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Equations with a source term

In the following we will study inhomogeneous, linear second order PDEs

For instance, consider the initial value problem for diffusion equation with a source term:
Diffusion equation with a source term
Let f € CO(R x (0, 0)).
ur — kuxx = f(x,t) on R x(0,00)
u(x,0)

¢(x) on R.

The physical interpretation of this equation is, for instance, the heat evolution of an infinitely
long rod with an initial temperatur ¢ and a source (or sink) of heat at later times.

Remark

If we define A = kaa—;, then A is linear operator that goes from C2(R) to C°(R).

Then the inhomogeneous diffusion equation then takes the form

%u(t) = Au(t) + f(t) t > 0 and u(0) = ¢ € C1(R)

where u(t) = u(-,t) € C?(R) and f(t) = f(-,t) € CO(R).
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Structural similarities with inhomogeneous ODEs
Recall the following ODE problem.

Let A € R"%",
d
Ev(t) = Av(t) + f(t), v(0)=w

where t € [0,00) — v(t), f(t) € R".

For f = 0 this is a homogeneous, linear ODE with constant coefficients.

The solution is given by t € [0, 00) — e vg.

tA

e is called the solution operator. J

Recall: In case A= BDB™! for a diagonal matrix D = (di,...,d,) then

e = B(et, ..., etdn)B 1 J

More general, one can find the operator e by means of the Jordan form for the matrix A.

The solution formula for the inhomogeneous problem with f # 0 is given by

t
u(t) = v —|—/ elt=9)Af(s5)ds. J
0
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Dunhamel’s principle

The solution formula for the inhomogeneous ODE is derived via Dunhamel’s principle.
Assume v(t) solves the inhomeogeneous problem. Assume S(—t) = e~ = [etA]71 exists.

Then we can compute

S(—t)f(t) = S(—t) {%v(t) - Av(t)} = 5(—t)%v(t) — S(—t)Av(t) = % [S(—t)v(t)].

The last equality is the product rule. Integrating from 0 to t > 0 gives
/Ot S(—s)f(s)ds = S(—t)v(t) — vo
Hence
v(t) = S(t)vo + S(t) /Ot S(—s)f(s)ds = S(t)vo + /Ot S(t — s)f(s)ds.

We can then check that this v(t) indeed satisfies the inhomogeneous ODE
d
(o) = S Steho+ 5 [ (= o)r(s)as
dt
= AS(t)wo + S(0)f(t) + / AS(t — s)f(s)ds
0
t
—A {S(t)vo + / S(t— s)f(s)ds} +F(t) = Av(t) + F(t).
0
Olmitizs 735, Z0F00
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The solution formula for ODEs gives us an idea how a solution formula for PDEs should look like.

We saw a version of this formula before in the case of inhomogeneous first order PDEs of the form

ur — aux = f(x,t) J

Here, the operator is given by A = a%. Then the PDE takes the form
ur = Au+ f(x,t)
Recall the solution of the homogeneous equation was given by

d(x + ta) = [S(t)¢] (x)

Dunhamel’s principle suggests the solution formula

v(t) =S(t)op + /Ot S(t — s)f(s)ds = ¢(x + at) + /Ot f(x + a(t —s),s)ds.

for the inhomogeneous problem.

This is exactly the formula that we already derived from the method of characteristics.
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Back to the inhomogeneous diffusion equation
The unique solution of the initial value problem

ut = Kux,x on R x (0, 00)
u(x,t) =0, |x|]— o0
u(x,0) = ¢(x) on R.

was given by

/jo S(x —y,t)p(y)dy =: S(t)p(x) where S(x,t) = ﬁei(\/fm) .

We can see S(t) : C}(R) — C?(R) as a family of solution operators.

Now we consider the same problem but with a source term f € C%(R x (0, c0)):
ur = kuy x + f(x,t) on R x (0, c0).

We also write f(s) for f(-,s). We assume |f(x, t)| < C.We prove the following theorem.

Theorem

The unique solution ofthe inhomogeneous problem is given by the formula

v(x, t) = [S(t)¢] (x) + /Ot[s(t = s)f(s)l(x)ds.
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Proof. We only check the existence statement.
First we compute vi= [S(t)¢], + / S(t — s)f(s)ds= k[S(t)¢], , / S(t — s)f(s)ds.
We consider the second term on the right hand side

d rt d [t oroo d rt

G Lste=or@ness =5 [ [ stx—yie =)ty apds = 5 [ (s 0pas
s € (—oo, t] — g(s, t) is continuous with

g(t7 t) = |I,?T'Ig(5, t) = 6X[f(7 t)] = f(X7 t)'
sTt

More precisely, we can compute

g.)= [ Stx—y.t-9)ily.s)dy

oo o0
= [ Syt =)y + [ St yie=9)(F(r.9) — v )y
— o0 — o0
For the first term it follows by computation as we did before that

lim /_00 S(x —y,t—s)f(y, t)dy = ox[f(t)] = f(x, t).

s—t

For the second we get

oo x+C
| Sty =y ldy = [ Syt = 9y, 5) = Ay ey
F Syt = 9)lflys) — (. ldy
{yilx=y>C
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Since f € CO(R x (0,00)), f is uniformily continuous on [x — C,x + C] x [t —n,t + ] for t > 0
and n > 0 sufficiently small such that t —n > 0.

