MAT351 Partial Differential Equations Lecture 7

October 5, 2020

Definition

We say $u(x,t), (x,t) \in \mathbb{R} \times [0,\infty)$ is piecewise smooth if

- u is C^1 in all points (x, t) except along a C^1 curve $s(t), t \in (a, \infty)$,
- *u* is discontinuous in s(t) for all $t \in (a, \infty)$.

In addition we assume that for every $t \in (a,\infty)$ the limits

$$u^+(s(t),t) := \lim_{x \downarrow s(t)} u(x,t) \& u^-(s(t),t) := \lim_{x \uparrow s(t)} u(x,t)$$
 exist.

Scalar Conversation Law

$$u_t + (f(u))_x = u_t + f'(u)u_x = 0 \text{ in } \mathbb{R} \times [0,\infty) \& u(x,0) = g(x)$$

where $g \in C^1(\mathbb{R})$ and $f \in C^2(\mathbb{R})$ with $f'' \ge 0$.

Definition (Distributional solutions)

We say a piecewise smooth function u is a solution of (1) in the distributional sense if

$$\int_0^\infty \int_{-\infty}^\infty \left[u\phi_t + f(u)\phi_x \right] dx dt = 0 \text{ for any } \phi \in C_c^\infty(\mathbb{R} \times (0,\infty)).$$

(1)

Theorem (Rankine-Hugoniot jump condition(s))

Let $s(t), t \ge 0$ is a C^1 curve in $\mathbb{R} \times [0, \infty)$ (parametrized as graph). Assume u is piecewise smooth in the sense of the previous definition. Then u is a solution of (1) in the sense of distributions if and only if u is a classical solution in any point where u is C^1 and

1.6 Non-uniquness and stability of distributional solutions, Lax entropy condition

We consider the Burgers' equation with discontinuous initial value:

$$u_t + uu_x = 0 \text{ in } \mathbb{R} \times [0, \infty) \& u(x, 0) = g(x) = \begin{cases} 1 & \text{if } x \le 0, \\ 0 & \text{if } x \ge 0. \end{cases}$$

Let us apply the previous theorem. We want find a C^1 curve s(t), $t \ge 0$ that satisfies the jump condition. For the burgers equation we have $f(x) = \frac{1}{2}x^2$. Then the jump condition is

$$\frac{(u^+)^2 - (u^-)^2}{2(u^+ - u^-)} \circ s(t) = \frac{1}{2}(u^+ + u^-) \circ s(t) = s'(t).$$

Therefore, a distributional solutions of the previous PDE with this initial condition is

$$u(x,t) = \begin{cases} 1 & \text{for } x \leq \frac{1}{2}t, \\ 0 & \text{for } x > \frac{1}{2}t. \end{cases}$$

On the other hand, consider

$$u_t + uu_x = 0 \text{ in } \mathbb{R} \times [0, \infty) \& u(x, 0) = g(x) = \begin{cases} 0 & \text{ if } x \le 0, \\ 1 & \text{ if } x \ge 0. \end{cases}$$

A distributional solution is

$$v(x,t) = \begin{cases} 0 & \text{ for } x \leq \frac{1}{2}t, \\ 1 & \text{ for } x > \frac{1}{2}t \end{cases}$$

but also

$$w(x,t) = \begin{cases} 0 & \text{ for } x \le 0, \\ \frac{x}{t} & \text{ for } 0 < x < \frac{1}{2}t, \\ 1 & \text{ for } x \ge \frac{1}{2}t \end{cases}$$

is a solution that is even continuous. This solution is called the rarefaction wave.

For this problem there is no uniqueness.

Question

Which solution should we pick? Which solution is physically meaninful?

For the solution v characteristics emanate from the shock.

This is physically unreasonable.

Recall the characteristcs equations

$$\frac{dx}{dt} = f'(u^r) \& \frac{dx}{dt} = f'(u^l).$$

A sufficient condition such that characteristics do not emanate from the shock is

$$f'(u^+) \ge s' \ge f'(u^-). \tag{2}$$

Since f is convex, (2) implies that $u^+ \ge u^-$.

Lax entropy a condition

We say a piecewise smooth solution u(x, t) to a conservation law is an entropy solution if the Lax entropy condition (2) holds.

Note that a smooth solution is an entropy solution since there is no curve s that describes a discontinuity.

Theorem

If an entropy solution exists, then it is the unique distributional solution for the scalar conversation law.

2 Linear second order PDEs in 1D

2.1 Classification of linear second order PDEs

Consider linear second order PDE for n independent variables has the form

$$\sum_{i,j=1}^{n} a_{i,j} u_{x_i,x_j} + \sum_{k=1}^{n} b_k u_{x_k} + cu = d \text{ on } \Omega.$$
(3)

We assume $a_{i,j}, b_k, c, d \in C^0(\Omega)$ and $a_{i,j} = a_{j,i}$. Hence

$$A = \begin{pmatrix} a_{1,1} & \dots & a_{1,n} \\ \dots & & \dots \\ a_{n,1} & \dots & a_{n,n} \end{pmatrix} \quad \text{is a symmetric matrix.}$$

Recall form linear algebra that there exists a symmetric matrix B such that

$$BAB^{\top} = \begin{pmatrix} d_1 & 0 & \dots & \dots & 0 \\ 0 & d_2 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & 0 & d_n \end{pmatrix} =: D$$

with $d_1, \ldots, d_n \in C^0(\Omega)$. $\{d_1(\mathbf{x}), \ldots, d_n(\mathbf{x})\}$ are the eigenvalues of $A(\mathbf{x})$.

