MAT351 Partial Differential Equations Lecture 5

September 28, 2020

Method of Characteristics, Summary

The method of characteristics is a recipe to solve a linear PDE of order 1 in several variables:

 $\nabla u \cdot V(\mathbf{x}) = c_1(\mathbf{x})u + c_2(\mathbf{x})$ in $\Omega \subset \mathbb{R}^n$ & auxiliary condition: $u(\mathbf{x}) = u_0(\mathbf{x})$ on Γ .

 $V(\mathbf{x}) = (a_1(\mathbf{x}), \dots, a(\mathbf{x})) \in C^1(\Omega, \mathbb{R}^n), c_1, c_2 \in C^1(\Omega)$, and Γ is a n-1 dimensional subset in Ω .

The recipe goes as follows

• Assuming the existence of a C^1 solution, we deduced the *characteristics equations*:

$$\begin{cases} \dot{\gamma}_{x_0}(t) = V \circ \gamma_{x_0}(t) & \gamma_{x_0}(0) = x_0 \in \Gamma, \\ \dot{z}_{x_0}(t) = c_1(\gamma_{x_0}(t))z_{x_0}(t) + c_2(\gamma_{x_0}(t)) & z_{x_0}(0) = u_0(x_0). \end{cases}$$

This system of ODEs can be solved uniquely on a maximal intervall $(\alpha_{x_0}, \omega_{x_0}) \ni 0$ (General Existence and Uniqueness Theorem for ODEs).

- We note that the PDE is a statement about the directional derivatives of a C^1 solution u. Precisely, given a flow curve $\gamma_{\mathbf{x}_0}$ of V with $\mathbf{x}_0 \in \Gamma$ and the value of u in \mathbf{x}_0 , the equation for $z_{\mathbf{x}_0}$ gives the directional derivatives of u along $\gamma_{\mathbf{x}_0}$.
- The number $z_{\mathbf{x}_0}(t)$ tells us the values of u at $\gamma_{\mathbf{x}_0}(t)$ for $t \in (\alpha_{\mathbf{x}_0}, \omega_{\mathbf{x}_0})$.

The only result that this analysis actually proves is:

Proposition

If $u \in C^1(\Omega)$ solves the PDE and $\gamma_{\mathbf{x}_0} : (\alpha_{\mathbf{x}_0}, \omega_{\mathbf{x}_0}) \to \mathbb{R}^n$ is a flow curve of V with $\mathbf{x}_0 \in \Gamma$, then $u \circ \gamma_{\mathbf{x}_0} : (\alpha_{\mathbf{x}_0}, \omega_{\mathbf{x}_0}) \to \mathbb{R}$ with $u \circ \gamma_{\mathbf{x}_0}(0) = u_0(\mathbf{x}_0)$ must solve the ODE for $z_{\mathbf{x}_0}$.

This gives us a method to "synthesize" an explicite solution via the following steps: If we can find a unique solution (\mathbf{x}_0, t_0) for the equation $\gamma_{\mathbf{x}_0}(t_0) = \mathbf{x}$ for every $\mathbf{x} \in \Omega$. And (\mathbf{x}_0, t_0) depends in a sufficiently smooth way on \mathbf{x} .

Remark

However, this might not be always possible:

There might exist $\mathbf{x} \in \Omega$ for which there exists not solution of $\gamma_{\mathbf{x}_0}(t_0) = x$ with $\mathbf{x}_0 \in \Gamma$ and $t \in (\alpha_{\mathbf{x}_0}, \omega_{\mathbf{x}_0})$.

Temporal Equations, revisited

Given a linear PDE of order 2 of the form

$$u_t + \sum_{i=1}^n a_i(\mathbf{x}) u_{x_i} = c_1(\mathbf{x}) u + c_2(\mathbf{x}) \text{ in } \mathbb{R}^n \times \mathbb{R}$$
(1)

The initial condition at time t = 0 is

$$u_0(\mathsf{x}) = g(\mathsf{x}) \text{ on } \mathbb{R}^n, \ g \in C^1(\mathbb{R}^n).$$

The characteristics ODE for the t variable is always $\frac{d}{ds}t(s) = 1$, t(0) = 0. Thus t = s. If we set $V(\mathbf{x}) = (a_1(\mathbf{x}), \dots, a_n(\mathbf{x}))$, the PDE becomes

$$u_t + V(\mathbf{x}) \cdot \nabla u = c_1(\mathbf{x})u + c_2(\mathbf{x}).$$

The flow curves $\gamma_{\mathbf{x}_0}$ of V are $\dot{\gamma}_{\mathbf{x}_0}(t) = V \circ \gamma_{\mathbf{x}_0}(t)$ with $\gamma_{\mathbf{x}_0}(0) = \mathbf{x}_0$. The characteristics of the PDE are

$$\gamma_{(\mathbf{x}_0,0)}(t) = \begin{pmatrix} \gamma_{\mathbf{x}_0}(t) \\ t \end{pmatrix}.$$

