MAT351 Partial Differential Equations
Christian Ketterer, Nathan Carruth

Fall, Assignment $3 \frac{1}{2}$
October 16, 2020

Practice Problems

1. (Hammer blow) Let $\phi(x) \equiv 0, x \in \mathbb{R}$ and $\psi(x)=1$ for $|x|<a$ and $\psi(x)=0$ for $|x| \geq a$. Consider the solution $u(x, t)$ of the wave equation $u_{t, t}=c^{2} u_{x, x}$ with initial condition $u(x, 0)=\phi(x)$ and $u_{t}(x, 0)=\psi(x)$.
(a) Sketch the profile of the function $u(x, t), x \in \mathbb{R}$, for the successive instants $t=a / 2 c, a / c, 3 a / 2 c, 2 a / a c$ and $5 a / c$.
Hint: Calculate

$$
u(x, t)=\frac{1}{c} \int_{x-c t}^{x+c t} \psi(s) d s
$$

(b) Find $\max _{x \in \mathbb{R}} u(x, t)$ as a function of t.
2. Solve the wave equation $u_{t, t}=c^{2} u_{x, x}$ on $\mathbb{R} \times[0, \infty)$ with initial values $u(x, 0)=$ $\log \left(1+x^{2}\right)$ and $u_{t}(x, 0)=4+x$.
3. Solve

$$
\begin{cases}u_{x, x}-3 u_{x, t}-4 u_{t, t}=0 & \text { in } \mathbb{R} \times[0, \infty) \\ u(x, 0)=x^{2}, \quad u_{t}(x, 0)=e^{x} & \text { for } x \in \mathbb{R}\end{cases}
$$

Hint: Factor the differential operator into two first order operators.
4. Recall that function $\phi: \mathbb{R} \rightarrow \mathbb{R}$ iscalled odd if $\phi(-x)=-\phi(x) \forall x \in \mathbb{R}$ and is called even if $\phi(x)=\phi(-x)$.
Let $u: \mathbb{R} \times[0, \infty)$ is a solution of the wave equation $u_{t, t}=c^{2} u_{x, x}$ with initial condition $u(x, 0)=\phi(x)$ and $u_{t}(x, 0)=\psi(x)$.
If ϕ and ψ are odd in x, show that u is odd in x.

To Read

1. Section 2.2, 2.3, 2.4, 2.5 in Partial Differential Equations: An Introduction by W. Strauss.
