MAT351 Partial Differential Equations

Christian Ketterer, Nathan Carruth

Bonus Hand-in Problems (Due till January 11 before lecture, via crowdmark)

- 1. Prove uniqueess of the Dirichlet problem $\Delta u = f$ in $B_a(0)$ with u = g on $\partial B_a(0)$ by the maximum principle. That is, after substracting two solutions u v =: w, apply to maximum principle to w.
- 2. Solve explicitly $u_{x,x} + u_{y,y} = 0$ on $B_a(0) \subset \mathbb{R}^2$ with the boundary condition

 $u(a\cos\theta, a\sin\theta) = \tilde{u}(a,\theta) = 1 + 3\sin\theta.$

Write your solution in Euclidean coordinates. *Hint: Apply the Poisson formula.*

Problems for discussion

- 1. A function $u(\mathbf{x})$ on $U \subset \mathbb{R}^n$ that is open and connected is *subharmonic* in U if $\Delta u \geq 0$ in U. Prove that u attains its maximum value on ∂U . (*Note this is not true for the minimum value*). What does the statement say in the case n = 1?
- 2. Show that there is no solution of

$$\Delta u = f$$
 on U , $\frac{\partial u}{\partial N} = g$ on ∂U

unless

$$\int_{U} f(x, y, z) dx dy dz = \int_{\partial U} g(s) d\mathcal{S}_{\partial U}^{n-1}(s)$$

where $U \subset \mathbb{R}^3$ has a smooth boundary ∂U and N is the outer uni normal vector along ∂U .

To Read

 Section 6.1, 6.2, 6.3, 6.4 in Partial Differential Equations: An Introduction by W. Strauss.

> Happy Holidays and Happy New Year!! Stay safe