MAT351 Partial Differential Equations Lecture 11

October 21, 2020

Last lecture:

Initial value problem for the diffusion equation:

$$u_t = ku_{x,x} \quad \text{on } \mathbb{R} \times (0,\infty)$$

$$u(x,0) = \phi(x) \quad \text{for } x \in \mathbb{R}.$$
(1)

 $\phi \in C^1(\mathbb{R})$ and k > 0. For ϕ we assumed that ϕ is integrable and $\phi(x) \to 0$ if $|x| \to \infty$.

To solve this initial value problem we first solved the following problem

$$u_t = ku_{x,x}$$
 on $\mathbb{R} \times (0,\infty)$
 $u(x,0) = \psi(x)$ for $x \in \mathbb{R}$

where

$$\psi(x) = egin{cases} 0 & x < 0 \ 1 & x > 0 \end{cases}$$

and arbitrary value in x = 0.

The initial value conditions are understood in the sense that $\lim_{t\downarrow 0} u(x, t) = \phi(x)$ and $\lim_{t\downarrow 0} u(x, t) = \psi(x)$ respectively.

For the second problem we constructed a solution "by hand":

$$Q(x,t) = \frac{1}{\sqrt{4k\pi}} \int_0^{\frac{x}{\sqrt{t}}} e^{-\left(\frac{\tau}{\sqrt{4k}}\right)^2} d\tau + \frac{1}{2}$$

Then we defined

Fundamental solution of diffusion equation on $\mathbb R$

$$S(x,t) = rac{\partial}{\partial x}Q(x,t) = rac{1}{\sqrt{4k\pi t}}e^{-\left(rac{x}{\sqrt{4kt}}
ight)^2}$$
 $t > 0$ and $x \in \mathbb{R}$.

The function S(x, t) is known as Green's function, the source function or propagator of the diffusion equation on \mathbb{R} .

Theorem

A solution of the initial value problem (??) is given by

$$u(x,t) = \int_{-\infty}^{\infty} S(x-y,t)\phi(y)dy.$$

The function

$$S(x-y,t) = p(x,y,t) = \frac{1}{\sqrt{4k\pi t}} e^{-\left(\frac{x-y}{\sqrt{4kt}}\right)^2}$$

is also know as the heat or diffusion kernel on \mathbb{R} .

Proof.

We already saw that u(x, t) is indeed a solution of $u_t = ku_{x,x}$ on $\mathbb{R} \times (0, \infty)$.

We only need to check the initial value condition. For that we compute the following:

$$u(x,t) = \int_{-\infty}^{\infty} \frac{\partial}{\partial z} \Big|_{z=x-y} Q(z,t)\phi(y)dy = -\int_{-\infty}^{\infty} \frac{\partial}{\partial y} \left[Q(x-y,t)\right]\phi(y)dy$$
$$= -Q(x-y,t)\phi(y)\Big|_{y=-\infty}^{y=\infty} + \int_{-\infty}^{\infty} Q(x-y,t)\phi'(y)dy.$$

Since $\phi(x) \to 0$ for $|x| \to \infty$, it follows

$$u(x,t) = \int_{-\infty}^{\infty} Q(x-y,t)\phi'(y)dy, \quad t>0.$$

Moreover

$$\begin{split} \lim_{t\downarrow 0} u(x,t) &= \int_{-\infty}^{\infty} \lim_{t\downarrow 0} Q(x-y,t)\phi'(y)dy \\ &= \int_{-\infty}^{\infty} \mathbf{1}_{[0,\infty)}(x-y)\phi'(y)dy = \int_{-\infty}^{\infty} \mathbf{1}_{(-\infty,0]}(y-x)\phi'(y)dy \\ &= \int_{-\infty}^{x} \phi'(y)dy = \phi(x). \end{split}$$

Properties of the fundamental solution

- S(x,t) > 0 for all $(x,t) \in \mathbb{R} \times (0,\infty)$.
- We compute that

$$\int_{-\infty}^{\infty} S(x-y,t)dy = \int_{-\infty}^{\infty} S(y,t)dy = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{4kt}} e^{-\left(\frac{y}{\sqrt{4kt}}\right)^2} dy = \frac{1}{\sqrt{\pi}} \int e^{-x^2} dx = 1.$$

• The solution $u(x,t) = \int S(x-y,t)\phi(y)$ is in $C^{\infty}(\mathbb{R} \times (0,\infty))$.

