MAT351 Partial Differential Equations

Fall, Assignment 5 October 22, 2020

Christian Ketterer, Nathan Carruth

Hand-in Problems (Due till October 26 before lecture, via crowdmark)

- H1 Prove the comparison principle for the diffusion equation: Let u and v be two C^2 solutions of $u_t = ku_{x,x}$ with k > 0 on $[0, l] \times [0, \infty)$. If $u(x, t) \leq v(x, t)$ for $(x, t) \in [0, l] \times \{0\}$, for $(x, t) \in \{0\} \times [0, \infty)$ and for $(x, t) \in \{l\} \times [0, \infty)$, then $u \leq v$ on $[0, l] \times [0, \infty)$.
- H2 Consider the diffusion equation $u_t = k u_{x,x}$ for k > 0 on [-1,1] with Robin boundary conditions

$$u_x(-1,t) - au(-1,t) = 0 = u_x(1,t) + au(1,t).$$

- (a) If a > 0 show that the energy $E(t) = \int_{-1}^{1} [u(x,t)]^2 dx$ is decreasing.
- (b) If a is much smaller than 0, show by example that energy may increase or decrease. *Hint: Consider solutions of the form* $h(t) \cosh(bx)$.

Problems for discussion

- 1. Proof the properties (a), (b), (c), (d) and (e) from the lecture.
- 2. (a) Compute $\int_{-\infty}^{\infty} e^{-x^2} dx$.

Hint: Use polar coordinates $(x, y) = (r \cos \theta, r \sin \theta)$ and the transformation formula to transform the double integral $\int_0^\infty e^{-x^2} dx \int_0^\infty e^{-y^2} dy$ into an integral that we can calculate.

(b) Use (a) to show that $\int_{-\infty}^{\infty} e^{-r^2} dr = \sqrt{\pi}$. Use the substitute $p = \frac{x}{\sqrt{4kt}}$ to show

$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{4k\pi t}} e^{-\left(\frac{x}{\sqrt{4kt}}\right)^2} dx = 1.$$

- 3. Solve the diffusion equation $u_t = ku_{x,x}$ on \mathbb{R} with the initial condition $u(x, 0) = x^2$ by the following special method: Given the solution u show that $u_{x,x,x}$ satisfies the diffusion equation on \mathbb{R} with u(x, 0) = 0. By uniqueness of the solution $u_{x,x,x} = 0$. Integrating trice yields $u(x,t) = A(t)x^2 + B(t)x + C(t)$. Determine A, B and C.
- 4. (a) Solve the previous problem using the fundamental solution. By uniqueness the resulting formula must agree with the previous answer.
 - (b) Deduce the value of

$$\int_{-\infty}^{\infty} x^2 e^{-x^2} dx$$

To Read

1. Section 2.4, 2.5, 3.1 and 3.2 in *Partial Differential Equations: An Introduction* by W. Strauss.