In particular, given ¢ > 0 there exists §(C, €) > 0 such |f(y,s) — f(y, t)| < e for |s — t| < 4.
Therefore, for the first term on the right hand side in the last formula we have

x+C
o< [T Stx=yit = 9)lf(y5) ~ (vl < e
x—C
For the second term on the right hand side in the last formula we have

—2cke—C < /S(X . t— )y, s) — Fy, )] < 2CKe—C

because |f(y,s) — f(y,t)] < C and S(x — y,t —s) < Ke—C* on {y : |x — y| > C} for a constant
K > 0. So we can choose C such that 2CKe=¢ < e.

This considerations together imply that

slintg(s, t) = f(x,t) +2¢

and since € > 0 was arbitrary, the limit is f(x, t).
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Hence 7 € [0,00) — [ g(s, t)ds = [ [0 S(x —y,t —s)f(y,s)dyds is differentiable in t with

%/O-r g(S, t)ds = g(f_-7 t) — f(X, t).

Therefore

5 g(s t)ds = f(x, t)+/ fg s, t)ds

For the second term on the right hand side we calculate

/ i g(s, t)dt_// —S(x y,t—s)f(s) dyds_// ﬁS(X—y,t—s)f(s)dyds

_ // S(x—y,t—s)f(s)dyds—k[/ [S(t — 5)f(s)](x)ds

XX

So we computed v; = f(x,t) + k [S(t)(j) + [y S(t— s)f(s)ds]x E O
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Diffusion on the half line, Reflection method
We consider the Dirichlet problem for the diffusion equation:

Ut = kux,x onRx(0,00)
u(x,0) = ¢(x)  on[0,00) 1)
v(0,t) = 0 for t > 0.

To find a solution formula for this equation we apply the reflection method.
Consider the odd extension of ¢ to the real line:

P COREEEY
¢'odd( )_{—¢(—X) x < 0.

The corresponding initial value problem has the solution
o0
w6 = [ S(x= . 060ssly)a.
— 00
Since ¢odq is 0dd, also u(x, t) is odd, that is u(x, t) = —u(—x, t) (Exercise). Hence u(0,t) =0
and the restriction v of u to [0,00) x [0, c0) satisfies the Dirichlet boundary condition.

Hence v solves the Dirichlet problem for the diffusion equation with initial condition ¢.
A formula of v that only depends on ¢ (and not on ¢o4q or S(x, t) for x € R) is derived as follows

oo 0
v(x,t) = /0 S(x — v, )6(y)dy + /7 Sl . 0oual(y)ely
- /O [S(x — y, )6(y) + S(x — v, )$(—y)] dy= /O [S(x — y, ) = S(x + y, )] 6(y)dy.
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The solution of the problem (1) is given by the formula

v(x,t) = /0 T IS(x = v, £) = S(x +y, )] $(y)dy.

Similar, we can consider the Neumann problem for the diffusion equation:

ut kux,x on [0,00) X (0, c0)
u(x,0) = ¢(x) on R
vi(0, t) 0

for t > 0.

To derive a solution formula we apply the same strategy as for the Dirichlet problem:
We consider the following initial value problem for the diffusion equation on the real line

Ut t

u(x,0)

where

¢even(x) = {d)(X)

kux,x

on R x (0,00)
Peven(x) on R
x>0
P(—x) x<0

The solution of this initial value problem will be again even in x: u(x,t) = u(—x, t).
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Diffusion with source term on the half line

Now we consider

ur — kux x = f(x,t) on [0,00) x (0,00)
u(x,0) = o¢(x) on R
u(0, t) = h(t) for t > 0.

for a boundary source function h : [0, 00) — R in C1(]0, 00)).
A strategy to solve this problem is the Substraction method:

We consider v(x, t) = u(x, t) — h(t). If u € C?((0,00) x (0,00)) solves the previous problem,
then v € C2((0,00) x (0,00)) solves

vi —kvxx = f(x,t) —H(t) on [0,00) x (0,00)
v(x,0) = o(x) — h(0) on R
u(0, t) = 0 for t > 0.

To solve this problem we can apply the reflection method as we did for the equation with f =

Then one can check that v(x, t) + h(t) =: u(x, t) solves the problem (2).

MAT351 Partial Differential Equations Lecture 12 October 26, 2020

)

0.

12/12



