MAT351 Partial Differential Equations Lecture 5

September 28, 2020

Method of Characteristics, Summary

The method of characteristics is a recipe to solve a linear PDE of order 1 in several variables:
$\nabla u \cdot V(\mathbf{x})=c_{1}(\mathbf{x}) u+c_{2}(\mathbf{x})$ in $\Omega \subset \mathbb{R}^{n}$ \& auxiliary condition: $u(\mathbf{x})=u_{0}(\mathbf{x})$ on Γ.
$V(\mathbf{x})=\left(a_{1}(\mathbf{x}), \ldots, a(\mathbf{x})\right) \in C^{1}\left(\Omega, \mathbb{R}^{n}\right), c_{1}, c_{2} \in C^{1}(\Omega)$, and Γ is a $n-1$ dimensional subset in Ω.
The recipe goes as follows

- Assuming the existence of a C^{1} solution, we deduced the characteristics equations:

$$
\begin{cases}\dot{\gamma}_{\mathrm{x}_{0}}(t)=V \circ \gamma_{\mathrm{x}_{0}}(t) & \gamma_{\mathrm{x}_{0}}(0)=\mathrm{x}_{0} \in \Gamma, \\ \dot{z}_{\mathrm{x}_{0}}(t)=c_{1}\left(\gamma_{\mathrm{x}_{0}}(t)\right) z_{\mathrm{x}_{0}}(t)+c_{2}\left(\gamma_{\mathrm{x}_{0}}(t)\right) & z_{\mathrm{x}_{0}}(0)=u_{0}\left(\mathrm{x}_{0}\right) .\end{cases}
$$

This system of ODEs can be solved uniquely on a maximal intervall $\left(\alpha_{x_{0}}, \omega_{x_{0}}\right) \ni 0$ (General Existence and Uniqueness Theorem for ODEs).

- We note that the PDE is a statement about the directional derivatives of a C^{1} solution u. Precisely, given a flow curve $\gamma_{x_{0}}$ of V with $\mathrm{x}_{0} \in \Gamma$ and the value of u in x_{0}, the equation for $z_{\mathrm{x}_{0}}$ gives the directional derivatives of u along $\gamma_{\mathrm{x}_{0}}$.
- The number $z_{\mathrm{x}_{0}}(t)$ tells us the values of u at $\gamma_{\mathrm{x}_{0}}(t)$ for $t \in\left(\alpha_{\mathrm{x}_{0}}, \omega_{\mathrm{x}_{0}}\right)$.

The only result that this analysis actually proves is:

Proposition

If $u \in C^{1}(\Omega)$ solves the $P D E$ and $\gamma_{x_{0}}:\left(\alpha_{x_{0}}, \omega_{x_{0}}\right) \rightarrow \mathbb{R}^{n}$ is a flow curve of V with $\mathbf{x}_{0} \in \Gamma$, then $u \circ \gamma_{\mathrm{x}_{0}}:\left(\alpha_{\mathrm{x}_{0}}, \omega_{\mathrm{x}_{0}}\right) \rightarrow \mathbb{R}$ with $u \circ \gamma_{\mathrm{x}_{0}}(0)=u_{0}\left(\mathrm{x}_{0}\right)$ must solve the ODE for $\mathrm{z}_{\mathrm{x}_{0}}$.

This gives us a method to "synthesize" an explicite solution via the following steps:
If we can find a unique solution (\mathbf{x}_{0}, t_{0}) for the equation $\gamma_{\mathbf{x}_{0}}\left(t_{0}\right)=\mathbf{x}$ for every $\mathbf{x} \in \Omega$.
And (x_{0}, t_{0}) depends in a sufficiently smooth way on \mathbf{x}.

Remark

However, this might not be always possible:
There might exist $\mathbf{x} \in \Omega$ for which there exists not solution of $\gamma_{\mathbf{x}_{0}}\left(t_{0}\right)=x$ with $\mathbf{x}_{0} \in \Gamma$ and $t \in\left(\alpha_{\mathrm{x}_{0}}, \omega_{\mathrm{x}_{0}}\right)$.

