MAT351 Partial Differential Equations Lecture 4

September 23, 2020

Introduction to the Method of Characteristics

Last Lecture:

We found the general solution of $a u_{x}+b u_{y}=0$. Solutions are constant on lines parallel to (a, b).
As another example we consider

$$
u_{x}+y u_{y}=0 \Longleftrightarrow(1, y) \cdot \nabla u=0 \text { in } \mathbb{R}^{2}
$$

with the auxiliary condition $u(0, y)=g(y)$ for $g \in C^{1}(\mathbb{R})$.
Instead of straight lines, now we looking for curves $(x, y(x))$ such that

$$
\frac{d}{d x}(x, y(x))=(1, y) \Leftrightarrow \frac{d}{d x} x=1 \& \frac{d}{d x} y=y
$$

Hence $y(x)=y_{0} e^{x}$ with $y(0)=y_{0}$.
Moreover, a solution u of the PDE satisfies along the curve $(x, y(x))$:

$$
\frac{d}{d x} u(x, y(x))=\nabla u \cdot(1, y)=u_{x}+y u_{y}=0
$$

and $u(x, y(x))=u(0, y(0))=u\left(0, y_{0}\right)$ is independent of x.
Given a point $(\hat{x}, \hat{y}) \in \mathbb{R}^{2}$ we want to find y_{0} and $y(\cdot)$ with $y(0)=y_{0}$ and $y(\hat{x})=\hat{y}$.
Then, we know the value of u in (\hat{x}, \hat{y}) : It is

$$
u(\hat{x}, \hat{y})=u(\hat{x}, y(\hat{x}))=u\left(0, y_{0}\right)=g\left(y_{0}\right) .
$$

But by the formula for $y(x)$, we can indeed find such y_{0} : it is $y_{0}=\hat{y} e^{-\hat{x}}$. Therefore we can write

$$
u(\hat{x}, \hat{y})=g\left(\hat{y} e^{-\hat{x}}\right) .
$$

This u satisfies the PDE with the given auxiliary condition. (let us drop $\hat{\text {) }}$) Indeed

$$
u_{x}+y u_{y}=g^{\prime}\left(y e^{-x}\right)\left(-y e^{-x}\right)+y g^{\prime}\left(y e^{-x}\right) e^{-x}=0
$$

Method of characteristics for linear equations

We consider a general linear PDE of order 1 with 2 independent variables x, y :

$$
\begin{equation*}
a(x, y) u_{x}+b(x, y) u_{y}=c_{1}(x, y) u+c_{2}(x, y) \text { in } \mathbb{R}^{2} \tag{1}
\end{equation*}
$$

where $a, b, c_{1}, c_{2} \in C^{2}\left(\mathbb{R}^{2}\right)$. Assume there is an auxiliary condition given as follows.

$$
u(x, y)=u_{0}(x, y) \text { for }(x, y) \in \Gamma
$$

where Γ is a 1 dimensional subset in \mathbb{R}^{2} and $u_{0}: \Gamma \rightarrow \mathbb{R}$.
We can write (1) also as equation for directional derivatives:

$$
V(x, y) \cdot \nabla u=c_{1}(x, y) u+c_{2}(x, y)
$$

for a vectorfield $(x, y) \mapsto V(x, y)=(a(x, y), b(x, y)) \in \mathbb{R}^{2}$.
More generally, consider a general linear PDE of order 1 with n independent variables:

$$
\begin{equation*}
\sum_{i=1}^{n} a_{i}(\mathbf{x}) u_{x_{i}}=c_{1}(\mathbf{x}) u+c_{2}(\mathbf{x}) \text { in } \mathbb{R}^{n} \tag{2}
\end{equation*}
$$

where $a_{i}, c_{1}, c_{2} \in C^{2}\left(\mathbb{R}^{n}\right)$ with an auxiliary condition

$$
u(\mathbf{x})=u_{0}(\mathbf{x}) \text { for } \mathbf{x} \in \Gamma
$$

where Γ is a $n-1$ dimensional subset in \mathbb{R}^{n}.
Again we can write (2) as

$$
V(\mathbf{x}) \cdot \nabla u=c(\mathbf{x}) u+d(\mathbf{x}) \text { for the vectorfield } V(\mathbf{x})=\left(a_{1}(\mathbf{x}), \ldots, a_{n}(\mathbf{x})\right)
$$

Method of characteristics for linear equations, continued

We want to find the flow curves of V. That is, we have to solve the following ODE:

$$
\frac{d}{d t} \gamma_{\mathrm{x}_{0}}(t)=\dot{\gamma}_{\mathrm{x}_{0}}(t)=V(\mathbf{x}), \quad \gamma_{\mathrm{x}_{0}}(0)=\mathrm{x}_{0} .
$$

