Christian Ketterer, David Pechersky

Hand-in Problems (Due till April 12, 11:59 pm, via crowdmark)

1. Let $\Omega \subset \mathbb{R}^{n}$ be open and bounded with $\partial \Omega$ smooth. Let N be the unit normal vector field along Ω. Let $u \in C^{2}(\bar{\Omega})$ be a minimizer of

$$
\left\{w \in C^{1}(\bar{\Omega}) \text { with } \int_{\Omega} w d x=0\right\} \ni w \mapsto R(w)=\frac{E(w)}{\|w\|_{2}^{2}}
$$

where $E(w)=\int_{\Omega}|\nabla w|^{2} d x$ and $\|w\|_{2}^{2}=\int_{\Omega} w^{2} d x$. Show that u solves

$$
\begin{aligned}
-\Delta u & =\lambda u \text { on } \Omega \\
\frac{\partial u}{\partial N} & =0 \text { on } \partial \Omega
\end{aligned}
$$

with $\lambda=R(u)>0$.
Hint: First consider $u+\epsilon \phi$ with $\phi \in \mathcal{E}_{0}$.

Problems for practice and discussion

1. Estimate the first eigenvalue of $-\Delta$ with homogeneous Dirichlet boundary conditions in the triangle

$$
\Omega=\left\{(x, y) \in \mathbb{R}^{2}: x+y<1, x>0, y>0\right\}
$$

using the Rayleigh quotient of the trial function $x y(1-x-y)$.
2. For $-\Delta$ on the interior $\Omega=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} / 4<1\right\}$ of an ellipse with Dirichlet boundary conditions use the monotonicity of the eigenvalues w.r.t. the domain to find estimates for the first two eigenvalues. More precisely, find upper and lower bounds.
Hint: Inscribe or circumscribe rectangles or circles, for which we know the exact values.
3. For the eigenvalue problem $-u^{\prime \prime}=\lambda u$ in the interval $(0,1)$ with $u(0)=u(1)=$ 0 choose the pair of trial functions $x-x^{2}$ and $x^{2}-x^{3}$ and compute the Rayleigh Ritz approximation for the first two eigenvalues and compare with the exact values.

To Read

1. Section 11.6, 12.1, 12.2, 12.3 and 12.4 in Partial Differential Equations: An Introduction by W. Strauss, Section 16.4 in Partial Differential Equations by R. Choksi.
