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Equations with a source term

In the following we will study inhomogeneous, linear second order PDEs

For instance, consider the initial value problem for diffusion equation with a source term:

Diffusion equation with a source term

Let f ∈ C0(R× (0,∞)).

ut − kux,x = f (x , t) on R× (0,∞)

u(x , 0) = φ(x) on R.

The physical interpretation of this equation is, for instance, the heat evolution of an infinitely
long rod with an initial temperatur φ and a source (or sink) of heat at later times.

Remark

If we define A = k ∂2

∂x2 , then A is linear operator that goes from C2(R) to C0(R).

Then the inhomogeneous diffusion equation then takes the form

d

dt
u(t) = Au(t) + f (t) t > 0 and u(0) = φ ∈ C1(R)

where u(t) = u(·, t) ∈ C2(R) and f (t) = f (·, t) ∈ C0(R).
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Structural similarities with inhomogeneous ODEs
Recall the following ODE problem.

Let A ∈ Rn×n.

d

dt
v(t) = Av(t) + f (t), v(0) = v0

where t ∈ [0,∞) 7→ v(t), f (t) ∈ Rn.

For f ≡ 0 this is a homogeneous, linear ODE with constant coefficients.

The solution is given by t ∈ [0,∞) 7→ etAv0.

etA is called the solution operator.

Recall: In case A = BDB−1 for a diagonal matrix D = (d1, . . . , dn) then

etA = B(etd1 , . . . , etdn )B−1

More general, one can find the operator etA by means of the Jordan form for the matrix A.

The solution formula for the inhomogeneous problem with f 6= 0 is given by

u(t) = etAv0 +

∫ t

0
e(t−s)Af (s)ds.
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Dunhamel’s principle
The solution formula for the inhomogeneous ODE is derived via Dunhamel’s principle.

Assume v(t) solves the inhomeogeneous problem. Assume S(−t) = e−tA =
[
etA
]−1

exists.

Then we can compute

S(−t)f (t) = S(−t)

[
d

dt
v(t)− Av(t)

]
= S(−t)

d

dt
v(t)− S(−t)Av(t) =

d

dt
[S(−t)v(t)] .

The last equality is the product rule. Integrating from 0 to t > 0 gives∫ t

0
S(−s)f (s)ds = S(−t)v(t)− v0

Hence

v(t) = S(t)v0 + S(t)

∫ t

0
S(−s)f (s)ds = S(t)v0 +

∫ t

0
S(t − s)f (s)ds.

We can then check that this v(t) indeed satisfies the inhomogeneous ODE

d

dt
v(t) =

d

dt
S(t)v0 +

d

dt

∫ t

0
S(t − s)f (s)ds

= AS(t)v0 + S(0)f (t) +

∫ t

0
AS(t − s)f (s)ds

= A

[
S(t)v0 +

∫ t

0
S(t − s)f (s)ds

]
+ f (t) = Av(t) + f (t).
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The solution formula for ODEs gives us an idea how a solution formula for PDEs should look like.

We saw a version of this formula before in the case of inhomogeneous first order PDEs of the form

ut − aux = f (x , t)

Here, the operator is given by A = a ∂
∂x

. Then the PDE takes the form

ut = Au + f (x , t)

Recall the solution of the homogeneous equation was given by

φ(x + ta) = [S(t)φ] (x)

Dunhamel’s principle suggests the solution formula

v(t) = S(t)φ+

∫ t

0
S(t − s)f (s)ds = φ(x + at) +

∫ t

0
f (x + a(t − s), s)ds.

for the inhomogeneous problem.

This is exactly the formula that we already derived from the method of characteristics.
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Back to the inhomogeneous diffusion equation
The unique solution of the initial value problem

ut = kux,x on R× (0,∞)

u(x , t)→ 0, |x | → ∞

u(x , 0) = φ(x) on R.

was given by∫ ∞
−∞

S(x − y , t)φ(y)dy =: S(t)φ(x) where S(x , t) =
1

√
4πkt

e
−
(

x√
4kt

)2

.

We can see S(t) : C1(R)→ C2(R) as a family of solution operators.

Now we consider the same problem but with a source term f ∈ C0(R× (0,∞)):

ut = kux,x + f (x , t) on R× (0,∞).

We also write f (s) for f (·, s). We assume |f (x , t)| ≤ C .We prove the following theorem.

Theorem

The unique solution ofthe inhomogeneous problem is given by the formula

v(x , t) = [S(t)φ] (x) +

∫ t

0
[S(t − s)f (s)](x)ds.
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Proof. We only check the existence statement.

First we compute vt= [S(t)φ]t +
d

dt

∫ t

0
S(t − s)f (s)ds= k [S(t)φ]x,x +

d

dt

∫ t

0
S(t − s)f (s)ds.

We consider the second term on the right hand side

d

dt

∫ t

0
[S(t − s)f (s)](x)ds =

d

dt

∫ t

0

∫ ∞
−∞

S(x − y , t − s)f (y , s)dyds =
d

dt

∫ t

0
g(s, t)ds.

s ∈ (−∞, t] 7→ g(s, t) is continuous with

g(t, t) = lim
s↑t

g(s, t) = δx [f (·, t)] = f (x , t).

More precisely, we can compute

g(s, t) =

∫ ∞
−∞

S(x − y , t − s)f (y , s)dy

=

∫ ∞
−∞

S(x − y , t − s)f (y , t)dy +

∫ ∞
−∞

S(x − y , t − s)(f (y , s)− f (y , t))dy

For the first term it follows by computation as we did before that

lim
s→t

∫ ∞
−∞

S(x − y , t − s)f (y , t)dy = δx [f (t)] = f (x , t).

