Christian Ketterer, Nathan Carruth

Hand-in Problems (Due till October 19 before lecture, via crowdmark)

H1 Use the graphical method to sketch the solution of Burgers' equation $u_{t}+u u_{x}=0$ with initial values

$$
u(x, 0)= \begin{cases}1 & \text { if } x<-1 \\ 0 & \text { if }-1 \leq x \leq 0 \\ 2 & \text { if } 0<x<1 \\ 0 & \text { if } x>1\end{cases}
$$

that satisfies both the Rankine-Hugoniot jump condition and the Lax entropy condition. Indicate the location of the shocks and rarefaction waves.

H2 Reduce the elliptic equation

$$
u_{x, x}+3 u_{y, y}-2 u_{x}+24 u_{y}+5 u=0
$$

to the form $v_{x, x}+v_{y, y}+c v=0$ by a change of the dependent variable of the form $u=v e^{\alpha x+\beta y}$ and then a change of scale of the form $y^{\prime}=\gamma y$.

Problems for discussion

1. Consider the conservation law

$$
u_{t}+(f(u))_{x}=0
$$

where f is a non-decreasing function on the real line with $A(0)=0$.
(a) If this is a model for traffic flow with $u(x, t) \geq 0$ denoting the density of cars, how would you interpret $f^{\prime}(u(x, t))$? Argue that the function $f(x)$ should be concave?
(b) Let f be as above, and let u be an entropy solution. Interpret the formation of shocks, the Rankine-Hugoniot condition, and the Lax' entropy condition in this traffic model.
2. (a) What is the type of each of the following equations?

- $u_{x, x}-u_{x, y}+2 u_{y}+u_{y, y}-3 u_{y, x}+4 u=0$,
- $9 u_{x, x}+6 u_{x, y}+u_{y, y}+u_{x}=0$.
(b) Find the regions in the $x y$ plane where the equation

$$
(1+x) u_{x, x}+2 x y u_{x, y}-y^{2} u_{y, y}=0
$$

is elliptic, hyperbolic, or parabolic. Sketch these regions.

To Read

1. Section 1.3, 1.6 and 2.1 in Partial Differential Equations: An Introduction by W. Strauss.
