# MAT351 Partial Differential Equations <br> Lecture 8 

October 7, 2020

### 2.2 Wave Equation in 1D

### 2.2.1 Deriving the wave equation

Consider a flexible, elastic homogenous string or thread of length $I$, that undergoes relatively small transverse vibrations.

We think of the string as the graph of function $u(x, t)$ on $[0, I]$ that depends also on $t \in[0, \infty)$.
Let $T(x, t)$ be the magnitude of the tension force that pulls in $(x, u(x, t))$ along the string at time $t$. And let us assume $T$ does not depend on $t$. Moreover there are no other forces.

Because the string is perfect flexible the tension force is directed tangential to the string.
And let $\rho(x)$ be the mass density of the string as distribution on $[0, l]$. Since the string is homogeneous, we assume $\rho(x) \equiv$ constant.
We consider an interval $\left[x_{0}, x_{1}\right] \subset[0, l]$ that gives a section $\left\{(x, u(x)): x \in\left[x_{0}, x_{1}\right]\right\}$ of the string.

We apply Newton's law: the Force $F$ is given by mass times accelaration.

This yields the following two equations

$$
\frac{T\left(x_{1}\right)}{\sqrt{1+u_{x}\left(x_{1}\right)^{2}}}-\frac{T\left(x_{0}\right)}{\sqrt{1+u_{x}\left(x_{0}\right)^{2}}}=0 \quad \text { for horizontal forces }
$$

and

$$
\frac{T\left(x_{1}\right) u_{x}\left(x_{1}\right)}{\sqrt{1+u_{x}\left(x_{1}\right)^{2}}}-\frac{T\left(x_{0}\right) u_{x}\left(x_{0}\right)}{\sqrt{1+u_{x}\left(x_{0}\right)^{2}}}=\int_{x_{0}}^{x_{1}} \rho u_{t, t}(x) d x \quad \text { for vertical forces. }
$$

We assume the magnitude of the motion is small compared to 1 . By that we mean that the slope $u_{x}(x, t)$ of $u(x, t)$ w.r.t. $x$ at time $t$ is small compared to 1 .
If Taylor expand the $x \mapsto \sqrt{x}$ around 1 we get

$$
\sqrt{1+u_{x}^{2}}=\left(1+u_{x}^{2}\right)^{\frac{1}{2}}=\sum_{i=0}^{\infty}\binom{1 / 2}{i}\left(u_{x}\right)^{i}=1+\frac{1}{2} u_{x}^{2}+\ldots .
$$

(Binomial series) where

$$
\binom{\alpha}{i}=\frac{\alpha \cdot(\alpha-1) \cdot \ldots \dot{(\alpha-i+1)}}{1 \cdot 2 \cdots \cdot i} \text { for } i \in \mathbb{N} \text { and } \alpha \in \mathbb{R}, \alpha \geq 0
$$

Hence, we make the assumption that Newton's laws for the string reduces to

$$
T\left(x_{1}\right)-T\left(x_{0}\right)=0 \text { for horizontal forces. }
$$

and

$$
T\left(x_{1}\right) u_{x}\left(x_{1}\right)-T\left(x_{0}\right) u_{x}\left(x_{0}\right)=\int_{x_{0}}^{x_{1}} \rho u_{t, t}(x) d x \text { for vertical forces. }
$$

The first equation says that $T(x) \equiv T$ is constant along $[0, I]$.
In the second equation we can apply the fundamental theorem of calculus. Hence

$$
T \int_{x_{0}}^{x_{1}} u_{x, x}(x, t) d x=\int_{x_{0}}^{x_{1}} \rho u_{t, t}(x, t) d x .
$$

Since this euqation holds for every $x_{0}<x_{1}$ with $x_{0}$ and $x_{1}$ close to each other, it follows $T u_{x, x}=\rho u_{t, t}$. Now, let us also assume the mass ditribution $\rho(x)$ along the string is constant and set $c=\sqrt{\frac{T}{\rho}}$.

## Wave equation in 1D

$$
u_{t, t}=c^{2} u_{x, x} \text { on } \mathbb{R} \times[0, \infty)
$$

for $c \neq 0$.