For the second we get∫ ∞
−∞

S(x − y)[f (y , s)− f (y , t)]dy =

∫ x+C̃

x−C̃
S(x − y , t − s)[f (y , s)− f (y , t)]dy

+

∫
{y :|x−y|>C̃

S(x − y , t − s)[f (y , s)− f (y , t)]dy

MAT351 Partial Differential Equations Lecture 12 October 26, 2020 7 / 12



Since f ∈ C0(R× (0,∞)), f is uniformily continuous on [x − C , x + C ]× [t − η, t + η] for t > 0
and η > 0 sufficiently small such that t − η > 0.

In particular, given ε > 0 there exists δ(C̃ , ε) > 0 such |f (y , s)− f (y , t)| < ε for |s − t| < δ.

Therefore, for the first term on the right hand side in the last formula we have

−ε ≤
∫ x+C̃

x−C̃
S(x − y , t − s)[f (y , s)− f (y , t)]dy ≤ ε.

For the second term on the right hand side in the last formula we have

−2CKe−C̃2
≤
∫

S(x − y , t − s)[f (y , s)− f (y , t)] ≤ 2CKe−C̃2

because |f (y , s)− f (y , t)| ≤ C and S(x − y , t − s) ≤ Ke−C̃2
on {y : |x − y | ≥ C} for a constant

K > 0. So we can choose C̃ such that 2CKe−C̃ ≤ ε.

This considerations together imply that

lim
s→t

g(s, t) = f (x , t)± 2ε

and since ε > 0 was arbitrary, the limit is f (x , t).
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Hence τ ∈ [0,∞) 7→
∫ τ

0 g(s, t)ds =
∫ τ

0

∫∞
−∞ S(x − y , t − s)f (y , s)dyds is differentiable in t with

d

dt

∫ τ

0
g(s, t)ds = g(t, t) = f (x , t).

Therefore

d

dt

∫ t

0
g(s, t)ds = f (x , t) +

∫ t

0

∂

∂t
g(s, t)ds

For the second term on the right hand side we calculate∫ t

0

∂

∂t
g(s, t)dt=

∫ t

0

∫ ∞
−∞

∂

∂t
S(x − y , t − s)f (s)dyds =

∫ t

0

∫ ∞
−∞

k
∂2

∂x2
S(x − y , t − s)f (s)dyds

= k
∂2

∂x2

∫ t

0

∫ ∞
−∞

S(x − y , t − s)f (s)dyds = k

[∫ t

0
[S(t − s)f (s)](x)ds

]
x,x

.

So we computed vt = f (x , t) + k
[
S(t)φ+

∫ t
0 S(t − s)f (s)ds

]
x,x

.
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Diffusion on the half line, Reflection method
We consider the Dirichlet problem for the diffusion equation:

ut,t = kux,x on R× (0,∞)

u(x , 0) = φ(x) on [0,∞)

v(0, t) = 0 for t > 0.

(1)

To find a solution formula for this equation we apply the reflection method.
Consider the odd extension of φ to the real line:

φodd (x) =

{
φ(x) x ≥ 0,

−φ(−x) x < 0.

The corresponding initial value problem has the solution

u(x , t) =

∫ ∞
−∞

S(x − y , t)φodd (y)dy .

Since φodd is odd, also u(x , t) is odd, that is u(x , t) = −u(−x , t) (Exercise). Hence u(0, t) = 0
and the restriction v of u to [0,∞)× [0,∞) satisfies the Dirichlet boundary condition.
Hence v solves the Dirichlet problem for the diffusion equation with initial condition φ.
A formula of v that only depends on φ (and not on φodd or S(x , t) for x ∈ R) is derived as follows

v(x , t) =

∫ ∞
0

S(x − y , t)φ(y)dy +

∫ 0

−∞
S(x − y , t)φodd (y)dy

=

∫ ∞
0

[S(x − y , t)φ(y) + S(x − y , t)φ(−y)] dy=

∫ ∞
0

[S(x − y , t)− S(x + y , t)]φ(y)dy .
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The solution of the problem (1) is given by the formula

v(x , t) =

∫ ∞
0

[S(x − y , t)− S(x + y , t)]φ(y)dy .

Similar, we can consider the Neumann problem for the diffusion equation:

ut = kux,x on [0,∞)× (0,∞)

u(x , 0) = φ(x) on R

vx (0, t) = 0 for t > 0.

To derive a solution formula we apply the same strategy as for the Dirichlet problem:
We consider the following initial value problem for the diffusion equation on the real line:

ut,t = kux,x on R× (0,∞)

u(x , 0) = φeven(x) on R

where

φeven(x) =

{
φ(x) x ≥ 0

φ(−x) x < 0

The solution of this initial value problem will be again even in x : u(x , t) = u(−x , t).

MAT351 Partial Differential Equations Lecture 12 October 26, 2020 11 / 12



Diffusion with source term on the half line

Now we consider

ut − kux,x = f (x , t) on [0,∞)× (0,∞)

u(x , 0) = φ(x) on R

u(0, t) = h(t) for t > 0.

(2)

for a boundary source function h : [0,∞)→ R in C1([0,∞)).

A strategy to solve this problem is the Substraction method:

We consider v(x , t) = u(x , t)− h(t). If u ∈ C2((0,∞)× (0,∞)) solves the previous problem,
then v ∈ C2((0,∞)× (0,∞)) solves

vt − kvx,x = f (x , t)− h′(t) on [0,∞)× (0,∞)

v(x , 0) = φ(x)− h(0) on R

u(0, t) = 0 for t > 0.

To solve this problem we can apply the reflection method as we did for the equation with f ≡ 0.

Then one can check that v(x , t) + h(t) =: u(x , t) solves the problem (2).
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