• We have

$$\max_{\{x \in \mathbb{R}: |x| \geq \delta\}} S(x,t) \leq \frac{1}{\sqrt{4k\pi t}} e^{-\left(\frac{\delta}{\sqrt{4kt}}\right)^2} \to 0 \text{ when } t \downarrow 0.$$

In particular $S(x, t) \rightarrow 0$ for all $x \neq 0$ as $t \downarrow 0$.

• S(x, 0) is not defined.

But we computed

$$\lim_{t\downarrow 0} u(x,t) = \lim_{t\downarrow 0} \int_{-\infty}^{\infty} S(x-y,t)\phi(y)dy = \phi(x).$$

Hence, we can interpret $y \mapsto S(x - y, 0)$ not as function but as a linear operators δ_x on $C^1(\mathbb{R})$:

$$\delta_x(\phi) = \phi(x).$$

The operator δ_x is an example for a **distribution**, the *Dirac* δ_x *distribution*.

Distributions

Distributions are generalized functions.

We define $\mathcal{D} = C_c^{\infty}(\mathbb{R})$, the set of C^{∞} functions ϕ with $\phi(x) = 0$ for $|x| \ge R$ for some R > 0. We say ϕ has compact support.

Definition (Distributions)

A distribution is continuous linear map $\mathcal{F}: \mathcal{D} \to \mathbb{R}$.

What means continuous in this context?

Let us first define a notion of convergence on \mathcal{D} . Consider $\phi_i, \phi \in \mathcal{D}$, $i \in \mathbb{N}$.

We say $\phi_i \to \phi$ in \mathcal{D} if

$$\max_{x\in\mathbb{R}} |\phi_i(x) - \phi(x)| \to 0 \text{ and } \max_{x\in\mathbb{R}} \left| \frac{d^k}{dr} \phi_i(x) - \frac{d^k}{dr} \phi(x) \right| \to 0, \ \, \forall k\in\mathbb{N}.$$

Then we say a linear map $\mathcal{F}: \mathcal{D} \to \mathbb{R}$ is continuous if

$$\mathcal{F}(\phi_n) \to \mathcal{F}(\phi)$$
 whenever $\phi_n \to \phi$ in \mathcal{D} .

The concept of distribution allows us to make sense of "S(x, 0)" as the distribution δ_0 .

Examples

() Let $f : \mathbb{R} \to \mathbb{R}$ be an integrable function. Then

$$\mathcal{F}(\phi) = \int_{-\infty}^{\infty} f(x)\phi(x)dx$$

is a distribution.

We see \mathcal{F} is linear. Let's check continuity of \mathcal{F} . Consider $\phi_n \to \phi \in \mathcal{D}$. Then $|\mathcal{F}(\phi_n) - \mathcal{F}(\phi)| \leq \int |f(x)| |\phi_n(x) - \phi(x)| dx \leq \max_{x \in \mathbb{R}} |\phi_n(x) - \phi(x)| \int |f(x)| dx \to 0.$ Hence \mathcal{F} is indeed a distribution.

The example shows that we can think of functions as distributions.

2 Let f be as before. Then

$$\mathcal{G}(\phi) = \int_{-\infty}^{\infty} f(x)\phi'(x)dx$$

is a distribution. Continuity follows as in the previous example.

Now, if
$$f \in C^1(\mathbb{R})$$
, then $\mathcal{G}(\phi) = -\int_{-\infty}^{\infty} f'(x)\phi(x)dx$.
The function f' represents the distribution \mathcal{G} .

