MAT351 Partial Differential Equations Lecture 11

October 21, 2020

Last lecture:

Initial value problem for the diffusion equation:

$$
\begin{array}{clc}
u_{t} & =k u_{x, x} & \text { on } \mathbb{R} \times(0, \infty) \tag{1}\\
u(x, 0) & =\phi(x) & \text { for } x \in \mathbb{R} .
\end{array}
$$

$\phi \in C^{1}(\mathbb{R})$ and $k>0$. For ϕ we assumed that ϕ is integrable and $\phi(x) \rightarrow 0$ if $|x| \rightarrow \infty$.
To solve this initial value problem we first solved the following problem

$$
\begin{array}{ccc}
u_{t} & =k u_{x, x} & \text { on } \mathbb{R} \times(0, \infty) \\
u(x, 0) & =\psi(x) & \text { for } x \in \mathbb{R}
\end{array}
$$

where

$$
\psi(x)= \begin{cases}0 & x<0 \\ 1 & x>0\end{cases}
$$

and arbitrary value in $x=0$.

The initial value conditions are understood in the sense that $\lim _{t \downarrow 0} u(x, t)=\phi(x)$ and $\lim _{t \downarrow 0} u(x, t)=\psi(x)$ respectively.

For the second problem we constructed a solution "by hand":

$$
Q(x, t)=\frac{1}{\sqrt{4 k \pi}} \int_{0}^{\frac{x}{\sqrt{t}}} e^{-\left(\frac{\tau}{\sqrt{4 k}}\right)^{2}} d \tau+\frac{1}{2}
$$

Then we defined

Fundamental solution of diffusion equation on \mathbb{R}

$$
S(x, t)=\frac{\partial}{\partial x} Q(x, t)=\frac{1}{\sqrt{4 k \pi t}} e^{-\left(\frac{x}{\sqrt{4 k t}}\right)^{2}} \quad t>0 \text { and } x \in \mathbb{R}
$$

The function $S(x, t)$ is known as Green's function, the source function or propagator of the diffusion equation on \mathbb{R}.

Theorem

A solution of the initial value problem (??) is given by

$$
u(x, t)=\int_{-\infty}^{\infty} S(x-y, t) \phi(y) d y
$$

The function

$$
S(x-y, t)=p(x, y, t)=\frac{1}{\sqrt{4 k \pi t}} e^{-\left(\frac{x-y}{\sqrt{4 k t}}\right)^{2}}
$$

is also know as the heat or diffusion kernel on \mathbb{R}.

Proof.

We already saw that $u(x, t)$ is indeed a solution of $u_{t}=k u_{x, x}$ on $\mathbb{R} \times(0, \infty)$.
We only need to check the initial value condition. For that we compute the following:

$$
\begin{aligned}
u(x, t) & =\left.\int_{-\infty}^{\infty} \frac{\partial}{\partial z}\right|_{z=x-y} Q(z, t) \phi(y) d y=-\int_{-\infty}^{\infty} \frac{\partial}{\partial y}[Q(x-y, t)] \phi(y) d y \\
& =-\left.Q(x-y, t) \phi(y)\right|_{y=-\infty} ^{y=\infty}+\int_{-\infty}^{\infty} Q(x-y, t) \phi^{\prime}(y) d y
\end{aligned}
$$

Since $\phi(x) \rightarrow 0$ for $|x| \rightarrow \infty$, it follows

$$
u(x, t)=\int_{-\infty}^{\infty} Q(x-y, t) \phi^{\prime}(y) d y, \quad t>0
$$

Moreover

$$
\begin{aligned}
\lim _{t \downarrow 0} u(x, t) & =\int_{-\infty}^{\infty} \lim _{t \downarrow 0} Q(x-y, t) \phi^{\prime}(y) d y \\
& =\int_{-\infty}^{\infty} 1_{[0, \infty)}(x-y) \phi^{\prime}(y) d y=\int_{-\infty}^{\infty} 1_{(-\infty, 0]}(y-x) \phi^{\prime}(y) d y \\
& =\int_{-\infty}^{x} \phi^{\prime}(y) d y=\phi(x)
\end{aligned}
$$

Properties of the fundamental solution

- $S(x, t)>0$ for all $(x, t) \in \mathbb{R} \times(0, \infty)$.
- We compute that

$$
\int_{-\infty}^{\infty} S(x-y, t) d y=\int_{-\infty}^{\infty} S(y, t) d y=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{4 k t}} e^{-\left(\frac{y}{\sqrt{4 k t}}\right)^{2}} d y=\frac{1}{\sqrt{\pi}} \int e^{-x^{2}} d x=1
$$

