_{n}, $n \in \mathbb{N}$, the sequence of eigenvalues of the negative Dirichlet Laplace operator, $-\Delta$ on $\mathcal{E}_{0}=\left\{w \in C^{2}(\bar{\Omega}):\left.w\right|_{\partial \Omega}=0\right\}$, and by $v_{n}, n \in \mathbb{N}$, an orthonormal set of corresponding eigenfunctions.
Assume $u \in C^{2}(\bar{\Omega} \times[0, \infty))$ solves the heat equation $u_{t}=\Delta u$ with homogeneous Dirichlet boundary conditions and initial value $u(\cdot, 0)=f$ on Ω. Express u in terms of the Dirichlet eigenvalues and the eigenfunctions given above.

To Read

1. Section 11.1, 11.2 and 11.3 in Partial Differential Equations: An Introduction by W. Strauss, Section 16.4 in Partial Differential Equations by R. Choksi.