Applying our recipe means to solve $\gamma_{\mathbf{x}_0}(t) = \mathbf{x}$ uniquely for every $\mathbf{x} \in \mathbb{R}^n$ and every $t \in \mathbb{R}$. If the flow map $\Phi_t(\mathbf{x}) = \gamma_{\mathbf{x}}(t)$ of V is a diffeomorphism of \mathbb{R}^n for every $t \ge 0$, then

$$\Phi_t^{-1}(\mathbf{x}) = \mathbf{x}_0$$
 solves $\Phi_t(\mathbf{x}_0) = \mathbf{x}$

uniquely. In this case we can define $u(\mathbf{x}) := z_{\mathbf{x}_0}(t) = z_{\Phi_t^{-1}(\mathbf{x})}(t)$ that is a solution for (1).

Example: Transport equation with constant coefficients

Consider

$$u_t + \sum_{i=1}^n a_i u_{x_i} = 0 \text{ in } \mathbb{R}^n \times [0,\infty) \quad \text{with} \quad u(\mathbf{x},0) = g(\mathbf{x}) \text{ on } \mathbb{R}^n, \ g,f \in C^1(\mathbb{R}^n).$$

Define $V(\mathbf{x}) \equiv (a_1, \ldots, a_n) = v$. The flow curves of V are

$$\gamma_{\mathbf{x}_0} = \mathbf{x}_0 + t\mathbf{v}$$

and the flow map $\phi_t(\mathbf{x}_0) = \mathbf{x}_0 + t\mathbf{v}$ is a diffeomorphism. Hence

$$\mathbf{x}_0 := \phi_t^{-1}(\mathbf{x}) = \mathbf{x} - t\mathbf{v}$$
 uniquely solves $\phi_t(\mathbf{x}_0) = x$.

Solving the characteristics equation

$$\frac{d}{dt}z_{\mathbf{x}_0}(t) = 0, \quad z_{\mathbf{x}_0}(0) = u(\mathbf{x}_0, 0) = g(\mathbf{x}_0)$$

yields $z_{\mathbf{x}_0}(t) = g(\mathbf{x}_0)$. Hence $u(\mathbf{x}, t) = g(\mathbf{x} - t\mathbf{v})$ is the solution for the PDE.

Semi-linear PDEs

Consider a semi-linear PDE of order 1

 $V(\mathbf{x}) \cdot \nabla u = c(\mathbf{x}, u)$ in $\Omega \subset \mathbb{R}^n$ with auxiliary condition $u(\mathbf{x}) = g(\mathbf{x})$ on $\Gamma \subset \Omega$.

The methods of characteristics applies in the exact same way. But the equation for z_{x_0} becomes a nonlinear equation in z_{x_0} :

$$\frac{d}{dt}z_{x_0}(t) = c(\gamma_{x_0}(t), z_{x_0}(t)), \ \ z_{x_0}(0) = g(x_0), \ x_0 \in \Gamma.$$

Example (Transport equation with nonlinear right hand side)

Consider

$$u_x + u_y = u^2 \text{ on } \Omega \subset \mathbb{R}^2 \text{ with } u(\cdot, 0) = g \in C^1(\mathbb{R}).$$

Here the vector field is V(x) = (1,1) with the flow $\gamma_{(x_0,0)}(t) = (x_0 + t, y_0 + t)$.

Hence for $(x, y) \in \mathbb{R}^2$ the point $(x_0, 0) = (x - t_0, 0)$ and $t_0 = y$ solves $\gamma_{(x_0, 0)}(t_0) = (x, y)$. The characteristics equation for z_{x_0} is

$$\frac{d}{dt}z_{(x_0,y_0)}=(z_{(x_0,y_0)})^2 \quad z_{(x_0,y_0)}(0)=g(x_0).$$

The solution of this ODE Is $z_{(x_0,y_0)}(t) = \frac{1}{\frac{1}{g(x_0)}-t}$. So $u(x,y) = u_{(x_0,0)}(t_0) = \frac{1}{\frac{1}{g(x-y)}-y}$.

This yields the following contraint: g(x - y)y < 1. Hence, to find a solution it is necessary that $\Omega \subset \{(x, y) \in \mathbb{R}^2 : g(x - y)y \leq 1\}.$

Quasi-linear PDEs

Consider a quasilinear PDE of order 1

 $\sum_{i=1}^n a_i(\mathbf{x}, u) u_{\mathbf{x}_i} = c(\mathbf{x}, u) \text{ in } \Omega \subset \mathbb{R}^n \text{ with auxiliary condition } u(\mathbf{x}) = g(\mathbf{x}) \text{ on } \Gamma \subset \Omega.$

Defining the vector field $V(\mathbf{x}, u) = (a_1(\mathbf{x}, u), \dots, a_n(\mathbf{x}, u))$ the PDE becomes

$$V(\mathbf{x}, u) \cdot \nabla u = c(\mathbf{x}, u).$$

Assuming a sufficiently smooth solution u we can write down the following equations

$$\begin{split} \dot{\gamma}_{\mathsf{x}_0}(t) &= V(\gamma_{\mathsf{x}_0}(t), u \circ \gamma_{\mathsf{x}_0}(t)) \\ \frac{d}{dt} u \circ \gamma_{\mathsf{x}_0}(t) &= c(\gamma_{\mathsf{x}_0}(t), u \circ \gamma_{\mathsf{x}_0}(t)) \end{split}$$

Not that in contrast to linear and semi-linear PDEs this is a coupled system of ODEs.