Temporal Equations, revisited

Given a linear PDE of order 2 of the form

$$
\begin{equation*}
u_{t}+\sum_{i=1}^{n} a_{i}(\mathbf{x}) u_{x_{i}}=c_{1}(\mathbf{x}) u+c_{2}(\mathbf{x}) \text { in } \mathbb{R}^{n} \times \mathbb{R} \tag{1}
\end{equation*}
$$

The initial condition at time $t=0$ is

$$
u_{0}(\mathbf{x})=g(\mathbf{x}) \text { on } \mathbb{R}^{n}, g \in C^{1}\left(\mathbb{R}^{n}\right)
$$

The characteristics ODE for the t variable is always $\frac{d}{d s} t(s)=1, t(0)=0$. Thus $t=s$. If we set $V(\mathbf{x})=\left(a_{1}(\mathbf{x}), \ldots, a_{n}(\mathbf{x})\right)$, the PDE becomes

$$
u_{t}+V(\mathbf{x}) \cdot \nabla u=c_{1}(\mathbf{x}) u+c_{2}(\mathbf{x})
$$

The flow curves $\gamma_{\mathrm{x}_{0}}$ of V are $\dot{\gamma}_{\mathrm{x}_{0}}(t)=V \circ \gamma_{\mathrm{x}_{0}}(t)$ with $\gamma_{\mathrm{x}_{0}}(0)=\mathrm{x}_{0}$.
The characteristics of the PDE are

$$
\gamma_{\left(x_{0}, 0\right)}(t)=\binom{\gamma_{x_{0}}(t)}{t}
$$

Applying our recipe means to solve $\gamma_{\mathbf{x}_{0}}(t)=\mathbf{x}$ uniquely for every $\mathbf{x} \in \mathbb{R}^{n}$ and every $t \in \mathbb{R}$. If the flow map $\Phi_{t}(\mathbf{x})=\gamma_{\mathbf{x}}(t)$ of V is a diffeomorphism of \mathbb{R}^{n} for every $t \geq 0$, then

$$
\Phi_{t}^{-1}(x)=\mathbf{x}_{0} \text { solves } \Phi_{t}\left(\mathbf{x}_{0}\right)=\mathbf{x}
$$

uniquely. In this case we can define $u(\mathbf{x}):=z_{\mathrm{x}_{0}}(t)=z_{\Phi_{t}^{-1}(\mathbf{x})}(t)$ that is a solution for (1).

Example: Transport equation with constant coefficients

Consider

$$
u_{t}+\sum_{i=1}^{n} a_{i} u_{x_{i}}=0 \text { in } \mathbb{R}^{n} \times[0, \infty) \quad \text { with } \quad u(\mathbf{x}, 0)=g(\mathbf{x}) \text { on } \mathbb{R}^{n}, g, f \in C^{1}\left(\mathbb{R}^{n}\right)
$$

Define $V(\mathbf{x}) \equiv\left(a_{1}, \ldots, a_{n}\right)=v$. The flow curves of V are

$$
\gamma_{\mathbf{x}_{0}}=\mathbf{x}_{0}+t v
$$

and the flow map $\phi_{t}\left(\mathbf{x}_{0}\right)=\mathbf{x}_{0}+t v$ is a diffeomorphism. Hence

$$
\mathbf{x}_{0}:=\phi_{t}^{-1}(\mathbf{x})=\mathbf{x}-t v \quad \text { uniquely solves } \phi_{t}\left(\mathbf{x}_{0}\right)=x
$$

Solving the characteristics equation

$$
\frac{d}{d t} z_{\mathrm{x}_{0}}(t)=0, \quad z_{\mathrm{x}_{0}}(0)=u\left(\mathrm{x}_{0}, 0\right)=g\left(\mathrm{x}_{0}\right)
$$

yields $z_{\mathrm{x}_{0}}(t)=g\left(\mathrm{x}_{0}\right)$. Hence $u(\mathbf{x}, t)=g(\mathbf{x}-t v)$ is the solution for the PDE.

