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Last lecture:

Initial value problem for the diffusion equation:

ut = kux,x onR x (0,00) (1)
u(x,0) = ¢(x) for x € R.
¢ € CL(R) and k > 0. For ¢ we assumed that ¢ is integrable and ¢(x) — 0 if |x| — oo.
To solve this initial value problem we first solved the following problem
ur = kuxx onRx(0,00)
u(x,0) = P(x) for x e R
where
0 x<0
vl = {1 x>0
and arbitrary value in x = 0.
V.
The initial value conditions are understood in the sense that limy g u(x, t) = ¢(x) and
limgo u(x, t) = 1(x) respectively.
v
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For the second problem we constructed a solution “by hand":
X 2
1 NG _(L) 1
Q(x,t) = 7/ e Vak) dr 4+ =
() Vakr Jo 2
Then we defined

Fundamental solution of diffusion equation on R

2
S(x,t) = BEQ(X, t) = ! e_(\/ﬁ) t>0and x € R.
X Tt

The function S(x, t) is known as Green’s function, the source function or propagator of the
diffusion equation on R.

Theorem

A solution of the initial value problem (7?) is given by

w6 = [ S(x=y 08()dy.

The function

1
S(X_y7t):p(x7y7t):\/m

is also know as the heat or diffusion kernel on R.
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Proof.

We already saw that u(x, t) is indeed a solution of u; = kuy,x on R x (0, 00).
We only need to check the initial value condition. For that we compute the following:

o= [ 2
oo 0z

> 9
@z )6()dy = - / ety ey

= QU =y o+ [ =y ) ().
Since ¢(x) — 0 for |x| — oo, it follows
u(x, t) = /:; Qlx —y, )¢/ (y)dy, t>0.
Moreover
i () = /_ ‘: lim Q(x =y, )¢ (y)dy
= [t 0y = [ 1 sqly =00 0)dy
= [ oy = ot

O
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Properties of the fundamental solution

S(x,t) > 0 for all (x,t) € R x (0,00).

We compute that

Yy

oo oo 1 S 1 _(7)2 1 2
S—,td:/ S,td:—/ e Md:—/eXd:l.
/_oo(xy)y . (y)y\/;r_oo T v = 7% x

The solution u(x, t) = [ S(x — y, t)¢(y) is in C°(R x (0, 0)).
We have
max  S(x,t) < ! e_<\/%)2 — 0 when t | 0.
(xeRilxI28} T Vakrt
In particular S(x, t) — 0 for all x # 0 as t | 0.
5(x,0) is not defined.

But we computed
oo
li =i - = .
i, £) = lim [~ S(x =y, 00(0)ey = o()

Hence, we can interpret y — S(x — y,0) not as function but as a linear operators 5 on
CL(R):

6x(¢) = ¢(x).

The operator dx is an example for a distribution, the Dirac dx distribution.
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Distributions

Distributions are generalized functions.

We define D = C°(R), the set of C* functions ¢ with ¢(x) = 0 for |x| > R for some R > 0.
We say ¢ has compact support.

Definition (Distributions) J

A distribution is continuous linear map F : D — R.

What means continuous in this context? J

Let us first define a notion of convergence on D. Consider ¢;,¢ € D, i € N.

We say ¢; — ¢ in D if
dk dk
max|¢i(x) — ¢(x)| = 0 and max|—-¢;(x) = —-d(x)| =0, VkeN.

Then we say a linear map F : D — R is continuous if

F(¢n) — F(¢p) whenever ¢, — ¢ in D.

The concept of distribution allows us to make sense of "/ S(x,0)"" as the distribution .
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Examples

@ Let f: R — R be an integrable function.Then

Fo) = [ fsd

is a distribution.
We see F is linear. Let's check continuity of 7. Consider ¢, — ¢ € D. Then

F(6n) = F@) < [ 1601 160(x) — 6] i < max|n(x) — 60| [ £l = 0.
Hence F is indeed a distribution.

The example shows that we can think of functions as distributions.

@ Let f be as before. Then
o0
9(6) = | £(8 ()
—o0
is a distribution. Continuity follows as in the previous example.

Now, if f € C1(R), then G(¢) = — / T P x)é(x)dx.

The function f’ represents the distribution G.

The concept of distributions now allows us to define derivatives for functions that are not
differentiable in the classical sense.
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Derivatives in distributional sense

Definition
We say a locally integrable function f : R — R has a derivative in distributional sense if there
exists a distribution G : D — R such that

[ 7696/ (dx = 6() 6 € .

