MAT351 Partial Differential Equations Lecture 4

September 23, 2020

Introduction to the Method of Characteristics

Last Lecture:

We found the general solution of $au_x + bu_y = 0$. Solutions are constant on lines parallel to (a, b). As another example we consider

$$u_x + yu_y = 0 \iff (1, y) \cdot \nabla u = 0$$
 in \mathbb{R}^2

with the auxiliary condition u(0, y) = g(y) for $g \in C^1(\mathbb{R})$.

Instead of straight lines, now we looking for curves (x, y(x)) such that

$$\frac{d}{dx}(x,y(x)) = (1,y) \iff \frac{d}{dx}x = 1 \& \frac{d}{dx}y = y$$

Hence $y(x) = y_0 e^x$ with $y(0) = y_0$.

Moreover, a solution u of the PDE satisfies along the curve (x, y(x)):

$$\frac{d}{dx}u(x,y(x))=\nabla u\cdot(1,y)=u_x+yu_y=0$$

and $u(x, y(x)) = u(0, y(0)) = u(0, y_0)$ is independent of x. Given a point $(\hat{x}, \hat{y}) \in \mathbb{R}^2$ we want to find y_0 and $y(\cdot)$ with $y(0) = y_0$ and $y(\hat{x}) = \hat{y}$. Then, we know the value of u in (\hat{x}, \hat{y}) : It is

$$u(\hat{x}, \hat{y}) = u(\hat{x}, y(\hat{x})) = u(0, y_0) = g(y_0).$$

But by the formula for y(x), we can indeed find such y_0 : it is $y_0 = \hat{y}e^{-\hat{x}}$. Therefore we can write

$$u(\hat{x},\hat{y})=g(\hat{y}e^{-\hat{x}})$$

This *u* satisfies the PDE with the given auxiliary condition. (let us drop $\hat{\cdot}$) Indeed

$$u_x + yu_y = g'(ye^{-x})(-ye^{-x}) + yg'(ye^{-x})e^{-x} = 0.$$

Method of characteristics for linear equations

We consider a general linear PDE of order 1 with 2 independent variables x, y:

$$a(x, y)u_x + b(x, y)u_y = c_1(x, y)u + c_2(x, y) \text{ in } \mathbb{R}^2$$
(1)

where $a, b, c_1, c_2 \in C^2(\mathbb{R}^2)$. Assume there is an auxiliary condition given as follows.

$$u(x,y) = u_0(x,y)$$
 for $(x,y) \in \Gamma$

where Γ is a 1 dimensional subset in \mathbb{R}^2 and $u_0: \Gamma \to \mathbb{R}$.

We can write (1) also as equation for directional derivatives:

$$V(x,y)\cdot\nabla u=c_1(x,y)u+c_2(x,y)$$

for a vectorfield $(x, y) \mapsto V(x, y) = (a(x, y), b(x, y)) \in \mathbb{R}^2$.

More generally, consider a general linear PDE of order 1 with n independent variables:

$$\sum_{i=1}^{n} a_i(\mathbf{x}) u_{x_i} = c_1(\mathbf{x}) u + c_2(\mathbf{x}) \text{ in } \mathbb{R}^n.$$
 (2)

where $a_i, c_1, c_2 \in C^2(\mathbb{R}^n)$ with an auxiliary condition

$$u(\mathbf{x}) = u_0(\mathbf{x})$$
 for $\mathbf{x} \in \Gamma$

where Γ is a n-1 dimensional subset in \mathbb{R}^n .

Again we can write (2) as

 $V(\mathbf{x}) \cdot \nabla u = c(\mathbf{x})u + d(\mathbf{x})$ for the vectorfield $V(\mathbf{x}) = (a_1(\mathbf{x}), \dots, a_n(\mathbf{x}))$.

