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Method of Characteristics, Summary

The method of characteristics is a recipe to solve a linear PDE of order 1 in several variables:

∇u · V (x) = c1(x)u + c2(x) in Ω ⊂ Rn & auxiliary condition: u(x) = u0(x) on Γ.

V (x) = (a1(x), . . . , a(x)) ∈ C 1(Ω,Rn), c1, c2 ∈ C 1(Ω), and Γ is a n − 1 dimensional subset in Ω.

The recipe goes as follows

Assuming the existence of a C 1 solution, we deduced the characteristics equations:{
γ̇x0 (t) = V ◦ γx0 (t) γx0 (0) = x0 ∈ Γ,

żx0 (t) = c1(γx0 (t))zx0 (t) + c2(γx0 (t)) zx0 (0) = u0(x0).

This system of ODEs can be solved uniquely on a maximal intervall (αx0 , ωx0 ) 3 0 (General
Existence and Uniqueness Theorem for ODEs).

We note that the PDE is a statement about the directional derivatives of a C 1 solution u.
Precisely, given a flow curve γx0 of V with x0 ∈ Γ and the value of u in x0, the equation for
zx0 gives the directional derivatives of u along γx0 .

The number zx0 (t) tells us the values of u at γx0 (t) for t ∈ (αx0 , ωx0 ).
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The only result that this analysis actually proves is:

Proposition

If u ∈ C 1(Ω) solves the PDE and γx0 : (αx0 , ωx0 )→ Rn is a flow curve of V with x0 ∈ Γ,

then u ◦ γx0 : (αx0 , ωx0 )→ R with u ◦ γx0 (0) = u0(x0) must solve the ODE for zx0 .

This gives us a method to “synthesize” an explicite solution via the following steps:

If we can find a unique solution (x0, t0) for the equation γx0 (t0) = x for every x ∈ Ω.

And (x0, t0) depends in a sufficiently smooth way on x.

Remark

However, this might not be always possible:

There might exist x ∈ Ω for which there exists not solution of γx0 (t0) = x with x0 ∈ Γ and
t ∈ (αx0 , ωx0 ).
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Temporal Equations, revisited
Given a linear PDE of order 2 of the form

ut +
n∑

i=1

ai (x)uxi = c1(x)u + c2(x) in Rn × R (1)

The initial condition at time t = 0 is

u0(x) = g(x) on Rn, g ∈ C 1(Rn).

The characteristics ODE for the t variable is always d
ds

t(s) = 1, t(0) = 0. Thus t = s.

If we set V (x) = (a1(x), . . . , an(x)), the PDE becomes

ut + V (x) · ∇u = c1(x)u + c2(x).

The flow curves γx0 of V are γ̇x0 (t) = V ◦ γx0 (t) with γx0 (0) = x0.

The characteristics of the PDE are

γ(x0,0)(t) =

(
γx0 (t)

t

)
.

Applying our recipe means to solve γx0 (t) = x uniquely for every x ∈ Rn and every t ∈ R.

If the flow map Φt (x) = γx(t) of V is a diffeomorphism of Rn for every t ≥ 0, then

Φ−1
t (x) = x0 solves Φt (x0) = x

uniquely. In this case we can define u(x) := zx0 (t) = z
Φ−1

t (x)
(t) that is a solution for (1).
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Example: Transport equation with constant coefficients

Consider

ut +
n∑

i=1

ai uxi = 0 in Rn × [0,∞) with u(x, 0) = g(x) on Rn, g , f ∈ C 1(Rn).

Define V (x) ≡ (a1, . . . , an) = v . The flow curves of V are

γx0 = x0 + tv

and the flow map φt (x0) = x0 + tv is a diffeomorphism. Hence

x0 := φ−1
t (x) = x− tv uniquely solves φt (x0) = x .

Solving the characteristics equation

d

dt
zx0 (t) = 0, zx0 (0) = u(x0, 0) = g(x0)

yields zx0 (t) = g(x0). Hence u(x, t) = g(x− tv) is the solution for the PDE.
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Semi-linear PDEs
Consider a semi-linear PDE of order 1

V (x) · ∇u = c(x, u) in Ω ⊂ Rn with auxiliary condition u(x) = g(x) on Γ ⊂ Ω.

The methods of characteristics applies in the exact same way.

But the equation for zx0 becomes a nonlinear equation in zx0 :

d

dt
zx0 (t) = c(γx0 (t), zx0 (t)), zx0 (0) = g(x0), x0 ∈ Γ.

Example (Transport equation with nonlinear right hand side)

Consider

ux + uy = u2 on Ω ⊂ R2 with u(·, 0) = g ∈ C 1(R).