Example

e Every C! function has a derivative in distributional sense:
/ FO)$ (x)dx = — / £ (x)(x)dx

and the right hand side defines a distribution.
@ The function f(x) = 0 for x < 0 & f(x) = x for x > 0 has a derivative in distributional sense:

[ 0 (yae= /0 ~ xp(x)dx = x(x)[3° — /0 " otaax=- [ Z B(x)$(x)lx

and derivative is represented by .
V.
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Question: Has the function

0 0
w(X):{l iil

a distributional derivative? If yes, what is it?

We can compute the distributional derivative using the S(x, t):

[ w96 de = /0 600 tim [ @09/ =tim [ S(x, ()= 6(0) = do(9)

So indeed 1) has a derivative in distributional sense but it cannot be represented as function!
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Physical Intepretations of S(x, t).

The fundamental solution S(x — y, t) describes the diffusion of a substance.
For any time t > 0 the total mass is 1.
Initally at time t = 0 the substance completely concentrated in y.

We can see the convolution [ S(x — y, t)¢(y)dy also as follows. For t > 0 we can approximate
the integral via a Riemann sum:

[ stx=y06)dy ~ 3 S0x— v 0000)
- i=1

where {yo < y1 <+ <y} CRwith n€Ntooand Ay; =y; — yi_1.

On the right hand side we have a sum that is the mean value in space of the family

S(x — yi, t) weighted with ¢(y;),i =1,...,n.

Consequently, we can interpret [ S(x — y, t)¢(y)dy as the limit of these mean values when we let
the number of points go to infinity.
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Probabilistic interpretation of S(x, t)

The fundamental solution is the transition probability density of Brownian motion in R.

What does that mean? If a particle in 0 at time t = O follows a “random path” then

/a " S(—y. t)dy

is the probability that we will find this particle at time t > 0 in the interval [a, b].
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Back to Uniqueness

Lemma
Let ¢ € CH(R) with ¢(x) — O for |x| — co. We consider

w6 = [ S(x =y 6()dy.

Then, for t > 0 fixed, u(x,t) — 0 for |x| — oco.

Proof. We pick € > 0. Let R(e) > 0 such that |¢(x)| < € for |x| > R for R > R(e).We fix such
an R > R(e). We pick R > R(e) such that

L (&)
S(R,t) = me /) <e.

Consider a sequence (xn)nen With |x,| — oo, and let N € N such that |x,| > 2R for n > N.

Let n > N. Then

Xn+R
wnt) = [ S0xa = Y)o()dy + S0 — ¥)6(y)dy.
xn—R {yeR:|xp—y|>R}

We write {y € R: |xn —y| > R} = {|x» — y| > R} in the following.
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Hence

lu(xn, t)] <

xp+R
[ st - e +

n

S(xn — y)o(y)dy| .

{Ixn—y|>R}

The second integral on the right hand side can be estimated as follows

e (%) 16001 0y

1
/{|xn—y\>R} Véakmt

<e 6(y)| dy < ¢ / 16(y)] dy.
{Ixn—y|>R}

If |xo — y| < R, then |y| > |xa| — [xn — ¥| > |Xa| — R > 2R — R = R.Therefore, the first integral
on the right hand side becomes

‘ / S — y)d(y)dy| <
{Ixn—y|>R}

xn+R xn+R
/ S(xn — y)qﬁ(y)dy‘g e/ S(xn—y)dy < 5/5 —y,t)dy <e.
xp—R Xp—

We can conclude that for n > N it follows that

un )] < e+ [ 6]y
Therefore
limsup |u(xn, t)| < (1 + / |op(y)|dy) Ye >0 = limsup |u(xn, t)] <O = lim |u(xp,t)| = 0.
n—o0o n— o0 n— o0

O
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Theorem (Existence and Uniqueness)

The initial value problem

us =  kuxx onRx(0,00)

u(x,0) = ¢(x) for x € R )

for ¢ € CL(R) with ¢(x) — 0 if |x| — oo and k > 0 has a unique solution u(x, t) with
u(x,t) = 0 if |x| = oco.

v

Proof. Assume there are 2 solutions u!(x, t) and u?(x, t) with u'(x, t), u?(x,t) — 0 for |x| — co.

Then we consider u = u! — u? and also u(x,t) — 0 if |x| — co.

Now we apply the energy method

% / %[u(x7 t)]?dx = / ue(x, t)u(x, t)dx = /kux’x(x7 t)u(x, t)dx.
Hence
% %[u(x, £)Pdx = kux(x, t)u(x, t)):io - / (ux(x, £))2 dx < 0.

It follows that
1 1
/ a0 < / Sl 0.

Hence u =0 and u! = 2. O
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