The concept of distributions now allows us to define derivatives for functions that are not differentiable in the classical sense.

Derivatives in distributional sense

Definition

We say a locally integrable function $f : \mathbb{R} \to \mathbb{R}$ has a derivative in distributional sense if there exists a distribution $\mathcal{G} : \mathcal{D} \to \mathbb{R}$ such that

$$\int f(x)\phi'(x)dx = \mathcal{G}(\phi) \; \forall \phi \in \mathcal{D}.$$

Example

• Every C^1 function has a derivative in distributional sense:

$$\int f(x)\phi'(x)dx = -\int f'(x)\phi(x)dx$$

and the right hand side defines a distribution.

• The function f(x) = 0 for x < 0 & f(x) = x for $x \ge 0$ has a derivative in distributional sense:

$$\int f(x)\phi'(x)dx = \int_0^\infty x\phi(x)dx = x\phi(x)\big|_0^\infty - \int_0^\infty \phi(x)dx = -\int_{-\infty}^\infty \psi(x)\phi(x)dx$$

and derivative is represented by ψ .

Question: Has the function

$$\psi(x) = egin{cases} 0 & x < 0 \ 1 & x \ge 1 \end{cases}$$

a distributional derivative? If yes, what is it?

We can compute the distributional derivative using the S(x, t):

$$\int \psi(x)\phi'(x)dx = \int_0^\infty \phi'(x) = \lim_{t\downarrow 0} \int Q(x,t)\phi'(x)dx = \lim_{t\downarrow 0} \int S(x,t)\phi(x)dx = \phi(0) = \delta_0(\phi)$$

So indeed ψ has a derivative in distributional sense but it cannot be represented as function!

Physical Intepretations of S(x, t).

The fundamental solution S(x - y, t) describes the diffusion of a substance.

For any time t > 0 the total mass is 1.

Initially at time t = 0 the substance completely concentrated in y.

We can see the convolution $\int S(x - y, t)\phi(y)dy$ also as follows. For t > 0 we can approximate the integral via a Riemann sum:

$$\int_{-\infty}^{\infty} S(x-y,t)\phi(y)dy \sim \sum_{i=1}^{n} S(x-y_i,t)\phi(y_i)\Delta y_i$$

where $\{y_0 \leq y_1 \leq \cdots \leq y_n\} \subset \mathbb{R}$ with $n \in \mathbb{N} \uparrow \infty$ and $\Delta y_i = y_i - y_{i-1}$.

On the right hand side we have a sum that is the mean value in space of the family

$$S(x - y_i, t)$$
 weighted with $\phi(y_i), i = 1, ..., n$.

Consequently, we can interpret $\int S(x - y, t)\phi(y)dy$ as the limit of these mean values when we let the number of points go to infinity.

Probabilistic interpretation of S(x, t)

The fundamental solution is the transition probability density of Brownian motion in \mathbb{R} . What does that mean? If a particle in 0 at time t = 0 follows a "random path" then

$$\int_a^b S(-y,t) dy$$

is the probability that we will find this particle at time t > 0 in the interval [a, b].

Back to Uniqueness

Lemma

Let $\phi \in C^1(\mathbb{R})$ with $\phi(x) \to 0$ for $|x| \to \infty$. We consider

$$u(x,t) = \int_{-\infty}^{\infty} S(x-y,t)\phi(y)dy.$$

Then, for t > 0 fixed, $u(x, t) \rightarrow 0$ for $|x| \rightarrow \infty$.