Recall that

$$
\gamma_{\mathrm{x}}(t)=\left(\begin{array}{c}
\gamma_{\mathrm{x}}^{1}(t) \\
\ldots \\
\gamma_{\mathrm{x}}^{n}(t)
\end{array}\right), \quad \dot{\gamma}_{\mathrm{x}}(t)=\frac{d}{d t} \gamma_{\mathrm{x}}(t)=\left(\begin{array}{c}
\frac{d}{d t} \gamma_{\mathrm{x}}^{1}(t) \\
\ldots \\
\frac{d}{d t} \gamma_{\mathrm{x}}^{n}(t)
\end{array}\right) .
$$

Assume we have a solution $u \in C^{1}\left(\mathbb{R}^{n}\right)$. How does u evolve along a flow curve $\gamma_{x_{0}}$? The chain rule yields

$$
\frac{d}{d t} u \circ \gamma_{\mathrm{x}_{0}}(t)=\nabla u\left(\gamma_{\mathrm{x}_{0}}(t)\right) \cdot \dot{\gamma}_{\mathrm{x}_{0}}(t)=\nabla u\left(\gamma_{\mathrm{x}_{0}}(t)\right) \cdot V\left(\gamma_{\mathrm{x}_{0}}(t)\right) .
$$

On the other hand, by the PDE we have

$$
\nabla u\left(\gamma_{\mathrm{x}_{0}}(t)\right) \cdot V\left(\gamma_{\mathrm{x}_{0}}(t)\right)=c_{1}\left(\gamma_{\mathrm{x}_{0}}(t)\right) u\left(\gamma_{\mathrm{x}_{0}}(t)\right)+c_{2}\left(\gamma_{\mathrm{x}_{0}}(t)\right) .
$$

This gives us an ODE for the composition $u \circ \gamma_{\mathrm{x}_{0}}(t)=: z_{\mathrm{x}_{0}}(t)$:

$$
\frac{d}{d t} z_{\mathrm{x}_{0}}(t)=\dot{z}_{\mathrm{x}_{0}}(t)=c_{1}\left(\gamma_{\mathrm{x}_{0}}(t)\right) z_{\mathrm{x}_{0}}(t)+c_{2}\left(\gamma_{\mathrm{x}_{0}}(t)\right), \quad z_{\mathrm{x}_{0}}(0)=u_{0}\left(\gamma_{\mathrm{x}_{0}}(0)\right) .
$$

Characteristics equations

Definition

Consider linear PDE of order 1 with n independent variables in the form

$$
V(\mathbf{x}) \nabla u=c_{1}(\mathbf{x}) u+c_{2}(\mathbf{x}) \text { in } \mathbb{R}^{n} \text { and } u=u_{0} \text { on } \Gamma
$$

where Γ is an $n-1$ dimensional subset.
The corresponding characteristics equations are

$$
\begin{cases}\dot{\gamma}_{\mathrm{x}_{0}}(t)=V \circ \gamma_{\mathrm{x}_{0}}(t) & \gamma_{\mathrm{x}_{0}}(0)=\mathrm{x}_{0} \\ \dot{z}_{\mathrm{x}_{0}}(t)=c_{1}\left(\gamma_{\mathrm{x}_{0}}(t)\right) z_{\mathrm{x}_{0}}(t)+c_{2}\left(\gamma_{\mathrm{x}_{0}}(t)\right) & z_{\mathrm{x}_{0}}(0)=u_{0}\left(\mathrm{x}_{0}\right)\end{cases}
$$

For the case of 2 independent variable the systems of equations becomes

$$
\begin{cases}\dot{x}(t)=a(x(t), y(t)), & x(0)=x_{0}, \\ \dot{y}(t)=b(x(t), y(t)), & y(0)=y_{0}, \\ \dot{z}(t)=c_{1}(x(t), y(t)) z(t)+c_{2}(x(t), y(t)), & z(0)=u_{0}\left(x_{0}, y_{0}\right) .\end{cases}
$$

Question

How we obtain a solution for the PDE?