Method of characteristics for linear equations, continued

We want to find the flow curves of V. That is, we have to solve the following ODE:

$$\frac{d}{dt}\gamma_{\mathbf{x}_0}(t) = \dot{\gamma}_{\mathbf{x}_0}(t) = V(\mathbf{x}), \quad \gamma_{\mathbf{x}_0}(0) = \mathbf{x}_0.$$

Recall that

$$\gamma_{\mathbf{x}}(t) = \begin{pmatrix} \gamma_{\mathbf{x}}^{1}(t) \\ \cdots \\ \gamma_{\mathbf{x}}^{n}(t) \end{pmatrix}, \quad \dot{\gamma}_{\mathbf{x}}(t) = \frac{d}{dt} \gamma_{\mathbf{x}}(t) = \begin{pmatrix} \frac{d}{dt} \gamma_{\mathbf{x}}^{1}(t) \\ \cdots \\ \frac{d}{dt} \gamma_{\mathbf{x}}^{n}(t) \end{pmatrix}$$

Assume we have a solution $u \in C^1(\mathbb{R}^n)$. How does u evolve along a flow curve γ_{x_0} ? The chain rule yields

$$\frac{d}{dt}u\circ\gamma_{\mathsf{x}_0}(t)=\nabla u(\gamma_{\mathsf{x}_0}(t))\cdot\dot{\gamma}_{\mathsf{x}_0}(t)=\nabla u(\gamma_{\mathsf{x}_0}(t))\cdot V(\gamma_{\mathsf{x}_0}(t))$$

On the other hand, by the PDE we have

$$\nabla u(\gamma_{\mathbf{x}_0}(t)) \cdot V(\gamma_{\mathbf{x}_0}(t)) = c_1(\gamma_{\mathbf{x}_0}(t))u(\gamma_{\mathbf{x}_0}(t)) + c_2(\gamma_{\mathbf{x}_0}(t)).$$

This gives us an ODE for the composition $u \circ \gamma_{x_0}(t) =: z_{x_0}(t):$

$$\frac{d}{dt}z_{x_0}(t) = \dot{z}_{x_0}(t) = c_1(\gamma_{x_0}(t))z_{x_0}(t) + c_2(\gamma_{x_0}(t)), \ z_{x_0}(0) = u_0(\gamma_{x_0}(0)).$$

Characteristics equations

Definition

Consider linear PDE of order 1 with n independent variables in the form

$$V(\mathbf{x})
abla u = c_1(\mathbf{x})u + c_2(\mathbf{x})$$
 in \mathbb{R}^n and $u = u_0$ on Γ

where Γ is an n-1 dimensional subset.

The corresponding characteristics equations are

$$\begin{cases} \dot{\gamma}_{x_0}(t) = V \circ \gamma_{x_0}(t) & \gamma_{x_0}(0) = x_0, \\ \dot{z}_{x_0}(t) = c_1(\gamma_{x_0}(t))z_{x_0}(t) + c_2(\gamma_{x_0}(t)) & z_{x_0}(0) = u_0(x_0). \end{cases}$$

For the case of 2 independent variable the systems of equations becomes

$$\begin{aligned} \dot{x}(t) &= a(x(t), y(t)), & x(0) = x_0, \\ \dot{y}(t) &= b(x(t), y(t)), & y(0) = y_0, \\ \dot{z}(t) &= c_1(x(t), y(t))z(t) + c_2(x(t), y(t)), & z(0) = u_0(x_0, y_0). \end{aligned}$$

Question

How we obtain a solution for the PDE?

Solving the PDE

We will determine the value $u(\mathbf{x})$ for every $\mathbf{x} \in \mathbb{R}^n$ using the method of characteristics.

From the previous consideration, we know that the solution for the PDE (2) must obey the characteristics equations.

Our strategy is:

For $\mathbf{x} \in \mathbb{R}^n$ arbitrary we pick a characteristic $\gamma_{\mathbf{x}_0}$ for an initial point $\mathbf{x}_0 \in \Gamma$ such that $\gamma_{\mathbf{x}_0}(t_0) = \mathbf{x}$ for some $t_0 \in [0, \infty)$.

