MAT351 Partial Differential Equations
Christian Ketterer, Nathan Carruth

Fall, Assignment 7
November 17, 2020

Hand-in Problems (Due till November 23 before lecture, via crowdmark)

1. Consider the Laplace equation in polar coordinates

$$
u_{r, r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta, \theta}=0,(r, \theta) \in(0, \infty) \times \mathbb{R}
$$

with periodic boundary conditions in $\theta \in \mathbb{R}: u(r \theta+2 \pi)=u(r, \theta)$ for all $\theta \in \mathbb{R}$.
(a) Set $u(r, \theta)=f(r) g(\theta)$ and separate variables to obtain a pair of ODEs for f ang g.
(b) Solve these ODEs to obtain special solutions for the Laplace equation. (Hint: Try $f(r)=r^{\alpha}$.)
2. Suppose that ϕ is bounded and continuous everywhere except for a jump discontinuity at $a \in \mathbb{R}$, i.e. the right- and left-sided limits $\phi\left(a^{+}\right)$and $\phi\left(a^{-}\right)$ exist where

$$
\phi\left(x^{+}\right)=\lim _{y \downarrow x} \phi(y) \quad \& \quad \phi\left(a^{-}\right)=\lim _{y \uparrow x} \phi(y)
$$

exist. Let S be the fundamental solution of the equation $u_{t}=k u_{x, x}$ and set

$$
u(x, t)=\int_{-\infty}^{\infty} S(x-y, t) \phi(y) d y
$$

(a) Explain why $u(x, t)$ solves $u_{t}=k u_{x, x}$ on $\mathbb{R} \times(0, \infty)$.
(b) Show that $\lim _{t \downarrow 0} u(x, t)=\frac{1}{2}\left(\phi\left(x^{+}\right)+\phi\left(x^{-}\right)\right)$for all $x \in \mathbb{R}$.

Hint: Change variables and show that

$$
\frac{1}{\sqrt{\pi}} \int_{0}^{\infty} e^{-\frac{z^{2}}{4}} \phi(\sqrt{4 k t} z) d z \rightarrow \frac{1}{2} \phi\left(0^{+}\right) \text {for } t \downarrow 0 .
$$

Problems for discussion

1. A quantum-mechanical particle on the line \mathbb{R} with an inifinite potential outside the interval $(0, l)$ ("particle in a box") is given by Schroedinger's equation $u_{t}=$ $i u_{x, x}$ on $(0, l)$ with Dirichlet conditions at the ends. Here, i is the imaginary unit, satisfying $i^{2}=-1$.

Apply the separation-of-variables-method to this problem as we did in the lecture to find solutions to this problem.

To Read

1. Section 4.1, 4.2 and 5.1 in Partial Differential Equations: An Introduction by W. Strauss.