Solving the PDE

We will determine the value $u(\mathbf{x})$ for every $\mathbf{x} \in \mathbb{R}^{n}$ using the method of characteristics.
From the previous consideration, we know that the solution for the PDE (2) must obey the characteristics equations.
Our strategy is:
For $\mathbf{x} \in \mathbb{R}^{n}$ arbitrary we pick a characteristic $\gamma_{\mathbf{x}_{0}}$ for an initial point $\mathbf{x}_{0} \in \Gamma$ such that $\gamma_{\mathbf{x}_{0}}\left(t_{0}\right)=\mathbf{x}$ for some $t_{0} \in[0, \infty)$.
Then we can solve the characteristic equation for $z_{x_{0}}=u \circ \gamma_{\mathrm{x}_{0}}$

$$
\dot{z}_{\mathbf{x}_{0}}(t)=c_{1} \circ \gamma_{\mathbf{x}_{0}}(t) z_{\mathrm{x}_{0}}(t)+c_{2} \circ \gamma_{\mathbf{x}_{0}}(t) \text { with } z_{\mathrm{x}_{0}}(0)=u_{0}\left(\mathrm{x}_{0}\right)
$$

and set

$$
z_{\mathrm{x}_{0}}\left(t_{0}\right)=u \circ \gamma_{\mathrm{x}_{0}}\left(t_{0}\right)=u(x)
$$

Hence, if for every $x \in \mathbb{R}^{n}$ we can find a unique $\mathbf{x}_{0} \in \Gamma$ and $t_{0} \geq 0$ such that

$$
\gamma_{\mathbf{x}_{0}}\left(t_{0}\right)=: \Phi\left(\mathbf{x}_{0}, t_{0}\right)=\mathbf{x}
$$

we can define a function $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ that will solve the PDE and satisfies the auxiliary condition (by construction). Indeed we have

Proposition

Assuming the function $u: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined above is a C^{1} function, then it solves

$$
\nabla u \cdot V(\mathbf{x})=c_{1}(\mathbf{x}) u+c_{2}(\mathbf{x}) \text { in } \mathbb{R}^{n} \text { with } u(\mathbf{x})=u_{0}(\mathbf{x}) \text { for } \mathbf{x} \in \Gamma .
$$

Proof: Let $\mathbf{x} \in \mathbb{R}^{n}$, assume \mathbf{x}_{0} is the unique point such that: $\gamma_{\mathbf{x}_{0}}$ solves $\dot{\gamma}_{\mathbf{x}_{0}}(t)=V \circ \gamma_{\mathbf{x}_{0}}(t)$ with $\gamma_{x_{0}}\left(t_{0}\right)=\mathbf{x}$.
Then $u(\mathbf{x})$ is defined as $z_{\mathrm{x}_{0}}\left(t_{0}\right)$.
First, if $x \in \Gamma$, we pick $\mathbf{x}_{0}=\mathbf{x}, \gamma_{\mathbf{x}_{0}}=\gamma_{\mathbf{x}}$ and $t_{0}=0$. Then $u(\mathbf{x})=z_{\mathbf{x}}(0)=u_{0}(\mathbf{x})$.
For general $\mathbf{x} \in \mathbb{R}^{n}$ we compute

$$
\nabla u(\mathbf{x}) \cdot V(\mathbf{x})=\nabla u\left(\gamma_{\mathrm{x}_{0}}\left(t_{0}\right)\right) \cdot \dot{\gamma}_{\mathrm{x}_{0}}\left(t_{0}\right)=\frac{d}{d t} u \circ \gamma_{\mathrm{x}_{0}}\left(t_{0}\right)
$$

Since $z_{\mathrm{x}_{0}}$ solves the last characteristic equation, the right hand side is equal to

$$
c_{1}\left(\gamma_{x_{0}}\left(t_{0}\right)\right) u \circ \gamma_{x_{0}}\left(t_{0}\right)+c_{2}\left(\gamma_{x_{0}}\left(t_{0}\right)\right)=c_{1}(\mathbf{x}) u(\mathbf{x})+c_{2}(\mathbf{x})
$$

Hence u indeed solves the equation.

Remark

Let us summarize what we assumed here

- We need that any flow curve meets Γ in exactly one point.

For any \mathbf{x} there exists a unique flow curve $\gamma_{\mathbf{x}_{0}}$ such that $x_{0} \in \Gamma$ and $\gamma_{\mathbf{x}_{0}}\left(t_{0}\right)=\mathbf{x}$.
Then, we can solve the initial value problem for $z_{x_{0}}$ because the initial value is given by $u\left(\mathrm{x}_{0}\right)=u_{0}\left(\mathrm{x}_{0}\right)$.
In other words, we have to solve the equation

$$
\Phi_{t_{0}} \mid \Gamma\left(\mathbf{x}_{0}\right)=\mathbf{x}
$$

where $\Phi_{t}(\mathbf{y})=\gamma_{\mathbf{y}}(t)$ is the flow map of V, and $\Phi_{t} \mid \Gamma$ is the restriction of Φ_{t} to Γ.