Then we can solve the characteristic equation for $z_{x_0} = u \circ \gamma_{x_0}$

$$\dot{z}_{x_0}(t) = c_1 \circ \gamma_{x_0}(t) z_{x_0}(t) + c_2 \circ \gamma_{x_0}(t)$$
 with $z_{x_0}(0) = u_0(x_0)$

and set

$$z_{\mathbf{x}_0}(t_0) = u \circ \gamma_{\mathbf{x}_0}(t_0) = u(x).$$

Hence, if for every $\mathbf{x} \in \mathbb{R}^n$ we can find a unique $\mathbf{x}_0 \in \Gamma$ and $t_0 \geq 0$ such that

$$\gamma_{\mathsf{x}_0}(t_0) =: \Phi(\mathsf{x}_0, t_0) = \mathsf{x}$$

we can define a function $u: \mathbb{R}^n \to \mathbb{R}$ that will solve the PDE and satisfies the auxiliary condition (by construction). Indeed we have

Proposition

Assuming the function $u : \mathbb{R}^n \to \mathbb{R}$ defined above is a C^1 function, then it solves

 $\nabla u \cdot V(\mathbf{x}) = c_1(\mathbf{x})u + c_2(\mathbf{x})$ in \mathbb{R}^n with $u(\mathbf{x}) = u_0(\mathbf{x})$ for $\mathbf{x} \in \Gamma$.

Proof: Let $\mathbf{x} \in \mathbb{R}^n$, assume \mathbf{x}_0 is the unique point such that: $\gamma_{\mathbf{x}_0}$ solves $\dot{\gamma}_{\mathbf{x}_0}(t) = V \circ \gamma_{\mathbf{x}_0}(t)$ with $\gamma_{\mathbf{x}_0}(t_0) = \mathbf{x}$. Then $u(\mathbf{x})$ is defined as $z_{\mathbf{x}_0}(t_0)$.

First, if $x \in \Gamma$, we pick $\mathbf{x}_0 = \mathbf{x}$, $\gamma_{\mathbf{x}_0} = \gamma_{\mathbf{x}}$ and $t_0 = 0$. Then $u(\mathbf{x}) = z_{\mathbf{x}}(0) = u_0(\mathbf{x})$. For general $\mathbf{x} \in \mathbb{R}^n$ we compute

$$\nabla u(\mathbf{x}) \cdot V(\mathbf{x}) = \nabla u(\gamma_{\mathbf{x}_0}(t_0)) \cdot \dot{\gamma}_{\mathbf{x}_0}(t_0) = \frac{d}{dt} u \circ \gamma_{\mathbf{x}_0}(t_0).$$

Since z_{x_0} solves the last characteristic equation, the right hand side is equal to

$$c_1(\gamma_{\mathbf{x}_0}(t_0))u \circ \gamma_{\mathbf{x}_0}(t_0) + c_2(\gamma_{\mathbf{x}_0}(t_0)) = c_1(\mathbf{x})u(\mathbf{x}) + c_2(\mathbf{x}).$$

Hence u indeed solves the equation.

Remark

Let us summarize what we assumed here

• We need that any flow curve meets Γ in exactly one point.

For any **x** there exists a unique flow curve $\gamma_{\mathbf{x}_0}$ such that $x_0 \in \Gamma$ and $\gamma_{\mathbf{x}_0}(t_0) = \mathbf{x}$. Then, we can solve the initial value problem for $z_{\mathbf{x}_0}$ because the initial value is given by

 $u(\mathbf{x}_0) = u_0(\mathbf{x}_0).$

In other words, we have to solve the equation

$$\Phi_{t_0}|_{\Gamma}(\mathbf{x}_0) = \mathbf{x}$$

where $\Phi_t(\mathbf{y}) = \gamma_{\mathbf{y}}(t)$ is the flow map of V, and $\Phi_t|_{\Gamma}$ is the restriction of Φ_t to Γ .

• We need that $u \in C^1(\mathbb{R}^n)$.