## Modifications

(1) If there is an air resistence $r$ present, one has an extra term proportional to the speed $u_{t}$ :

$$
u_{x, x}-c^{2} u_{t, t}+r u_{t}=0 \text { where } r>0
$$

(2) If there is transversal elastic force, we have an extra term proportional to the magnitude of the displacement $u$ :

$$
u_{x, x}-c^{2} u_{t, t}+k u=0 \text { where } k>0
$$

(3) If there is an external force, an extra term $f$ independent of $u$ appears:

$$
u_{x, x}-c^{2} u_{t, t}+f(x, t)=0 \text { where } f(x, t) \text { is a time dependent function. }
$$

## General solution of the wave equation.

The wave equation in 1D factors nicely in the following way:

$$
0=u_{t, t}-c^{2} u_{x, x}=\left(\frac{\partial}{\partial t}-c \frac{\partial}{\partial x}\right)\left(\frac{\partial}{\partial t}+c \frac{\partial}{\partial x}\right) u
$$

We recognize that this yields a coupled system of two first order equations:

$$
\begin{aligned}
& u_{t}+c u_{x}=v \\
& v_{t}-c v_{x}=0 .
\end{aligned}
$$

This idea allows us to prove the following

## Theorem

The general $C^{2}$ solution of the wave equation $u_{t, t}-c^{2} u_{x, x}=0$ on $\mathbb{R}$ is of the form

$$
u(x, t)=f(x+c t)+g(x-c t)
$$

for arbitrary functions $f, g \in C^{2}(\mathbb{R})$.
Proof. We first consider

$$
\begin{equation*}
v_{t}-c v_{x}=0 \text { on } \mathbb{R} \times[0, \infty) \tag{1}
\end{equation*}
$$

We know the general solution of (1):

$$
v(x, t)=h(x+c t)
$$

for $h \in C^{1}(\mathbb{R})$ arbitrary where $v$ satisfies $v(x, 0)=h(x)$.

Then we can consider

$$
\begin{equation*}
u_{t}+c u_{x}=h(x+c t) \text { on } \mathbb{R} \times[0, \infty) \text { with } u(x, 0)=\tilde{g}(x), g \in C^{2}(\mathbb{R}) \tag{2}
\end{equation*}
$$

Lets solve this. The characterisitcs equations are

$$
\frac{d}{d t} x_{x_{0}}(t)=c \quad \text { with } x(0)=x_{0} \quad \& \quad \frac{d}{d t} z_{x_{0}}(t)=h\left(x_{x_{0}}(t)+c t\right) \quad \text { with } z_{x_{0}}(0)=\tilde{g}\left(x_{0}\right) .
$$

It follows that $x_{x_{0}}(t)=c t+x_{0}$. Hence for $x \in \mathbb{R}$ and $t>0$ we set $x_{0}=x-c t$. Moreover

$$
z_{x_{0}}(t)=\int_{0}^{t} h\left(x_{x_{0}}(s)+c s\right) d s+\tilde{g}\left(x_{0}\right)=\int_{0}^{t} h\left(c s+x_{0}+c s\right) d s+\tilde{g}\left(x_{0}\right) .
$$

Then the solution $u$ in $(x, t)$ is given by $u(x, t)=\int_{0}^{t} h\left(c s+x_{0}+c s\right) d s+\tilde{g}\left(x_{0}\right)$.
Applying the substituion ruel $\int_{a}^{b} f \circ \phi(s) \phi^{\prime}(s) d s=\int_{\phi(a)}^{\phi(b)} f(s) d s$ with $\phi(s)=x_{0}+2 c s$ gives

$$
u(x, t)=\int_{x_{0}}^{x_{0}+2 c t} \frac{1}{2 c} h(\tau) d \tau+\tilde{g}(x-c t)=\int_{x-c t}^{x+c t} \frac{1}{2 c} h(\tau) d \tau+\tilde{g}(x-c t)
$$

Then the claim follows with $f(s):=\int_{0}^{s} \frac{1}{2 c} h(\tau) \tau$ and $g(s)=\int_{s}^{0} \frac{1}{2 c} h(\tau) d \tau+\tilde{g}(s)$ where $f, g \in C^{2}(\mathbb{R})$.