Semi-linear PDEs

Consider a semi-linear PDE of order 1

$$
V(\mathbf{x}) \cdot \nabla u=c(\mathbf{x}, u) \text { in } \Omega \subset \mathbb{R}^{n} \text { with auxiliary condition } u(\mathbf{x})=g(\mathbf{x}) \text { on } \Gamma \subset \Omega
$$

The methods of characteristics applies in the exact same way.
But the equation for $z_{\mathrm{x}_{0}}$ becomes a nonlinear equation in $z_{\mathrm{x}_{0}}$:

$$
\frac{d}{d t} z_{\mathrm{x}_{0}}(t)=c\left(\gamma_{\mathrm{x}_{0}}(t), z_{\mathrm{x}_{0}}(t)\right), \quad z_{\mathrm{x}_{0}}(0)=g\left(\mathrm{x}_{0}\right), \mathrm{x}_{0} \in \Gamma .
$$

Example (Transport equation with nonlinear right hand side)

Consider

$$
u_{x}+u_{y}=u^{2} \text { on } \Omega \subset \mathbb{R}^{2} \text { with } u(\cdot, 0)=g \in C^{1}(\mathbb{R})
$$

Here the vector field is $V(x)=(1,1)$ with the flow $\gamma_{\left(x_{0}, 0\right)}(t)=\left(x_{0}+t, y_{0}+t\right)$.
Hence for $(x, y) \in \mathbb{R}^{2}$ the point $\left(x_{0}, 0\right)=\left(x-t_{0}, 0\right)$ and $t_{0}=y$ solves $\gamma_{\left(x_{0}, 0\right)}\left(t_{0}\right)=(x, y)$. The characteristics equation for $z_{x_{0}}$ is

$$
\frac{d}{d t} z_{\left(x_{0}, y_{0}\right)}=\left(z_{\left(x_{0}, y_{0}\right)}\right)^{2} \quad z_{\left(x_{0}, y_{0}\right)}(0)=g\left(x_{0}\right) .
$$

The solution of this ODE Is $z_{\left(x_{0}, y_{0}\right)}(t)=\frac{1}{\frac{1}{g\left(x_{0}\right)}-t}$. So $u(x, y)=u_{\left(x_{0}, 0\right)}\left(t_{0}\right)=\frac{1}{\frac{1}{g(x-y)}-y}$.
This yields the following contraint: $g(x-y) y<1$. Hence, to find a solution it is necessary that $\Omega \subset\left\{(x, y) \in \mathbb{R}^{2}: g(x-y) y \leq 1\right\}$.

Quasi-linear PDEs

Consider a quasilinear PDE of order 1

$$
\sum_{i=1}^{n} a_{i}(\mathbf{x}, u) u_{x_{i}}=c(\mathbf{x}, u) \text { in } \Omega \subset \mathbb{R}^{n} \text { with auxiliary condition } u(\mathbf{x})=g(\mathbf{x}) \text { on } \Gamma \subset \Omega
$$

Defining the vector field $V(\mathbf{x}, u)=\left(a_{1}(\mathbf{x}, u), \ldots, a_{n}(\mathbf{x}, u)\right)$ the PDE becomes

$$
V(\mathbf{x}, u) \cdot \nabla u=c(\mathbf{x}, u) .
$$

Assuming a sufficiently smooth solution u we can write down the following equations

$$
\begin{aligned}
\dot{\gamma}_{x_{0}}(t) & =V\left(\gamma_{x_{0}}(t), u \circ \gamma_{\mathrm{x}_{0}}(t)\right) \\
\frac{d}{d t} u \circ \gamma_{\mathrm{x}_{0}}(t) & =c\left(\gamma_{\mathrm{x}_{0}}(t), u \circ \gamma_{\mathrm{x}_{0}}(t)\right)
\end{aligned}
$$

Not that in contrast to linear and semi-linear PDEs this is a coupled system of ODEs.
Provided the coefficients are a_{i} and c are C^{1} the solution $\left(\gamma_{x_{0}}(t), z_{x_{0}}(t)\right)$ exists and depends in C^{1} sense on (x_{0}, t).