- The solution $u(x, t)=\int S(x-y, t) \phi(y)$ is in $C^{\infty}(\mathbb{R} \times(0, \infty))$.
- We have

$$
\max _{\{x \in \mathbb{R}:|x| \geq \delta\}} S(x, t) \leq \frac{1}{\sqrt{4 k \pi t}} e^{-\left(\frac{\delta}{\sqrt{4 k t}}\right)^{2}} \rightarrow 0 \text { when } t \downarrow 0 .
$$

In particular $S(x, t) \rightarrow 0$ for all $x \neq 0$ as $t \downarrow 0$.

- $S(x, 0)$ is not defined.

But we computed

$$
\lim _{t \downarrow 0} u(x, t)=\lim _{t \downarrow 0} \int_{-\infty}^{\infty} S(x-y, t) \phi(y) d y=\phi(x) .
$$

Hence, we can interpret $y \mapsto S(x-y, 0)$ not as function but as a linear operators δ_{x} on $C^{1}(\mathbb{R}):$

$$
\delta_{x}(\phi)=\phi(x)
$$

The operator δ_{x} is an example for a distribution, the Dirac δ_{x} distribution.

Distributions

Distributions are generalized functions.
We define $\mathcal{D}=C_{c}^{\infty}(\mathbb{R})$, the set of C^{∞} functions ϕ with $\phi(x)=0$ for $|x| \geq R$ for some $R>0$. We say ϕ has compact support.

Definition (Distributions)

A distribution is continuous linear map $\mathcal{F}: \mathcal{D} \rightarrow \mathbb{R}$.

What means continuous in this context?
Let us first define a notion of convergence on \mathcal{D}. Consider $\phi_{i}, \phi \in \mathcal{D}, i \in \mathbb{N}$.
We say $\phi_{i} \rightarrow \phi$ in \mathcal{D} if

$$
\max _{x \in \mathbb{R}}\left|\phi_{i}(x)-\phi(x)\right| \rightarrow 0 \text { and } \max _{x \in \mathbb{R}}\left|\frac{d^{k}}{d r} \phi_{i}(x)-\frac{d^{k}}{d r} \phi(x)\right| \rightarrow 0, \quad \forall k \in \mathbb{N} .
$$

Then we say a linear map $\mathcal{F}: \mathcal{D} \rightarrow \mathbb{R}$ is continuous if

$$
\mathcal{F}\left(\phi_{n}\right) \rightarrow \mathcal{F}(\phi) \text { whenever } \phi_{n} \rightarrow \phi \text { in } \mathcal{D} .
$$

The concept of distribution allows us to make sense of " $S(x, 0)^{\prime \prime}$ as the distribution δ_{0}.

Examples

(1) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an integrable function. Then

$$
\mathcal{F}(\phi)=\int_{-\infty}^{\infty} f(x) \phi(x) d x
$$

is a distribution.
We see \mathcal{F} is linear. Let's check continuity of \mathcal{F}. Consider $\phi_{n} \rightarrow \phi \in \mathcal{D}$. Then

$$
\left|F\left(\phi_{n}\right)-\mathcal{F}(\phi)\right| \leq \int|f(x)|\left|\phi_{n}(x)-\phi(x)\right| d x \leq \max _{x \in \mathbb{R}}\left|\phi_{n}(x)-\phi(x)\right| \int|f(x)| d x \rightarrow 0
$$

Hence \mathcal{F} is indeed a distribution.
The example shows that we can think of functions as distributions.
(2) Let f be as before. Then

$$
\mathcal{G}(\phi)=\int_{-\infty}^{\infty} f(x) \phi^{\prime}(x) d x
$$

is a distribution. Continuity follows as in the previous example.
Now, if $f \in C^{1}(\mathbb{R})$, then $\mathcal{G}(\phi)=-\int_{-\infty}^{\infty} f^{\prime}(x) \phi(x) d x$.
The function f^{\prime} represents the distribution \mathcal{G}.
The concept of distributions now allows us to define derivatives for functions that are not differentiable in the classical sense.