## An alternative proof (without characteristics).

We can check that $f(x+c t)$ for

$$
f(s)=\int_{0}^{s} \frac{1}{2 c} h(\tau) d \tau
$$

solves the equation $u_{t}+c u_{x}=h(x+c t)$. Indeed

$$
\frac{\partial}{\partial t} f(x+c t)=f^{\prime}(x+c t) c=\frac{1}{2} h(x+c t), \quad \frac{\partial}{\partial x} f(x+c t)=f^{\prime}(x+c t)=\frac{1}{2 c} h(x+c t) .
$$

Therefore

$$
\frac{\partial}{\partial t} f(x+c t)+c \frac{\partial}{\partial x} f(x+c t)=h(x+c t)
$$

On the other hand $g(x-c t)$ for $g \in C^{2}(\mathbb{R})$ solves the homogeneous equation $u_{t}+c u_{x}=0$.
But we learned before that the sum of a solution of the homogeneous equation and of a solution of the inhomogeneous equation, still solves the inhomogeneous equation $u_{t}+c u_{x}=h(x+c t)$.
Therefore, $f(x+c t)+g(x-c t)$ also solves the wave equation.

## Remark

It seems we found two different expression for $g$ (depending on the proof), but for the first expression we fixed a initial condition $\tilde{g}$ and found $g$ depending on $\tilde{g}$.

## The Initial Value Problem

Now we consider

$$
\begin{cases}u_{t, t}-c^{2} u_{x, x}=0 & \text { on } \mathbb{R} \times[0, \infty)  \tag{3}\\ u(x, 0)=\phi(x) \& u_{t}(x, 0)=\phi(x) & \phi \in C^{2}(\mathbb{R}), \psi \in C^{1}(\mathbb{R})\end{cases}
$$

## Theorem (D'Alembert's formula)

The unique solution of the initial value problem (3) is given by

$$
u(x, t)=\frac{1}{2}[\phi(x+c t)+\phi(x-c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi(s) d s .
$$

Proof. From the formula for the general solution, we get

$$
\phi(x)=f(x)+g(x) \& \frac{1}{c} \psi(x)=f^{\prime}(x)-g^{\prime}(x) .
$$

Differentiating $\phi$ yields $\phi^{\prime}=f^{\prime}+g^{\prime}$. Adding and substracting these identities yields

$$
f^{\prime}(x)=\frac{1}{2}\left(\phi^{\prime}(x)+\frac{1}{c} \psi(x)\right), \quad \& \quad g^{\prime}(x)=\frac{1}{2}\left(\phi^{\prime}(x)-\frac{1}{c} \psi(x)\right) .
$$

Integrating from

$$
f(x)=\frac{1}{2}\left(\phi(x)+\frac{1}{c} \int_{0}^{x} \psi(s) d s\right)+A_{1} \& g(x)=\frac{1}{2}\left(\phi(x)-\frac{1}{c} \int_{0}^{x} \psi(s) d s\right)+A_{2} .
$$

Since $\phi(x)=f(x)+g(x)$ we have $A_{1}+A_{2}=0$.

Now, we can write

$$
\begin{aligned}
f(x+c t)+g(x-c t)= & \frac{1}{2}\left(\phi(x+c t)+\frac{1}{c} \int_{0}^{x+c t} \psi(s) d s\right)+\frac{1}{2}\left(\phi(x-c t)-\frac{1}{c} \int_{0}^{x-c t} \psi(s) d s\right) \\
& +A_{1}+A_{2} \\
= & \frac{1}{2}\left(\phi(x+c t)+\frac{1}{c} \int_{0}^{x+c t} \psi(s) d s\right)+\frac{1}{2}\left(\phi(x-c t)+\frac{1}{c} \int_{x-c t}^{0} \psi(s) d s\right) \\
= & \frac{1}{2}(\phi(x+c t)+\phi(x-c t))+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi(s) d s
\end{aligned}
$$

This is what was to prove.

