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Solving the Diffusion Equation on the real line
In this lecture we will solve

The diffusion equation on the real line

ur = kuy,x on R X (0, 00) (1)

More precisely, we look for u € C?(R x (0,00)) that solves the initial value problem

ur = kuy x on R x (0, 00) )
u(x,0) = ¢(x) for x € R.
¢ € CY(R) and k > 0.
The initial condition is understood in the sense that lim; o u(x, t) = ¢(x).
For ¢ we assume that ¢(x) — 0 if |x| = co.
v

The method to find a solution will be very different from the previous techniques that we used.

Let us collect some general properties of solutions of the diffusion equation u; = kux x.

(a) Translation invariance: If u(x, t) solves (1), then also u(x — y, t) solves (1) for any y € R.

(b) If u(x, t) is a smooth (C¥) solution (1), any derivative (ut, ux, Ux x, ect.) if it exists, solves
(1) as well.
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(c) Superposition: Any linear combinations of solutions of (1) is again a solutions of (1):

n
u'(x,t), i=1,...,nsolves (1) = Z)\,-u"(x, t) =: u(x, t) solves (1).
i=1

(d) An integral of a solution is again a solution:If u(x, t) solves (1) and ¢ € C°(R) then

v(x,t) = /u(x — y,t)¢(y)dy solves (1).

Proof. We calculate

u(z, t)p(y)dy

z=x—y

2
ve(x, t) / u(x —y, t)p(y)dy = %

62
= [ 55 = 16)dy = veslx,t). O

(e) Scaling property: If u(x, t) is a solution of (1), so is u(v/ax, at) for any a > 0. J
Remark
Of course these transformations do not preserve the initial value problem J
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Let us consider the following special initial condition:

0 0
1Z’(X):{l iio

and arbitrary value in x = 0.
We consider this 1) because it is scaling invariant: ¢(ax) = ¥(x) Va > 0.

We say u(x, t) in C2(R x (0,00)) solves the diffusion equation with initial condition % if
ur = kuxx R X (0,00)

and lim o u(x, t) = 9(x) for all x € R.

If u(x, t) solves the diffusion equation on R x (0, 00) with initial condition ¥(x), then by the
scaling property also u(+/ax, at) is a solution with the same initial condition 1(x).

Moreover, we expect uniqueness of solutions for a given initial value function. Hence, it should
hold

u(x, t) = u(y/ax, at).
From this we make the following Ansatz:

Q(x, t) = g(x/V')

Why do we choose this Q?

Because Q satisfies Q(+/at, a) = Q(x, t).
October 19, 2020  4/9



Lemma
Q(x,t) = g(x/\/t) solves (1) if and only if g satisfies g’ (r) = —ﬁrg’(r). J

Proof. We calculate
%)} - _%ﬁg’ (%)
o f ()] ()

Qe x(x,t) = [g (%

@wﬂ:F(

Hence
o3 i () ()]

Since t > 0 and by substitution of \% it follows that g must satisfy

1
g"(r) =~ 578 (1), ©)
On the other hand, if g satisfies (3), then Q(x,t) =g (%) satisfies the ur = kuy x. O
5/9
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Lemma
"o ()
The general solution of g’ (r) = —ﬁrg’(r) is g(r) = cl/ e \V&/ dr+ o, c,0 R

o

Proof. We set h = g’ and consider the ODE h'(r) = —2—1krh(r).

We can easily solve this equation by standard techniques. The general solution is given by

2
ro_ (=
h(r) = clefrz_ And therefore g(r) = 61/ e (m) dr + . [

()
Corollary

The function Q(x,t) = c1 / Ve e_<ﬁ) dT + ¢ is a solution of us = kux,x on R x (0, 00).
0

We want to choose the constants c1, ¢ € R such that

0 x <0
li ,t) =
tlff}Q(X ) {1 x> 0.

We can compute the following limits

x>0, limQ(x,t)=Ilim cl/ﬁ e_(ﬁ)df—&- (<)
t10 €10

0
7 Vak
= Iifa c1\/4k/m e’Tsz-i-cz =q > il + .
& 0

MAT351 Partial Differential Equations Lecture 10 October 19, 2020 6/9



Hence, we require

4k
l=qc > + o
Here we used that [ e T dr = g Similar
x 2
vi —(—= 4k
x <0, limQ(x,t)= Iimcl/\ﬁ e (ﬁk) dr 4+ o = —cliﬂ- +
tL0 tl0 0 2
and hence we require also
dkm
0=—c +c
)
We can solve this system of two linear equations for ¢; and ¢, and obtain
1
c = and ¢ = —.
4k 2
Corollary
x 2
1 = 7(L) 1
x,t) = e \Va/ d — solves us = kuy x on R x (0, and
Q)= — [ o solves b = kux 0n B X (0,00)

0 x <0,
1 x > 0.

mwnﬂ—wn—{
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The fundamental solution

We define

) o 1 VG _(L>2 1 _(L)Z
S(x,t) = — Jt)= — Vak) dr = Vait)
1) Ix Qx.t) Ox \/4kr A € i \/4k7rte

Not that Q (and S) are C®° functions on R X (0, c0) (because e* is C*°).

Definition (Fundamental solution)

The function S(x, t) is called the fundamental solution of u: = kuy x on the real line.

Theorem

The unique solution of the initial value problem (2) :

ur = kuy x on R X [0, 00)
u(x,0) = ¢(x) for x € R

where ¢ € CL(R) with ¢(x) — 0 if |x| = oo and k >0 is

u(x, t) = /_ ~ S(x—y, )ply)dy.
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Proof.

We already saw that u(x, t) is indeed a solution of u; = kux,x on R x (0, c0).

We only need to check the initial value condition. For that we compute the following:

> 9
u(x,t):[ 52

==y o)+ [ Q- v 08 )y

Qs = [ a% [Q(x — v, )] 6(y)dy

zZ=X— —

Since ¢(x) — 0 for |x| — oo, it follows
oo
uxt) = [ Q=06 )y, £ >o0.
Moreover
. _ R _ ’
lim u(x,t) = /_oo lim Qx —y, t)¢'(v)dy
oo o0
= [ tpax =08y = [ 1y =06 )y
= [ d0dy = o0,
Uniqueness follows by the enery method.
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