Proof. We pick $\epsilon > 0$. Let $R(\epsilon) > 0$ such that $|\phi(x)| \le \epsilon$ for $|x| \ge R$ for $R \ge R(\epsilon)$. We fix such an $R > R(\epsilon)$. We pick $R > R(\epsilon)$ such that

$$S(R,t) = \frac{1}{\sqrt{4k\pi t}}e^{-\left(\frac{R}{\sqrt{4kt}}\right)^2} \leq \epsilon.$$

Consider a sequence $(x_n)_{n\in\mathbb{N}}$ with $|x_n| \to \infty$, and let $N \in \mathbb{N}$ such that $|x_n| \ge 2R$ for $n \ge N$. Let $n \ge \mathbb{N}$. Then

$$u(x_n, t) = \int_{x_n-R}^{x_n+R} S(x_n - y)\phi(y)dy + \int_{\{y \in \mathbb{R} : |x_n - y| > R\}} S(x_n - y)\phi(y)dy.$$

We write $\{y \in \mathbb{R} : |x_n - y| > R\} = \{|x_n - y| > R\}$ in the following.

Hence

$$|u(x_n,t)| \leq \left|\int_{x_n-R}^{x_n+R} S(x_n-y)\phi(y)dy\right| + \left|\int_{\{|x_n-y|>R\}} S(x_n-y)\phi(y)dy\right|.$$

The second integral on the right hand side can be estimated as follows

$$\begin{aligned} \left| \int_{\{|x_n-y|>R\}} S(x_n-y)\phi(y)dy \right| &\leq \int_{\{|x_n-y|>R\}} \frac{1}{\sqrt{4k\pi t}} e^{-\left(\frac{R}{\sqrt{4kt}}\right)^2} |\phi(y)| \, dy \\ &\leq \epsilon \int_{\{|x_n-y|>R\}} |\phi(y)| \, dy \leq \epsilon \int |\phi(y)| \, dy. \end{aligned}$$

If $|x_n - y| \le R$, then $|y| \ge |x_n| - |x_n - y| \ge |x_n| - R \ge 2R - R = R$. Therefore, the first integral on the right hand side becomes

$$\left|\int_{x_n-R}^{x_n+R} S(x_n-y)\phi(y)dy\right| \leq \epsilon \int_{x_n-R}^{x_n+R} S(x_n-y)dy \leq \epsilon \int S(x_n-y,t)dy \leq \epsilon.$$

We can conclude that for $n \ge N$ it follows that

$$|u(x_n,t)| \leq \epsilon + \epsilon \int |\phi(y)| dy$$

Therefore

$$\limsup_{n\to\infty} |u(x_n,t)| \leq \epsilon (1+\int |\phi(y)| dy) \,\, \forall \epsilon > 0 \Rightarrow \,\, \limsup_{n\to\infty} |u(x_n,t)| \leq 0 \,\, \Rightarrow \,\, \lim_{n\to\infty} |u(x_n,t)| = 0.$$

Theorem (Existence and Uniqueness)

The initial value problem

$$u_t = k u_{x,x} \quad \text{on } \mathbb{R} \times (0,\infty)$$

$$u(x,0) = \phi(x) \quad \text{for } x \in \mathbb{R}$$
(2)

for $\phi \in C^1(\mathbb{R})$ with $\phi(x) \to 0$ if $|x| \to \infty$ and k > 0 has a unique solution u(x, t) with $u(x, t) \to 0$ if $|x| \to \infty$.

Proof. Assume there are 2 solutions $u^1(x,t)$ and $u^2(x,t)$ with $u^1(x,t), u^2(x,t) \to 0$ for $|x| \to \infty$.

Then we consider
$$u=u^1-u^2$$
 and also $u(x,t)
ightarrow 0$ if $|x|
ightarrow \infty$.

Now we apply the energy method

$$\frac{d}{dt}\int \frac{1}{2}[u(x,t)]^2dx = \int u_t(x,t)u(x,t)dx = \int ku_{x,x}(x,t)u(x,t)dx$$

Hence

$$\frac{d}{dt}\int \frac{1}{2}[u(x,t)]^2 dx = ku_x(x,t)u(x,t)\Big|_{x=-\infty}^{x=\infty} - \int (u_x(x,t))^2 dx \le 0.$$

It follows that

$$\int \frac{1}{2} [u(x,t)]^2 dx \leq \int \frac{1}{2} [u(x,\epsilon)]^2 \to 0.$$

Hence u = 0 and $u^1 = u^2$.