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Last Lecture

Theorem (Fundamental Theorem of Calculus of Variations, 1st version)

Consider f ∈ C 0(Rn). If∫
f (x)ϕ(x)dx = 0 ∀ϕ ∈ C 0

c (Rn), ϕ ≥ 0 =⇒ f ≡ 0.

Theorem (Fundamental Theorem of Calculus of Variations, 2nd version)

Consider f ∈ C 0(Rn). If∫
Ω

f (x)dx =

∫
f (x)1Ω(x)dx = 0 ∀Ω domain with smooth boundary in Rn

=⇒ f ≡ 0. A domain is connected and open subset of Rn.

1Ω(x) =

{
1 if x ∈ Ω

0 if x /∈ Ω.
is the indicator or characteristic function of Ω ⊂ Rn.

Hence, if f , g ∈ C 0(Rn) and∫
Ω

g(x)dx =

∫
Ω

f (x)dx ∀Ω ⊂ Rn with smooth boundary ⇒ f ≡ g .
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We derived 3 types of PDE:

Simple Transport Equation:

ut + V · ∇xu = 0 in Rn × R. (1)

Scalar Conversation Laws:

ut +∇xf(u) = 0 in Rn × R. (2)

Diffusion Equation:

ut = −λ∆xu = −∇ · (λ∇x u) in Rn × R. (3)

This equation is also known as heat equation since it also describes heat flow.

In this context the parameter λ describes the heat conductivity, that also can depend on x.

For simplicity, we will set λ = 1 in the following.

If u does not change in t, the left hand side is 0. The equation becomes

Laplace Equation

0 = ∆u in Rn.

Solutions of this equation are called harmonic functions.
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General Solution

A PDE

F (x, u,Du,D2u) = g(x), x ∈ Ω (4)

can have infinitely many solutions.

The general solution is the collection of all u that are sufficiently smooth and satisfy (4).

Example

What is the general solution of the following PDE?

aux + buy = 0, in R2, a 6= b. (5)

Rewrite (5) as (a, b) · ∇u = 0= ∂u
∂V

where V = (a, b) ∈ R2.

Hence, a solution u must be constant in direction V .

The lines parallel to V (Characteristics) have the form

y = b
a

x + c
a

or bx − ay = c where c ∈ R is a parameter.

Therefore, the solution u depends only on bx − ay . The general solution is

u(x , y) = f (bx − ay) for f ∈ C 1(R).
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We can solve the previous PDE also using a coordinate change.

Define new coordinates via

x ′(x , y) = ax + by , y ′(x , y) = bx − ay .

The chain rule yields

ux = ux′
∂x ′

∂x
+ uy′

∂y ′

∂x
= aux′ + buy′

and similar uy = aux′ − buy′ . Hence

0 = aux + buy = (a2 + b2)ux′ ⇒ ux′ = 0 since a2 + b2 6= 0.

The general solution for this PDE is f (y ′) = f (bx − ay) for f ∈ C 1(R).
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Auxiliary Conditions

We want to specify an Auxiliary Condition that eventually yields a unique solution.

For instance, for

aux + buy = 0 in R2, a 6= b

we could set the condition that u(0, y) = g(y) for g ∈ C 1(R).

The general solution is f (bx − ay) = u(x , y) for f ∈ C 1(R).

Let us determine f such that u satisfies the previous auxiliary condition:

g(y) = u(0, y) = f (−ay).

Hence, the solution is u(x , y) = g(− 1
a

(bx − ay)) = g(y − b
a

x).

Remark: Roughly, if a PDE has n independent variable (in a domain Ω) an auxiliary condition is a
set of specified values on an n − 1 dimensional subset of Ω.
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Initial Value Conditions

Let φ ∈ C 2(Rn).

We can search for solutions u(x, t) of the diffusion equation

ut + ∆u = 0 on Rn × [t0,∞) (6)

such that u(x, t0) = φ(x) for some t0.

Definition (Initial Value Problem (IVP) for the Diffusion Equation)

Let φ ∈ C 2(Rn). The IVP for the diffusion equation is (6) together with

u(x, 0) = φ(x) for x ∈ Rn. (7)

Definition (IVP for the Wave Equation)

The PDE ut,t = c2∆u on Rn × [0,∞) is called Wave equation. The corresponding IVP is

ut,t = c2∆u on Rn × [0,∞),

u(x, 0) = φ(x) and ut (x, 0) = ψ(x) for x ∈ Rn.