- We need that $u \in C^{1}\left(\mathbb{R}^{n}\right)$.

Example

We find the solution for

$$
x u_{x}+2 u_{y}=3 u \text { in } \mathbb{R}^{2}, u(x, 0)=\sin x, \Gamma=\mathbb{R} \times\{0\} .
$$

The first two characteristics equations are

$$
\begin{array}{r}
\dot{x}(t)=x(t) x(0)=x_{0} \in \mathbb{R}^{2}, \\
\dot{y}(t)=2 y(0)=y_{0} \in \mathbb{R}^{2} .
\end{array}
$$

The general solutions are $x(t)=x_{0} e^{t}$ and $y(t)=2 t$.
Let $(x, y) \in \mathbb{R}^{2}$ be arbitrary. Consider the equation

$$
\begin{equation*}
x\left(t_{0}\right)=x_{0} e^{t_{0}}=x, \quad y\left(t_{0}\right)=2 t_{0}=y \tag{3}
\end{equation*}
$$

The equation (3) has a unique solution. This is $t_{0}=\frac{y}{2}$ and $\left(x_{0}, y_{0}\right)=\left(x e^{-\frac{y}{2}}, 0\right)$.
For this initial point $\left(x_{0}, y_{0}\right)=\left(x e^{-\frac{y}{2}}, 0\right)$ and $u_{0}\left(x_{0}, y_{0}\right)=\sin \left(x e^{-\frac{y}{2}}\right)$, we consider the third characteristics equation

$$
\frac{d}{d t} z(t)=z(t), \quad z(0)=\sin \left(x e^{-\frac{y}{2}}\right)
$$

The solution is

$$
z(t)=\sin \left(x e^{-\frac{y}{2}}\right) e^{t}
$$

and at $t_{0}=\frac{y}{2}$ we get

$$
z\left(t_{0}\right)=\sin \left(x e^{-\frac{y}{2}}\right) e^{\frac{y}{2}}=: u(x, y)
$$

Temporal Equations

Consider a linear PDE of order 2 of the form

$$
\begin{equation*}
u_{t}+\sum_{i=1}^{n} a_{i}(\mathbf{x}) u_{x_{i}}=c_{1}(\mathbf{x}) u+c_{2}(\mathbf{x}) \text { in } \mathbb{R}^{n} . \tag{4}
\end{equation*}
$$

In this case the auxiliary condition is (usually) given as an initial condition at time $t=0$:

$$
u_{0}(\mathbf{x})=g(\mathbf{x}) \text { on } \mathbb{R}^{n} .
$$

The characteristics ODE for the t variable is always $\frac{d}{d s} t(s)=1, t(0)=0$. Thus $t=s$. We have $\gamma_{\left(x_{0}, 0\right)}(t)=\left(t, x_{1}(t), \ldots, x_{n}(t)\right)$ and denote $\left(x_{1}(t), \ldots, x_{n}(t)\right)=: \gamma_{\mathrm{x}_{0}}(t)$ for the characteristics.
If we set $V(\mathbf{x})=\left(a_{1}(\mathbf{x}), \ldots, a_{n}(\mathbf{x})\right)$, the PDE becomes

$$
u_{t}+V(\mathbf{x}) \cdot \nabla u=c_{1}(\mathbf{x}) u+c_{2}(\mathbf{x})
$$

The curves $\gamma_{\mathrm{x}_{0}}$ solve $\dot{\gamma}_{\mathrm{x}_{0}}(t)=V \circ \gamma_{\mathrm{x}_{0}}(t)$ with $\gamma_{\mathrm{x}_{0}}(0)=\mathrm{x}_{0}$, hence are the flow curves of V. If the flow map Φ_{t} of V is a diffeomorphism of \mathbb{R}^{n} for every $t \geq 0$, then for $t>$ and for every $\mathrm{x} \in \mathbb{R}^{n}$ we can solve

$$
\Phi_{t}\left(\mathbf{x}_{0}\right)=\mathbf{x} \Longleftrightarrow \Phi_{t}^{-1}(x)=\mathbf{x}_{0}
$$

uniquely. Hence, $\Phi_{t}\left(\mathbf{x}_{0}\right)=\gamma_{\mathbf{x}_{0}}(t)=\mathbf{x}$. In this case we can solve the characteristics equation for z

$$
\frac{d}{d t} z_{\mathrm{x}_{0}}(t)=c_{1}\left(\gamma_{\mathrm{x}_{0}}(t)\right) z(t)+c_{2}\left(\gamma_{\mathrm{x}_{0}}\right)
$$

 Note that u is indeed smooth enough.

