Christian Ketterer, Nathan Carruth
November 23, 2020

Hand-in Problems (Due till December 2 before lecture, via crowdmark)

1. Given a function ϕ on the interval $(0, l)$ the even extension of ϕ is defined as

$$
\phi_{\text {even }}(x)= \begin{cases}\phi(x) & \text { for } 0<x<l \\ \phi(-x) & \text { for }-l<x<0\end{cases}
$$

The even extension is not necessarily defined at 0 . The odd extension is

$$
\phi_{\text {odd }}(x)= \begin{cases}\phi(x) & \text { for } 0<x<l \\ -\phi(-x) & \text { for }-l<x<0 \\ 0 & \text { for } x=0\end{cases}
$$

(a) Show that

$$
\int_{-l}^{l} \phi_{o d d}(x) d x=0 \text { and } \int_{-l}^{l} \phi_{\text {even }}(x) d x=2 \int_{0}^{l} \phi(x) d x .
$$

(b) Let ϕ be an odd function on $(-l, l)$. Use (a) to show that the full Fourier series on $(-l, l)$ has only sine terms. If $\phi(x)$ is an even function, show that the full Fourier series on $(-l, l)$ has only cosine terms.
(c) Show that the Fourier sine and the Fourier cosine series of ϕ defined on $(0, l)$ can be derived from the full Fourier series on $(-l, l)$.
2. (a) Show that the mixed boundary condition $X(0)=0$ and $X_{x}(l)=0$ for the operator $-\frac{d^{2}}{d x^{2}}$ lead to the following set of eigenfunctions $\sin \left(\frac{(2 n+1) \pi}{2 l} x\right)$, $n \in \mathbb{N} \cup\{0\}$.
(b) If $\phi(x)$ is a function on $(0, l)$, derive the expansion

$$
\phi(x)=\sum_{n=1}^{\infty} C_{n} \sin \left(\frac{(2 n+1) \pi}{2 l} x\right), x \in(0, l)
$$

by the following method. Extend $\phi(x)$ to the function $\tilde{\phi}(x)$ defined by $\phi(x)=\tilde{\phi}(x)$ for $0 \leq x \leq l$ and $\tilde{\phi}(x)=\phi(2 l-x)$ for $l \leq x \leq 2 l$ (that means we are extending evenly across $x=l$). Write the Fourier sine serie for $\tilde{\phi}(x)$ on the interval $(0,2 l)$ and the corresponding coefficients.
(c) Show that every second term vanishes.
(d) Rewrite the formula for C_{n} as an integral of the original function ϕ on the interval $(0, l)$.

Problems for discussion

1. (Gram-Schmidt orthogonalization procedure) If X_{1}, X_{2}, \ldots is any sequence (finite or infinite) of linearly independent vectors in any vector space with an inner product, it can be replaced by a sequence of linear combinations that are mutually orthogonal. The idea is that a each step one substracts off the components parallel to the previous vectors. The procedure is as follows. First, we let $Z_{1}:=X_{1} /\left\|X_{1}\right\|$. Second, we define

$$
Y_{2}:=X_{2}-\left(X_{2}, Z_{1}\right) Z_{1} \quad \text { and } \quad Z_{2}=\frac{Y_{2}}{\left\|Y_{2}\right\|}
$$

Third, we define

$$
Y_{3}=X_{3}-\left(X_{3}, Z_{2}\right) Z_{2}-\left(X_{3}, Z_{1}\right) Z_{1} \text { and } Z_{3}=\frac{Y_{3}}{\left\|Y_{3}\right\|}
$$

and so on.
(a) Show that all the vectors Z_{1}, Z_{2}, \ldots are orthogonal to each other.
(b) Apply the Gram-Schmidt procedure to the pair of functions $\cos x+\cos (2 x)$ and $3 \cos (x)-4 \cos (2 x)$ in the interval $(0, \pi)$ to get an orthogonal pair.

To Read

1. Section 5.2, 5.3, 5.4 and 5.5 in Partial Differential Equations: An Introduction by W. Strauss.
