MAT351 Partial Differential Equations
Christian Ketterer, Nathan Carruth

Fall, Assignment 5
October 22, 2020

## Hand-in Problems (Due till October 26 before lecture, via crowdmark)

H1 Prove the comparison principle for the diffusion equation: Let $u$ and $v$ be two $C^{2}$ solutions of $u_{t}=k u_{x, x}$ with $k>0$ on $[0, l] \times[0, \infty)$. If $u(x, t) \leq v(x, t)$ for $(x, t) \in[0, l] \times\{0\}$, for $(x, t) \in\{0\} \times[0, \infty)$ and for $(x, t) \in\{l\} \times[0, \infty)$, then $u \leq v$ on $[0, l] \times[0, \infty)$.

H2 Consider the diffusion equation $u_{t}=k u_{x, x}$ for $k>0$ on $[-1,1]$ with Robin boundary conditions

$$
u_{x}(-1, t)-a u(-1, t)=0=u_{x}(1, t)+a u(1, t)
$$

(a) If $a>0$ show that the energy $E(t)=\int_{-1}^{1}[u(x, t)]^{2} d x$ is decreasing.
(b) If $a$ is much smaller than 0 , show by example that energy may increase or decrease. Hint: Consider solutions of the form $h(t) \cosh (b x)$.

## Problems for discussion

1. Proof the properties $(a),(b),(c),(d)$ and $(e)$ from the lecture.
2. (a) Compute $\int_{-\infty}^{\infty} e^{-x^{2}} d x$.

Hint: Use polar coordinates $(x, y)=(r \cos \theta, r \sin \theta)$ and the transformation formula to transform the double integral $\int_{0}^{\infty} e^{-x^{2}} d x \int_{0}^{\infty} e^{-y^{2}} d y$ into an integral that we can calculate.
(b) Use (a) to show that $\int_{-\infty}^{\infty} e^{-r^{2}} d r=\sqrt{\pi}$. Use the substitute $p=\frac{x}{\sqrt{4 k t}}$ to show

$$
\int_{-\infty}^{\infty} \frac{1}{\sqrt{4 k \pi t}} e^{-\left(\frac{x}{\sqrt{4 k t}}\right)^{2}} d x=1 .
$$

3. Solve the diffusion equation $u_{t}=k u_{x, x}$ on $\mathbb{R}$ with the initial condition $u(x, 0)=$ $x^{2}$ by the following special method: Given the solution $u$ show that $u_{x, x, x}$ satisfies the diffusion equation on $\mathbb{R}$ with $u(x, 0)=0$. By uniqueness of the solution $u_{x, x, x}=0$. Integrating trice yields $u(x, t)=A(t) x^{2}+B(t) x+C(t)$. Determine $A, B$ and $C$.
4. (a) Solve the previous problem using the fundamental solution. By uniqueness the resulting formula must agree with the previous answer.
(b) Deduce the value of

$$
\int_{-\infty}^{\infty} x^{2} e^{-x^{2}} d x
$$

## To Read

1. Section 2.4, 2.5, 3.1 and 3.2 in Partial Differential Equations: An Introduction by W. Strauss.