Derivatives in distributional sense

Definition

We say a locally integrable function $f: \mathbb{R} \rightarrow \mathbb{R}$ has a derivative in distributional sense if there exists a distribution $\mathcal{G}: \mathcal{D} \rightarrow \mathbb{R}$ such that

$$
\int f(x) \phi^{\prime}(x) d x=\mathcal{G}(\phi) \forall \phi \in \mathcal{D}
$$

Example

- Every C^{1} function has a derivative in distributional sense:

$$
\int f(x) \phi^{\prime}(x) d x=-\int f^{\prime}(x) \phi(x) d x
$$

and the right hand side defines a distribution.

- The function $f(x)=0$ for $x<0 \& f(x)=x$ for $x \geq 0$ has a derivative in distributional sense:

$$
\int f(x) \phi^{\prime}(x) d x=\int_{0}^{\infty} x \phi(x) d x=\left.x \phi(x)\right|_{0} ^{\infty}-\int_{0}^{\infty} \phi(x) d x=-\int_{-\infty}^{\infty} \psi(x) \phi(x) d x
$$

and derivative is represented by ψ.

Question: Has the function

$$
\psi(x)= \begin{cases}0 & x<0 \\ 1 & x \geq 1\end{cases}
$$

a distributional derivative? If yes, what is it?
We can compute the distributional derivative using the $S(x, t)$:

$$
\int \psi(x) \phi^{\prime}(x) d x=\int_{0}^{\infty} \phi^{\prime}(x)=\lim _{t \downarrow 0} \int Q(x, t) \phi^{\prime}(x) d x=\lim _{t \downarrow 0} \int S(x, t) \phi(x) d x=\phi(0)=\delta_{0}(\phi)
$$

So indeed ψ has a derivative in distributional sense but it cannot be represented as function!

Physical Intepretations of $S(x, t)$.

The fundamental solution $S(x-y, t)$ describes the diffusion of a substance.
For any time $t>0$ the total mass is 1 .
Initally at time $t=0$ the substance completely concentrated in y.
We can see the convolution $\int S(x-y, t) \phi(y) d y$ also as follows. For $t>0$ we can approximate the integral via a Riemann sum:

$$
\int_{-\infty}^{\infty} S(x-y, t) \phi(y) d y \sim \sum_{i=1}^{n} S\left(x-y_{i}, t\right) \phi\left(y_{i}\right) \Delta y_{i}
$$

where $\left\{y_{0} \leq y_{1} \leq \cdots \leq y_{n}\right\} \subset \mathbb{R}$ with $n \in \mathbb{N} \uparrow \infty$ and $\Delta y_{i}=y_{i}-y_{i-1}$.
On the right hand side we have a sum that is the mean value in space of the family

$$
S\left(x-y_{i}, t\right) \text { weighted with } \phi\left(y_{i}\right), i=1, \ldots, n .
$$

Consequently, we can interpret $\int S(x-y, t) \phi(y) d y$ as the limit of these mean values when we let the number of points go to infinity.

Probabilistic interpretation of $S(x, t)$

The fundamental solution is the transition probability density of Brownian motion in \mathbb{R}. What does that mean? If a particle in 0 at time $t=0$ follows a "random path" then

$$
\int_{a}^{b} S(-y, t) d y
$$

is the probability that we will find this particle at time $t>0$ in the interval $[a, b]$.

Back to Uniqueness

Lemma

Let $\phi \in C^{1}(\mathbb{R})$ with $\phi(x) \rightarrow 0$ for $|x| \rightarrow \infty$. We consider

$$
u(x, t)=\int_{-\infty}^{\infty} S(x-y, t) \phi(y) d y
$$

Then, for $t>0$ fixed, $u(x, t) \rightarrow 0$ for $|x| \rightarrow \infty$.

Proof. We pick $\epsilon>0$. Let $R(\epsilon)>0$ such that $|\phi(x)| \leq \epsilon$ for $|x| \geq R$ for $R \geq R(\epsilon)$. We fix such an $R>R(\epsilon)$. We pick $R>R(\epsilon)$ such that

$$
S(R, t)=\frac{1}{\sqrt{4 k \pi t}} e^{-\left(\frac{R}{\sqrt{4 k t}}\right)^{2}} \leq \epsilon
$$

Consider a sequence $\left(x_{n}\right)_{n \in \mathbb{N}}$ with $\left|x_{n}\right| \rightarrow \infty$, and let $N \in \mathbb{N}$ such that $\left|x_{n}\right| \geq 2 R$ for $n \geq N$. Let $n \geq \mathbb{N}$. Then

$$
u\left(x_{n}, t\right)=\int_{x_{n}-R}^{x_{n}+R} S\left(x_{n}-y\right) \phi(y) d y+\int_{\left\{y \in \mathbb{R}:\left|x_{n}-y\right|>R\right\}} S\left(x_{n}-y\right) \phi(y) d y
$$

We write $\left\{y \in \mathbb{R}:\left|x_{n}-y\right|>R\right\}=\left\{\left|x_{n}-y\right|>R\right\}$ in the following.