Transversality condition, Existence of local solutions

Consider again

$$
a u_{x}+b u_{y}=0 \text { on } \mathbb{R}^{2} \quad \text { with } u(0, y)=g(y), g \in C^{1}(\mathbb{R})
$$

We could construct a (unique) solution as long as $a \neq 0$. Or

$$
\operatorname{det}\left(\begin{array}{ll}
a & 0 \\
b & 1
\end{array}\right) \neq 0
$$

Consider a general quasi-linear PDE of order 1 in two independent variables

$$
a(x, y, u) u_{x}+b(x, y, u) u_{y}=c(x, y, u) \text { in } \Omega \subset \mathbb{R}^{2} \& \text { auxiliary condition } u(x, y)=g(x, y) \text { on } \Gamma
$$

where $\Gamma=\operatorname{Im} \eta$ and $\eta: \mathbb{R} \rightarrow \mathbb{R}^{2}, \eta(t)=(k(t), I(t)), \eta \in C^{1}\left(J, \mathbb{R}^{2}\right)$ for an interval $J \subset \mathbb{R}$.
The Transversality Condition for this problem is

$$
\operatorname{det}\left(\begin{array}{ll}
a(k(t), I(t), g(k(t), I(t))) & \dot{k}(t) \\
b(k(t), I(t), g(k(t), I(t)) & \dot{i}(t)
\end{array}\right) \neq 0 .
$$

Theorem

Consider the previous quasi-linear PDE and assume the transversality condition. Then, for every $s_{0} \in J$ there exists $\delta>0$ such that $B_{\delta}\left(\eta\left(s_{0}\right)\right) \subset \Omega$ and

$$
a(x, y, u) u_{x}+b(x, y, u) u_{y}=c(x, y, u) \text { in } B_{\delta}(\gamma(t)) \text { with } u(x, y)=g(x, y) \text { on } \Gamma \cap B_{\delta}(t)
$$

has a unique solution u.

Proof

We already mentioned that $\gamma_{x_{0}, y_{0}}(t)=: \phi\left(x_{0}, y_{0}, t\right)$ dependes smoothly on $\left(x_{0}, y_{0}, t\right)$ for $\left(x_{0}, y_{0}, t\right) \in \mathbb{R}^{2} \times \mathbb{R}$.

We pick $s_{0} \in J$ with $\eta\left(s_{0}\right)=x_{0}$ and define

$$
\psi(s, t)=\phi(\eta(s), t), s \in\left(s_{0}-\delta, s_{0}+\delta\right) \subset J, t \in(-\epsilon, \epsilon)
$$

where we choose $\delta>0$ such that $(-\epsilon, \epsilon) \subset\left(\alpha_{\eta(s)}, \omega_{\eta(s)}\right)$ for all $s \in\left(s_{0}-\delta, s_{0}+\delta\right)$. Then $\psi:\left(s_{0}-\delta, s_{0}+\delta\right) \times(-\epsilon, \epsilon) \rightarrow \mathbb{R}$ is C^{1}, since it is a composition of C^{1} maps.
We compute

$$
\left.\frac{\partial}{\partial t} \psi(s, t)\right|_{s_{0}, 0}=\left.\frac{d}{d t}\right|_{t=0} \phi\left(\eta\left(s_{0}\right), t\right)=\left(a\left(k\left(s_{0}\right), I\left(s_{0}\right), z_{k\left(s_{0}\right), I\left(s_{0}\right)}\right), b\left(k\left(s_{0}\right), I\left(s_{0}\right), z_{\left.\left.k\left(s_{0}\right), l\left(s_{0}\right)\right)\right)}\right.\right.
$$

and

$$
\left.\frac{d}{d s} \psi(s, t)\right|_{s_{0}, 0}=\frac{d}{d s} \eta\left(s_{0}, 0\right)=\frac{d}{d s} \phi\left(\eta\left(s_{0}\right), 0\right)=\frac{d}{d s} \eta\left(s_{0}\right)=\left(\dot{k}\left(s_{0}\right), \dot{i}\left(s_{0}\right)\right)
$$

Now, the transversality condition implies that the differential of the map $(s, t) \mapsto \phi(\eta(s), t)$ in $\left(s_{0}, 0\right)$ is invertible.
Hence, by the inverse function theorem, there exists a smaller $\delta>0$ such that $\psi(s, t)$ is a C^{1}-diffeomorphism on $\left(s_{0}-\delta, s_{0}+\delta\right) \times(-\delta, \delta)$.
Hence $\Phi\left((-\delta, \delta)^{2}\right)=: U \subset \mathbb{R}^{2}$ is an open domain in \mathbb{R}^{2} and for all $(x, y) \in U$ there exists a unique pair (s, t) such that $\phi(\eta(s), t)=(x, y)$.