Definition

The PDE (3) is called

- **O Elliptic** if all the eigenvalues d_1, \ldots, d_n are positive. That is equivalent to say that A is positive definite,
- **2** Parabolic if exactly one eigenvalue is 0 and the other eigenvalues have the same sign,
- **9** Hyperbolic if exactly one eigenvalue is negative and the other eigenvalues are positive,
- Ultrahyperbolic if there are more thatn one negative eigenvalues and the other eigenvalues are positive.

Consider linear second order PDE for 2 independent variables has the form

$$a_{1,1}u_{x_1,x_1} + 2a_{1,2}u_{x_1,x_2} + a_{2,2}u_{x_2,x_2} + b_1u_{x_1} + b_2u_{x_2} + cu = d.$$
(4)

The PDE (4) is

- Elliptic $\iff a_{1,1}a_{2,2} a_{1,2}^2 > 0$,
- 2 Parabolic $\iff a_{1,1}a_{2,2} a_{1,2}^2 = 0$
- $\ \, \hbox{ Imperbolic } \Longleftrightarrow \quad a_{1,1}a_{2,2}-a_{1,2}^2<0.$

Let *B* the $n \times n$ matrix such that

$$BAB^{\top} = D$$

We can introduce new coordinates $(y_1, \ldots, y_n) = \mathbf{y}$ via $B\mathbf{x} = \mathbf{y}$.

Lemma

The PDE (3) writes w.r.t. the coordinates y as

$$\sum_{i=1}^{n} d_{i} u_{x_{i}, x_{i}} + \sum_{k=1} b_{k} u_{x_{k}} + cu = d.$$

After rescaling with $\frac{1}{\sqrt{|d_i|}}$ in y_i for every i = 1, ..., n as long as $d_i \neq 0$ this becomes

$$\Delta u + \nabla u \cdot (b_1, \ldots, b_k) + cu = d.$$

Proof: We compute

$$u_{x_i}(\mathbf{x}) = \frac{\partial u}{\partial x_i}\Big|_{\mathbf{x}} = \frac{\partial (u \circ B^{-1} \circ B)}{\partial x_i}\Big|_{\mathbf{x}} = \nabla_y (u \circ B^{-1})\Big|_{B\mathbf{x}} \cdot (B_{1,i}, \dots, B_{n,i}) = \sum_{k=1}^n \frac{\partial u \circ B^{-1}}{\partial y_k}\Big|_{B\mathbf{x}} B_{k,i}$$

We set $u(\mathbf{y}) := u \circ B^{-1}\mathbf{y}$ and $u_{y_i} := \frac{\partial(u \circ B^{-1})}{\partial y_k}$. Therefore

$$u_{x_{j},x_{j}} = \sum_{k,l=1}^{n} u_{y_{k},y_{l}} B_{k,i} B_{l,j} \implies \sum_{i,j=1}^{n} A_{i,j} u_{x_{i},x_{j}} = \sum_{k,l=1}^{n} \sum_{\substack{i,j=1\\ i,j=1}}^{n} B_{k,i} A_{i,j} B_{j,l}^{\top} u_{y_{k},y_{l}} = \sum_{k=1}^{n} d_{k} u_{y_{k},y_{l}}.$$

Consider linear second order PDE for 2 independent variables has the form

$$a_{1,1}u_{x_1,x_1} + 2a_{1,2}u_{x_1,x_2} + a_{2,2}u_{x_2,x_2} + b_1u_{x_1} + b_2u_{x_2} + cu = d \text{ on } \mathbb{R}.$$
 (5)

Example

Consider the PDE (5) for 2 independent variables. Let $d = c = b_2 = 0$. Applying the transformations of the previous lemma yields

Q Elliptic: $u_{x_1,x_1} + u_{x_2,x_2} + b_1 u_{x_1} = 0$. If $b_1 = 0$, we have the Laplace equation:

$$u_{x_1,x_1} + u_{x_2,x_2} = 0.$$

(2) Parabolic: Assume $d_2 = 0$ and set $x_1 = x$ and $x_2 = t$. Then $u_{x,x} + b_1u_1$. If $b_1 = 1$ we have the diffusion equation:

$$u_{x,x} + u_t = 0.$$

3 Hyperbolic: Assume $d_2 < 0$. Then $u_{x,x} - u_{t,t} + b_1 u_t$. If $b_1 = 0$ we have the wave equation:

$$u_{x,x}-u_{t,t}=0.$$