MAT351 Partial Differential Equations
Christian Ketterer, Nathan Carruth

Fall, Assignment 2
October 1, 2020

Hand-in Problems (Due till October 5 before lecture, via crowdmark)

H1 Use the method of characteristics to find he solution of $u_{t}-y u_{x}+x u_{y}=f(x, y)$ in $\mathbb{R}^{2} \times[0, \infty) \quad$ with $\quad u(x, y, 0)=g(x, y), g, f \in C^{1}\left(\mathbb{R}^{2}\right)$.

H2 Use the method of charateristics to find the solution of

$$
u_{x}+x y u_{y}=x \text { in } \mathbb{R}^{2} \text { with } u(0, y)=\sin y .
$$

Problems for discussion

1. Recall the exact statement of the general existence and uniqueness theorem for ODEs.
2. State the inverse function theorem for continuously differentiable maps f : $\Omega \rightarrow \mathbb{R}^{n}, \Omega \subset \mathbb{R}^{n}$. Likewise the implicite function theorem.
3. Use the method of characteristics to find the solution of $u_{t}+\nabla u \cdot V(\mathbf{x})=u+f(\mathbf{x})$ in $\mathbb{R}^{n} \times[0, \infty) \quad$ with $\quad u(\mathbf{x}, 0)=g(\mathbf{x}), g, f \in C^{1}\left(\mathbb{R}^{n}\right)$ where $V \in C^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ with compact support.
4. Use the method of characteristics to find the solution of

$$
u_{x}+y u_{y}=0 \text { in } \mathbb{R}^{2} \text { with } \quad u(y, 0)=\frac{1}{1+y^{2}}
$$

To Read

1. Section 4.3 and 4.4 in Partial Differential Equations: A First Course by R. Choksi.