Example

We find the solution for

$$xu_x + 2u_y = 3u$$
 in \mathbb{R}^2 , $u(x,0) = \sin x$, $\Gamma = \mathbb{R} \times \{0\}$.

The first two characteristics equations are

$$\dot{x}(t) = x(t) \ x(0) = x_0 \in \mathbb{R}^2,$$

 $\dot{y}(t) = 2 \ y(0) = y_0 \in \mathbb{R}^2.$

The general solutions are $x(t) = x_0 e^t$ and y(t) = 2t.

Let $(x, y) \in \mathbb{R}^2$ be arbitrary. Consider the equation

$$x(t_0) = x_0 e^{t_0} = x, \quad y(t_0) = 2t_0 = y$$
 (3)

The equation (3) has a unique solution. This is $t_0 = \frac{y}{2}$ and $(x_0, y_0) = (xe^{-\frac{y}{2}}, 0)$.

For this initial point $(x_0, y_0) = (xe^{-\frac{y}{2}}, 0)$ and $u_0(x_0, y_0) = \sin\left(xe^{-\frac{y}{2}}\right)$, we consider the third characteristics equation

$$\frac{d}{dt}z(t)=z(t), \quad z(0)=\sin\left(xe^{-\frac{y}{2}}\right).$$

The solution is

$$z(t) = \sin\left(xe^{-\frac{y}{2}}\right)e^t$$

and at $t_0 = \frac{y}{2}$ we get

$$z(t_0) = \sin\left(xe^{-\frac{y}{2}}\right)e^{\frac{y}{2}} =: u(x, y).$$

Temporal Equations

Consider a linear PDE of order 2 of the form

$$u_t + \sum_{i=1}^n a_i(\mathbf{x}) u_{x_i} = c_1(\mathbf{x}) u + c_2(\mathbf{x}) \quad \text{in } \mathbb{R}^n.$$

$$\tag{4}$$

In this case the auxiliary condition is (usually) given as an initial condition at time t = 0:

$$u_0(\mathbf{x}) = g(\mathbf{x})$$
 on \mathbb{R}^n .

The characteristics ODE for the *t* variable is always $\frac{d}{ds}t(s) = 1$, t(0) = 0. Thus t = s. We have $\gamma_{(x_0,0)}(t) = (t, x_1(t), \dots, x_n(t))$ and denote $(x_1(t), \dots, x_n(t)) =: \gamma_{x_0}(t)$ for the characteristics.

If we set $V(\mathbf{x}) = (a_1(\mathbf{x}), \dots, a_n(\mathbf{x}))$, the PDE becomes

$$u_t + V(\mathbf{x}) \cdot \nabla u = c_1(\mathbf{x})u + c_2(\mathbf{x}).$$

The curves $\gamma_{\mathbf{x}_0}$ solve $\dot{\gamma}_{\mathbf{x}_0}(t) = V \circ \gamma_{\mathbf{x}_0}(t)$ with $\gamma_{\mathbf{x}_0}(0) = \mathbf{x}_0$, hence are the flow curves of V.

If the flow map Φ_t of V is a diffeomorphism of \mathbb{R}^n for every $t \ge 0$, then for t > and for every $\mathbf{x} \in \mathbb{R}^n$ we can solve

$$\Phi_t(\mathbf{x}_0) = \mathbf{x} \iff \Phi_t^{-1}(x) = \mathbf{x}_0$$

uniquely. Hence, $\Phi_t(\mathbf{x}_0) = \gamma_{\mathbf{x}_0}(t) = \mathbf{x}$. In this case we can solve the characteristics equation for z

$$\frac{d}{dt}z_{\mathsf{x}_0}(t) = c_1(\gamma_{\mathsf{x}_0}(t))z(t) + c_2(\gamma_{\mathsf{x}_0})$$

with initial value $z_{x_0}(0) = g(x_0)$ and define $u(\mathbf{x}) := z_{x_0}(t) = z_{\Phi_t^{-1}(\mathbf{x})}(t)$ that is a solution for (4). Note that u is indeed smooth enough.