Provided the coefficients are a_i and c are C^1 the solution $(\gamma_{x_0}(t), z_{x_0}(t))$ exists and depends in C^1 sense on (x_0, t) .

Transversality condition, Existence of local solutions Consider again

$$au_x+bu_y=0 \hspace{0.2cm} ext{on} \hspace{0.2cm} \mathbb{R}^2 \hspace{0.2cm} ext{ with } u(0,y)=g(y), \hspace{0.2cm} g\in C^1(\mathbb{R}).$$

We could construct a (unique) solution as long as $a \neq 0$. Or

$$\detegin{pmatrix} a & 0 \ b & 1 \end{pmatrix}
eq 0$$

Consider a general quasi-linear PDE of order 1 in two independent variables

 $a(x, y, u)u_x + b(x, y, u)u_y = c(x, y, u)$ in $\Omega \subset \mathbb{R}^2$ & auxiliary condition u(x, y) = g(x, y) on Γ where $\Gamma = \operatorname{Im} \eta$ and $\eta : \mathbb{R} \to \mathbb{R}^2, \eta(t) = (k(t), l(t)), \eta \in C^1(J, \mathbb{R}^2)$ for an interval $J \subset \mathbb{R}$. The Transversality Condition for this problem is

$$\det \begin{pmatrix} a(k(t), l(t), g(k(t), l(t))) & \dot{k}(t) \\ b(k(t), l(t), g(k(t), l(t)) & \dot{l}(t) \end{pmatrix} \neq 0.$$

Theorem

Consider the previous quasi-linear PDE and assume the transversality condition. Then, for every $s_0 \in J$ there exists $\delta > 0$ such that $B_{\delta}(\eta(s_0)) \subset \Omega$ and

$$a(x,y,u)u_x+b(x,y,u)u_y=c(x,y,u) \text{ in } B_\delta(\gamma(t)) \ \text{ with } u(x,y)=g(x,y) \text{ on } \Gamma\cap B_\delta(t)$$

has a unique solution u.

Proof

We already mentioned that $\gamma_{x_0,y_0}(t) =: \phi(x_0, y_0, t)$ dependes smoothly on (x_0, y_0, t) for $(x_0, y_0, t) \in \mathbb{R}^2 \times \mathbb{R}$.

We pick $s_0 \in J$ with $\eta(s_0) = x_0$ and define

$$\psi(s,t) = \phi(\eta(s),t), \ s \in (s_0 - \delta, s_0 + \delta) \subset J, t \in (-\epsilon,\epsilon),$$

where we choose $\delta > 0$ such that $(-\epsilon, \epsilon) \subset (\alpha_{\eta(s)}, \omega_{\eta(s)})$ for all $s \in (s_0 - \delta, s_0 + \delta)$. Then $\psi : (s_0 - \delta, s_0 + \delta) \times (-\epsilon, \epsilon) \to \mathbb{R}$ is C^1 , since it is a composition of C^1 maps.

We compute

$$\frac{\partial}{\partial t}\psi(s,t)\big|_{s_0,0} = \frac{d}{dt}\Big|_{t=0}\phi(\eta(s_0),t) = (a(k(s_0),l(s_0),z_{k(s_0),l(s_0)}),b(k(s_0),l(s_0),z_{k(s_0),l(s_0)}))$$

and

$$\frac{d}{ds}\psi(s,t)\Big|_{s_0,0}=\frac{d}{ds}\eta(s_0,0)=\frac{d}{ds}\phi(\eta(s_0),0)=\frac{d}{ds}\eta(s_0)=(\dot{k}(s_0),\dot{l}(s_0)).$$

Now, the transversality condition implies that the differential of the map $(s, t) \mapsto \phi(\eta(s), t)$ in $(s_0, 0)$ is invertible.

Hence, by the inverse function theorem, there exists a smaller $\delta > 0$ such that $\psi(s, t)$ is a C^1 -diffeomorphism on $(s_0 - \delta, s_0 + \delta) \times (-\delta, \delta)$.

Hence $\Phi((-\delta, \delta)^2) =: U \subset \mathbb{R}^2$ is an open domain in \mathbb{R}^2 and for all $(x, y) \in U$ there exists a unique pair (s, t) such that $\phi(\eta(s), t) = (x, y)$.