Here the vector field is V (x) = (1, 1) with the flow γ(x0,0)(t) = (x0 + t, y0 + t).

Hence for (x , y) ∈ R2 the point (x0, 0) = (x − t0, 0) and t0 = y solves γ(x0,0)(t0) = (x , y).
The characteristics equation for zx0 is

d

dt
z(x0,y0) = (z(x0,y0))2 z(x0,y0)(0) = g(x0).

The solution of this ODE Is z(x0,y0)(t) = 1
1

g(x0)
−t

. So u(x , y) = u(x0,0)(t0) = 1
1

g(x−y)
−y

.

This yields the following contraint: g(x − y)y < 1. Hence, to find a solution it is necessary that
Ω ⊂ {(x , y) ∈ R2 : g(x − y)y ≤ 1}.
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Quasi-linear PDEs

Consider a quasilinear PDE of order 1

n∑
i=1

ai (x, u)uxi = c(x, u) in Ω ⊂ Rn with auxiliary condition u(x) = g(x) on Γ ⊂ Ω.

Defining the vector field V (x, u) = (a1(x, u), . . . , an(x, u)) the PDE becomes

V (x, u) · ∇u = c(x, u).

Assuming a sufficiently smooth solution u we can write down the following equations

γ̇x0 (t) = V (γx0 (t), u ◦ γx0 (t))

d

dt
u ◦ γx0 (t) = c(γx0 (t), u ◦ γx0 (t))

Not that in contrast to linear and semi-linear PDEs this is a coupled system of ODEs.

Provided the coefficients are ai and c are C 1 the solution (γx0 (t), zx0 (t)) exists and depends in
C 1 sense on (x0, t).
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Transversality condition, Existence of local solutions
Consider again

aux + buy = 0 on R2 with u(0, y) = g(y), g ∈ C 1(R).

We could construct a (unique) solution as long as a 6= 0. Or

det

(
a 0
b 1

)
6= 0.

Consider a general quasi-linear PDE of order 1 in two independent variables

a(x , y , u)ux + b(x , y , u)uy = c(x , y , u) in Ω ⊂ R2 & auxiliary condition u(x , y) = g(x , y) on Γ

where Γ = Imη and η : R→ R2, η(t) = (k(t), l(t)), η ∈ C 1(J,R2) for an interval J ⊂ R.

The Transversality Condition for this problem is

det

(
a(k(t), l(t), g(k(t), l(t))) k̇(t)

b(k(t), l(t), g(k(t), l(t)) l̇(t)

)
6= 0.

Theorem

Consider the previous quasi-linear PDE and assume the transversality condition. Then, for every
s0 ∈ J there exists δ > 0 such that Bδ(η(s0)) ⊂ Ω and

a(x , y , u)ux + b(x , y , u)uy = c(x , y , u) in Bδ(γ(t)) with u(x , y) = g(x , y) on Γ ∩ Bδ(t)

has a unique solution u.
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Proof
We already mentioned that γx0,y0 (t) =: φ(x0, y0, t) dependes smoothly on (x0, y0, t) for
(x0, y0, t) ∈ R2 × R.

We pick s0 ∈ J with η(s0) = x0 and define

ψ(s, t) = φ(η(s), t), s ∈ (s0 − δ, s0 + δ) ⊂ J, t ∈ (−ε, ε),

where we choose δ > 0 such that (−ε, ε) ⊂ (αη(s), ωη(s)) for all s ∈ (s0 − δ, s0 + δ).

Then ψ : (s0 − δ, s0 + δ)× (−ε, ε)→ R is C 1, since it is a composition of C 1 maps.

We compute

∂

∂t
ψ(s, t)

∣∣
s0,0

=
d

dt

∣∣∣
t=0

φ(η(s0), t) = (a(k(s0), l(s0), zk(s0),l(s0)), b(k(s0), l(s0), zk(s0),l(s0)))

and

d

ds
ψ(s, t)

∣∣∣
s0,0

=
d

ds
η(s0, 0) =

d

ds
φ(η(s0), 0) =

d

ds
η(s0) = (k̇(s0), l̇(s0)).

Now, the transversality condition implies that the differential of the map (s, t) 7→ φ(η(s), t) in
(s0, 0) is invertible.

Hence, by the inverse function theorem, there exists a smaller δ > 0 such that ψ(s, t) is a
C 1-diffeomorphism on (s0 − δ, s0 + δ)× (−δ, δ).

Hence Φ((−δ, δ)2) =: U ⊂ R2 is an open domain in R2 and for all (x , y) ∈ U there exists a
unique pair (s, t) such that φ(η(s), t) = (x , y).
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