Here c is a physical parameter that describes the speed of the wave.

We will study the wave equations later in more detail.
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Boundary Value Conditions
Let Ω be a domain with smooth boundary. Consider the Laplace equation

∆u = 0 on Ω.

The domain Ω ⊂ Rn depends the (physical or mathematical) background.

Definition

There are 3 common types of boundary conditions for the Laplace equation: Let φ, ψ ∈ C 0(∂Ω).

Dirichlet boundary conditions (DC):

u(x) = φ(x) on ∂Ω.

Neumann boundary conditions (NC):

∂u

∂N
(x) = φ on ∂Ω

where ∂u
∂N

= ∇u · N is the derivative of u in direction of N, and N is the outer unit normal
vector field of Ω.

Robin boundary conditions (RC):

∂u

∂N
(x) + ψ(x)u(x) = φ(x)

If φ ≡ 0 we call the corresponding boundary condition homogeneous, otherwise inhomogeneous.
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Example

The problem ∆u = 0 on B1(0) = {|x|2 ≤ 1} has infinitely many solutions u ≡ c, c ∈ R.

Imposing a homogeneous DC picks the solution u ≡ 0.

On the other hand, any solution u ≡ c, c ∈ R, satisfies the homogeneous NC. Hence, this
problem is not wellposed.

We also can consider a general linear PDE of order 2:

n∑
i,j=1

ai,j uxi ,xj +
n∑

k=1

bk uxk + cu = 0 on Ω

together with Dirichlet, Neumann or Robin boundary conditions.

Example (Eigenvalue equation (in 1D))

Consider

d

dx
u + u = 0 on [0, π] ⊂ R.

A solution for the homogenenous Dirichlet problem (DP) is given by

u(x) = c sin x , ∀c ∈ R,

a solution for the homogeneous Neumann problem (NP) is given by

u(x) = c cos x , ∀c ∈ R.
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Global Condition/Condition at Infinity

One also can assume a global condition like∫
Ω

u(x)dx = 0 or

∫
|u(x)|2dx = c for c > 0 fixed.

Example

The unique solution of the Neumann or Dirichlet eigenvalue problem such that∫ π

0
|u(x)|2dx = π

is given by u(x) = cos x and u(x) = sin x , respectively.

If Ω is unbounded (like Ω = Rn or Ω = Rn−1 × [0, 1]) one might also impose such an integral
condition.
This forces u to vanish for |x| → ∞.

Or we have directly a boundary condition of the form

lim
|x|→0

u(x) = 0 or lim
|x|→0

u(x)

|x|α
= 0 for α > 0.
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Wellposed Problems

Definition

Consider a PDE of order k

F (x, u,Du, . . . ,Dk u) = g(x)

on a domain Ω ⊂ Rn with a certain auxiliary condition.
The corresponding problem wellposed if it satisfies the following fundamental properties.

1 Existence: There exists a solution.

2 Uniqueness: The solution is unique.

3 Stability: The unique solution depends in a stable manner on the data of the problem.
This means if we change the data or the auxiliary conditions a little bit then also the unique
solution only changes a little bit.

Remark

Since we often can measure data only up to certain degree of precision, stability guarantees that a
solution of our problem that relies on the given data which approximates the exact data, is close
to the solution that we would deduce from the exact data.
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Introduction to the Method of Characteristics
We found the general solution of aux + buy = 0. Solutions are constant on lines parallel to (a, b).

Now, we consider

ux + yuy = 0⇐⇒ (1, y) · ∇u = 0 in R2.

Instead of straight lines, now we looking for curves (x , y(x)) such that

d

dx
(x , y(x)) = (1, y) ⇔

dy

dx
= y

Hence y(x) = Cex , and a solution u satisfies

d

dx
u(x , y(x)) = ∇u · (1, y) = 0

and

u(x , y(x)) = u(0, y(0)) = u(0,C)

is independent of x .

Let g ∈ C 1(R).
Since for every tuple (x , y) there exists a unique C(x , y) such that (x , y) = (x ,C(x , y)ex ).
Then u(x , y) := u(0,C(x , y)) = g(ye−x ) satisfies

ux + yuy = g ′(ye−x )(−ye−x ) + yg ′(ye−x )e−x = 0.

Therefore u(x , y) = g(ye−x ) solves the PDE with auxiliary condition g(y) = u(0, y).
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