Hence

$$
\left|u\left(x_{n}, t\right)\right| \leq\left|\int_{x_{n}-R}^{x_{n}+R} S\left(x_{n}-y\right) \phi(y) d y\right|+\left|\int_{\left\{\left|x_{n}-y\right|>R\right\}} S\left(x_{n}-y\right) \phi(y) d y\right|
$$

The second integral on the right hand side can be estimated as follows

$$
\begin{gathered}
\left|\int_{\left\{\left|x_{n}-y\right|>R\right\}} S\left(x_{n}-y\right) \phi(y) d y\right| \leq \int_{\left\{\left|x_{n}-y\right|>R\right\}} \frac{1}{\sqrt{4 k \pi t}} e^{-\left(\frac{R}{\sqrt{4 k t}}\right)^{2}}|\phi(y)| d y \\
\leq \epsilon \int_{\left\{\left|x_{n}-y\right|>R\right\}}|\phi(y)| d y \leq \epsilon \int|\phi(y)| d y
\end{gathered}
$$

If $\left|x_{n}-y\right| \leq R$, then $|y| \geq\left|x_{n}\right|-\left|x_{n}-y\right| \geq\left|x_{n}\right|-R \geq 2 R-R=R$. Therefore, the first integral on the right hand side becomes

$$
\left|\int_{x_{n}-R}^{x_{n}+R} S\left(x_{n}-y\right) \phi(y) d y\right| \leq \epsilon \int_{x_{n}-R}^{x_{n}+R} S\left(x_{n}-y\right) d y \leq \epsilon \int S\left(x_{n}-y, t\right) d y \leq \epsilon
$$

We can conclude that for $n \geq N$ it follows that

$$
\left|u\left(x_{n}, t\right)\right| \leq \epsilon+\epsilon \int|\phi(y)| d y
$$

Therefore

$$
\limsup _{n \rightarrow \infty}\left|u\left(x_{n}, t\right)\right| \leq \epsilon\left(1+\int|\phi(y)| d y\right) \forall \epsilon>0 \Rightarrow \limsup _{n \rightarrow \infty}\left|u\left(x_{n}, t\right)\right| \leq 0 \Rightarrow \lim _{n \rightarrow \infty}\left|u\left(x_{n}, t\right)\right|=0
$$

Theorem (Existence and Uniqueness)

The initial value problem

$$
\begin{array}{ccc}
u_{t} & =k u_{x, x} & \text { on } \mathbb{R} \times(0, \infty) \\
u(x, 0) & =\phi(x) & \text { for } x \in \mathbb{R} \tag{2}
\end{array}
$$

for $\phi \in C^{1}(\mathbb{R})$ with $\phi(x) \rightarrow 0$ if $|x| \rightarrow \infty$ and $k>0$ has a unique solution $u(x, t)$ with $u(x, t) \rightarrow 0$ if $|x| \rightarrow \infty$.

Proof. Assume there are 2 solutions $u^{1}(x, t)$ and $u^{2}(x, t)$ with $u^{1}(x, t), u^{2}(x, t) \rightarrow 0$ for $|x| \rightarrow \infty$.
Then we consider $u=u^{1}-u^{2}$ and also $u(x, t) \rightarrow 0$ if $|x| \rightarrow \infty$.
Now we apply the energy method

$$
\frac{d}{d t} \int \frac{1}{2}[u(x, t)]^{2} d x=\int u_{t}(x, t) u(x, t) d x=\int k u_{x, x}(x, t) u(x, t) d x
$$

Hence

$$
\frac{d}{d t} \int \frac{1}{2}[u(x, t)]^{2} d x=\left.k u_{x}(x, t) u(x, t)\right|_{x=-\infty} ^{x=\infty}-\int\left(u_{x}(x, t)\right)^{2} d x \leq 0
$$

It follows that

$$
\int \frac{1}{2}[u(x, t)]^{2} d x \leq \int \frac{1}{2}[u(x, \epsilon)]^{2} \rightarrow 0 .
$$

Hence $u=0$ and $u^{1}=u^{2}$.

