MAT351 Partial Differential Equations

Fall, Assignment 16 March 29, 2021

Christian Ketterer, David Pechersky

Hand-in Problems (Due till April 5, 11:59 pm, via crowdmark)

- 1. (a) Write Schroedinger's equation $iu_t = -\frac{1}{2}\Delta u + V \cdot u$ in two dimensions in polar coordinates where V = V(r), $r^2 = x^2 + y^2$, is a radial potential function. Separate the variables to find special solutions of the form $u(t, r, \theta) = T(t) \cdot R(r) \cdot \Theta(\theta)$.
 - (b) Assume $V(r) = \frac{1}{2}r^2$. Substitute $\rho = r^2$ and $R(r) = e^{-\rho/2}\rho^{-n/2}L(\rho)$ to show that L satisfies Laguerre's differential equation

$$L'' + \left(\frac{\nu+1}{\rho} - 1\right)L' + \frac{\mu}{\rho}L = 0$$

for some constants μ and ν . Explain how to obtain polynomial solutions.

2. (a) Let f(x) be a function such that

$$f(0) = f(3) = 0$$
, $\int_0^3 [f(x)]^2 dx = 1$ and $\int_0^3 [f'(x)]^2 dx = 1$.

Find such a function if you can. If it cannot be found, explain why not?

Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with smooth boundary $\partial \Omega$.

- (b) Show that the smallest Neumann eigenvalue for $-\Delta$ on Ω is given by $\tilde{\lambda}_1 = 0$. What are the corresponding eigenfunction.
- (c) If Ω is connected, show that $\tilde{\lambda}_1$ is simple, that is the space of eigenfunctions is 1-dimensional. To show this argue that $\tilde{\lambda}_2$ is strictly positive. You can assume without proof that smooth eigenfunctions exist.

Problems for practice and discussion

1. Derive the recursion relations

$$J_{s\pm 1}(z) = \frac{s}{z} J_s(z) \mp J'_s(z)$$
 and $J_{s-1}(z) + J_{s+1}(z) = \frac{2s}{z} J_s(z)$

for the Bessel functions $J_s(z), s \in \mathbb{R} \setminus \{-n : n \in \mathbb{N}\}.$

2. Estimate the first eigenvalue of $-\Delta$ with Dirichlet boundary conditions in the triangle

$$\Omega = \{(x, y) \in \mathbb{R}^2 : x + y < 1, x > 0, y > 0\}$$

using the Rayleigh quotient with trial function xy(1 - x - y).

3. Let Ω be a bounded domain in \mathbb{R}^d with smooth boundary. Denote by λ_n , $n \in \mathbb{N}$, the sequence of eigenvalues of the negative Dirichlet Laplace operator, $-\Delta$ on $\mathcal{E}_0 = \{w \in C^2(\overline{\Omega}) : w|_{\partial\Omega} = 0\}$, and by $v_n, n \in \mathbb{N}$, an orthonormal set of corresponding eigenfunctions.

Assume $u \in C^2(\overline{\Omega} \times [0, \infty))$ solves the heat equation $u_t = \Delta u$ with homogeneous Dirichlet boundary conditions and initial value $u(\cdot, 0) = f$ on Ω . Express u in terms of the Dirichlet eigenvalues and the eigenfunctions given above.

To Read

1. Section 11.1, 11.2 and 11.3 in *Partial Differential Equations: An Introduction* by W. Strauss, Section 16.4 in *Partial Differential Equations* by R. Choksi.