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Definition

We say u(x , t), (x , t) ∈ R× [0,∞) is piecewise smooth if

u is C 1 in all points (x , t) except along a C 1 curve s(t), t ∈ (a,∞),

u is discontinuous in s(t) for all t ∈ (a,∞).

In addition we assume that for every t ∈ (a,∞) the limits

u+(s(t), t) := lim
x↓s(t)

u(x , t) & u−(s(t), t) := lim
x↑s(t)

u(x , t) exist.

Scalar Conversation Law

ut + (f (u))x = ut + f ′(u)ux = 0 in R× [0,∞) & u(x , 0) = g(x) (1)

where g ∈ C 1(R) and f ∈ C 2(R) with f ′′ ≥ 0.

Definition (Distributional solutions)

We say a piecewise smooth function u is a solution of (1) in the distributional sense if∫ ∞
0

∫ ∞
−∞

[uφt + f (u)φx ] dxdt = 0 for any φ ∈ C∞c (R× (0,∞)).
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Theorem (Rankine-Hugoniot jump condition(s))

Let s(t), t ≥ 0 is a C 1 curve in R× [0,∞) (parametrized as graph). Assume u is piecewise
smooth in the sense of the previous definition. Then u is a solution of (1) in the sense of
distributions if and only if u is a classical solution in any point where u is C 1 and

s′(t) =
f (u+)− f (u−)

u+ − u−
◦ s(t) for every t ∈ (0,∞).
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1.6 Non-uniquness and stability of distributional solutions, Lax
entropy condition

We consider the Burgers’ equation with discontinuous initial value:

ut + uux = 0 in R× [0,∞) & u(x , 0) = g(x) =

{
1 if x ≤ 0,

0 if x ≥ 0.

Let us apply the previous theorem. We want find a C 1 curve s(t), t ≥ 0 that satisfies the jump
condition. For the burgers equation we have f (x) = 1

2
x2. Then the jump condition is

(u+)2 − (u−)2

2(u+ − u−)
◦ s(t) =

1

2
(u+ + u−) ◦ s(t) = s′(t).

Therefore, a distributional solutions of the previous PDE with this initial condition is

u(x , t) =

{
1 for x ≤ 1

2
t,

0 for x > 1
2

t.
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On the other hand, consider

ut + uux = 0 in R× [0,∞) & u(x , 0) = g(x) =

{
0 if x ≤ 0,

1 if x ≥ 0.

A distributional solution is

v(x , t) =

{
0 for x ≤ 1

2
t,

1 for x > 1
2

t

but also

w(x , t) =


0 for x ≤ 0,
x
t

for 0 < x < 1
2

t,

1 for x ≥ 1
2

t

is a solution that is even continuous. This solution is called the rarefaction wave.

For this problem there is no uniqueness.

Question

Which solution should we pick? Which solution is physically meaninful?
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For the solution v characteristics emanate from the shock.

This is physically unreasonable.

Recall the characteristcs equations

dx

dt
= f ′(ur ) &

dx

dt
= f ′(ul ).

A sufficient condition such that characteristics do not emanate from the shock is

f ′(u+) ≥ s′ ≥ f ′(u−). (2)

Since f is convex, (2) implies that u+ ≥ u−.

Lax entropy a condition

We say a piecewise smooth solution u(x , t) to a conservation law is an entropy solution if the Lax
entropy condition (2) holds.

Note that a smooth solution is an entropy solution since there is no curve s that describes a
discontinuity.

Theorem

If an entropy solution exists, then it is the unique distributional solution for the scalar
conversation law.
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2 Linear second order PDEs in 1D

2.1 Classification of linear second order PDEs

Consider linear second order PDE for n independent variables has the form

n∑
i,j=1

ai,j uxi ,xj +
n∑

k=1

bk uxk + cu = d on Ω. (3)

We assume ai,j , bk , c, d ∈ C 0(Ω) and ai,j = aj,i . Hence

A =

a1,1 . . . a1,n

. . . . . .
an,1 . . . an,n

 is a symmetric matrix.

Recall form linear algebra that there exists a symmetric matrix B such that

BAB> =


d1 0 . . . . . . 0
0 d2 0 . . . 0
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
0 . . . . . . dn−1 0
0 . . . . . . 0 dn

 =: D

with d1, . . . , dn ∈ C 0(Ω). {d1(x), . . . , dn(x)} are the eigenvalues of A(x).
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Definition

The PDE (3) is called

1 Elliptic if all the eigenvalues d1, . . . , dn are positive. That is equivalent to say that A is
positive definite,

2 Parabolic if exactly one eigenvalue is 0 and the other eigenvalues have the same sign,

3 Hyperbolic if exactly one eigenvalue is negative and the other eigenvalues are positive,

4 Ultrahyperbolic if there are more thatn one negative eigenvalues and the other eigenvalues
are positive.

Consider linear second order PDE for 2 independent variables has the form

a1,1ux1,x1 + 2a1,2ux1,x2 + a2,2ux2,x2 + b1ux1 + b2ux2 + cu = d . (4)

The PDE (4) is

1 Elliptic ⇐⇒ a1,1a2,2 − a2
1,2 > 0,

2 Parabolic ⇐⇒ a1,1a2,2 − a2
1,2 = 0

3 Hyperbolic ⇐⇒ a1,1a2,2 − a2
1,2 < 0.
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Let B the n × n matrix such that

BAB> = D

We can introduce new coordinates (y1, . . . , yn) = y via Bx = y.

Lemma

The PDE (3) writes w.r.t. the coordinates y as

n∑
i=1

di uxi ,xi +
∑
k=1

bk uxk + cu = d .

After rescaling with 1√
|di |

in yi for every i = 1, . . . , n as long as di 6= 0 this becomes

∆u +∇u · (b1, . . . , bk ) + cu = d .

Proof: We compute

uxi (x) =
∂u

∂xi

∣∣∣
x

=
∂(u ◦ B−1 ◦ B)

∂xi

∣∣∣
x

= ∇y (u ◦ B−1)
∣∣
Bx
· (B1,i , . . . ,Bn,i ) =

n∑
k=1

∂u ◦ B−1

∂yk

∣∣∣
Bx

Bk,i

We set u(y) := u ◦ B−1y and uyi := ∂(u◦B−1)
∂yk

. Therefore

uxj ,xi =
n∑

k,l=1

uyk ,yl Bk,i Bl,j =⇒
n∑

i,j=1

Ai,j uxi ,xj =
n∑

k,l=1

n∑
i,j=1

Bk,i Ai,j B
>
j,l︸ ︷︷ ︸

dkδk,l

uyk ,yl =
n∑

k=1

dk uyk ,yl .
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Consider linear second order PDE for 2 independent variables has the form

a1,1ux1,x1 + 2a1,2ux1,x2 + a2,2ux2,x2 + b1ux1 + b2ux2 + cu = d on R. (5)

Example

Consider the PDE (5) for 2 independent variables. Let d = c = b2 = 0. Applying the
transformations of the previous lemma yields

1 Elliptic: ux1,x1 + ux2,x2 + b1ux1 = 0. If b1 = 0, we have the Laplace equation:

ux1,x1 + ux2,x2 = 0.

2 Parabolic: Assume d2 = 0 and set x1 = x and x2 = t. Then ux,x + b1u1 . If b1 = 1 we have
the diffusion equation:

ux,x + ut = 0.

3 Hyperbolic: Assume d2 < 0. Then ux,x − ut,t + b1ut . If b1 = 0 we have the wave equation:

ux,x − ut,t = 0.
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