- Semigroup property: Define

$$
W(t)(\phi, \psi):=\left(u, u_{t}\right)
$$

where $u$ is the unique solution of the wave equation

$$
\begin{equation*}
u_{t, t}=c^{2} u_{x x} \text { in } \mathbb{R} \times[0, \infty) \text { with } \phi(x)=u(x, 0), \psi(x)=u_{t}(x, 0) \tag{4}
\end{equation*}
$$

given by d'Alembert's formula.

## Corollary

The following semi-group property holds

$$
W(s+\tau)(\phi, \psi)=W(s)(W(t)(\phi, \psi))
$$

Proof. Let $P_{1}(x, y)=x$ be the projection map.
Then $s \geq 0 \mapsto v(\cdot, s):=P_{1} \circ W(s+\tau)(\phi, \psi)$ is a solution of the wave equation with initial conditions

$$
v(x, 0)=u(x, \tau) \& v_{t}(x, 0)=u_{t}(x, \tau)
$$

By d'Alembert's formula we have $v(x, s)=W(s)\left(u(\cdot, \tau), u_{t}(\cdot, \tau)\right)=W(s)(W(\tau)(\phi, \psi))$.

- Causality: For a point $(x, t) \in \mathbb{R} \times(0, \infty)$ the solution $u$ given by d'Alembert's formula

$$
u(x, t)=\frac{1}{2}[\phi(x-c t)+\phi(x+c t)]+\frac{1}{2} \int_{x-c t}^{x+c t} \psi(s) d
$$

depends only on the values of $\psi$ on $[x-c t, x+c t]$ and the values of $\phi$ in $x-c t$ and $x+c t$.
Moreover, for $s \in(0, t)$ we have by the semi-group property

$$
W(t)(\phi, \psi)=W(t-s)(W(s)(\phi, \psi))
$$

So $u(x, t)$ also only depends on the values of $W(s)(\phi, \psi)=\left(u(\cdot, s), u_{\tau}(\cdot, s)\right)$ on $[x-c(t-s), x+c(t-s)]$.

Hence, the domain of dependence is space-time triangle in $\mathbb{R} \times[0, \infty)$.
Similar, the domain of influence for $(x, t) \in \mathbb{R} \times[0, \infty)$ is a space time triangle in $\mathbb{R} \times[0, \infty)$.

## Example: Plucked String

Consider the initial value problem

$$
u_{t, t}=c^{2} u_{x, x} \text { in } \mathbb{R} \times[0, \infty) \& u(x, 0)=\phi(x)= \begin{cases}b-\frac{b|x|}{a} & \text { for }|x|<a \\ 0 & \text { for }|x| \geq a\end{cases}
$$

The solution is

$$
u(x, t)=\frac{1}{2}[\phi(x+c t)+\phi(x-c t)] .
$$

We note that the initial condition is not $C^{2}$-differentiable. Hence also the formula doesn't give us a $C^{2}$ solution. Nevertheless, this $u$ is still a solution in a "weak" sense, similar like a distributional solution for conservation laws.

For $t=\frac{a}{2 c}$ the solution has the form

$$
u(x, t)= \begin{cases}0 & \text { if }|x| \geq \frac{3 a}{2}, \\ \frac{1}{2} \phi\left(x+\frac{1}{2} a\right) & \text { if } x \in\left(-\frac{3 a}{2},-\frac{a}{2}\right), \\ \frac{1}{2}\left[\phi\left(x+\frac{1}{2} a\right)+\phi\left(x-\frac{1}{2} a\right)\right] & \text { if }|x| \leq \frac{a}{2} \\ \frac{1}{2} \phi\left(x-\frac{1}{2} a\right) & \text { if } x \in\left(\frac{3 a}{2}, \frac{a}{2}\right) .\end{cases}
$$

where for instance

$$
\frac{1}{2} \phi\left(x+\frac{1}{2} a\right)=\frac{1}{2}\left[b-\frac{b}{a}\left|x+\frac{1}{2} a\right|\right]=\frac{1}{2}\left[b+\frac{b}{a} x+\frac{1}{2} b\right]=\frac{3}{4} b+\frac{b}{2 a} x \text { for } x \in\left(-\frac{3 a}{2},-\frac{a}{2}\right) .
$$

