MAT351 Partial Differential Equations

Fall, Assignment 9
Christian Ketterer, Nathan Carruth
December 9, 2020

Bonus Hand-in Problems (Due till January 11 before lecture, via crowdmark)

1. Prove uniquness of the Dirichlet problem $\Delta u=f$ in $B_{a}(0)$ with $u=g$ on $\partial B_{a}(0)$ by the maximum principle. That is, after substracting two solutions $u-v=: w$, apply to maximum principle to w.
2. Solve explicitly $u_{x, x}+u_{y, y}=0$ on $B_{a}(0) \subset \mathbb{R}^{2}$ with the boundary condition

$$
u(a \cos \theta, a \sin \theta)=\tilde{u}(a, \theta)=1+3 \sin \theta .
$$

Write your solution in Euclidean coordinates. Hint: Apply the Poisson formula.

Problems for discussion

1. A function $u(\mathbf{x})$ on $U \subset \mathbb{R}^{n}$ that is open and connected is subharmonic in U if $\Delta u \geq 0$ in U. Prove that u attains its maximum value on ∂U. (Note this is not true for the minimum value). What does the statement say in the case $n=1$?
2. Show that there is no solution of

$$
\Delta u=f \text { on } U, \frac{\partial u}{\partial N}=g \text { on } \partial U
$$

unless

$$
\int_{U} f(x, y, z) d x d y d z=\int_{\partial U} g(s) d \mathcal{S}_{\partial U}^{n-1}(s)
$$

where $U \subset \mathbb{R}^{3}$ has a smooth boundary ∂U and N is the outer uni normal vector along ∂U.

To Read

1. Section 6.1, 6.2, 6.3, 6.4 in Partial Differential Equations: An Introduction by W. Strauss.

Happy Holidays and Happy New Year!!
Stay safe

