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Diffusion on the half line, Reflection method
We consider the Dirichlet problem for the diffusion equation:

ut = kuxx on (0,00) x (0,00)
u(x,0) = ¢(x) on [0, 00) (1)
u(0,t) = 0 for t > 0.

To find a solution formula for this equation we apply the reflection method:

Consider the odd extension of ¢ to the real line:

o) — o(x) x>0
bodd (x) = {¢>(X) X <o.

The corresponding initial value problem has the solution:
(oo}
w6 = [ S(x= . 000saly)o.
— 00

Since ¢odd is 0dd, also x — u(x, t) is odd, that is u(x, t) = —u(—x, t) (Exercise).

Hence u(0,t) = 0 and the restriction v of u to [0, 00) X [0, c0) solves the Dirichlet problem for
the diffusion equation with initial condition ¢.

A solution formula of v that only depends on ¢ is derived as follows
oo 0
vt = [ Stc= v 0000dy + [ S(x =y O0baaalv)dy
oo 0 70000
= [ 1561 000) + S(x v, O06aa( - dy= [ 15(x = y.1) = S(x+ . O] 6(5)dy.
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The solution of the problem (1) is given by the formula

v(x, t) = /0 TIS(x =y, 1) = S(x +y, )] $ly)dy.-

Similar, we can consider the Neumann problem for the diffusion equation:

ut

= kux,x on [0,00) x (0,00)
u(x,0) = ¢(x) on [0, c0)
ux(0,t) = 0

for t > 0.

To derive a solution formula we apply the same strategy as for the Dirichlet problem.
We consider the following initial value problem for the diffusion equation on the real line

ue =

Kux x on R x (0, 00)
U(X7 0) = ¢svsn(x)

on R
where @even is the even extension of ¢ to R:

o Jot)  x=zo
¢even( ){d)(—x) x <0

The solution of this initial value problem will be again even in x: u(x,t) = u(—x, t).
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Diffusion with source term on the half line

Now we consider

ur — kuxx = f(x,t) on (0,00) x (0,00)
u(x,0) = ¢(x) on [0, c0)
u(0, t) = h(t) for t > 0.

for a boundary source function h : [0, 00) — R in C1(]0, 00)).
A strategy to solve this problem is the Substraction method:

We consider v(x, t) = u(x, t) — h(t). If u € C?((0,00) x (0,00)) solves the previous problem,
then v € C2((0,00) x (0,00)) solves

vi —kvxx = f(x,t) —H(t) on [0,00) x (0,00)
v(x,0) = o(x) — h(0) on [0, c0)
u(0, t) = 0 for t > 0.

)

To solve this problem we can apply the reflection method as we did for the equation with f = 0.

Then one can check that v(x, t) + h(t) =: u(x, t) solves the problem (2).
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Wave equation with a source term
Consider ¢ € C?(R), ¥ € C}(R) and f € CO(R x (0,00)) and the inital value problem

ure — Cuxx = f(x,t) onRx (0,00),
u(x;,0) = ¢(x) on R, ®3)
ut(x,0) = P(x) on R.

We can interpret f as an external force that acts on an infinitely long vibrating string.
We will prove
Theorem

The unique solution of the initial value problem (3) is

1 1 x+ct 1
e t) = 5 (6 ct) +alx— el + 5= [ i)y + o A/ Fy, $)dyds.

The double integral in the formula is on the characteristic space-time triangle Ay ; corresponding
to the point (x,t) € R x (0,00). More precisely

1 1 t Xx+ct
— // f(y,s)dyds = —/ / f(y,s)dyds.
2¢c Dyt 2c Jo Jx—ct
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Deriving the solution formual via the operator method
We follow the same ideas as for the diffusion equation.

Defining the operator A = c% the PDE takes the form

%U—Azu = f(t) onRx(0,00),
u(0) = ¢ on R,
%U(O) = ¥ on R.

where u(t) = u(-,t) € C3(R) and f(t) = f(-,t) € CO(R) for t > 0.
This equation has again the structure of an ODE of the form

2

Su—2u = f(t) on(0,00),
u(0) = ¢€eR (4)
u’(0) = yYeR

where f € CO([0,00)). Let us first consider the case f = 0.

We consider the solutions u; and up for problem with the following initial conditions

¢
0

ui(0) = 0 uz(0)
u() = ¢ u3(0)

and the sum u; + up = u is a solution of (4).

Precisely ui(t) = 1};% sin(at), up(t) = ¢ cos(at)and u = dz% sin(at) + ¢ cos(at).
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We can define the solution operator
1 . d
S(t)y = - sin(at) = v (t) and E[S(t)d)] = ¢cos(at) = uy(t).
a

We note that $(0)¢) = 0 and < |t olS(t)e] =

By Dunhammel’s principle the general solution for the inhomogeneous ODE

qzu—a‘u = f(t)#0 onRx(0,00),
u(0) = O0€R (5)
u’(0) = 9YPeER

is given by the formula
t
i (t) = S(t)yp +/ S(t — s)f(s)ds.
0
Indeed, since we can check that —[S(t)w] — a?S(t)y =0 and

dt2/ S(t — s)f(s)ds = f(t) — a> {/ S(t — s)f(s)ds

Now, by linearity
t d
i+ us = S(6) +/ S(t = s)f(s)ds + = S(6)6 = v
0

solves the inhomogeneous problem with v(0) = ¢ and v/(0) =
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The same method works for the wave equation with source.First we solve the IVP (3) with f = 0.
By d'Alembert’s formula the solution is

)= 5 [ 6dy = 186100 for 9= 0 and v € CA(R)
where [S(0)¢](x) = 0 and
u(x, t) = % [#(x + ct) + ¢(x — ct)] for ¢ € C3(R) and ¢ = 0.
Observe that ua(x, t) = S S(t)¢(x) with 5|, [S(t)¢](x) = ¢(x). Then
v+ = %s(tw +S(t) = u

solves the initial value problem for the homogeneous wave equation and

V(x,t) = %S(t)q& FS(8) + /Ot S(t — s)f(s)(x)ds

is the “candidate” for a solution of the initial value problem of the inhomogeneous wave equation.

This is the formula that shows up in the theorem before. Indeed

/ S(t — s)f(s)(x)ds = / /X+C(t+5) y,s)dyds.
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Proof of the theorem
By linearity of the PDE we only need to check that the function

(x,£) € R x (0,00) 7// Fy, s)dyds = 2C/ /X+C(t by, 5)dyds

satisfies the inhomogeneous wave equation with initial conditions ¢ = = 0.
We apply the coordinate change

E=x+ct, n=x-—ct.

First, we note that the operator ﬁ — c2 8 > becomes 4c? . Indeed let g(&,n) be defined by
g(&,m) = g(x + ct,x — ct) = g(x, t). We compute
0 0 0
800 t) = 5 &6 ) + fg(é, n), o-8lxt)= cfg(& n) — g(E, n)-
Ox & ot
It is straightforward to confirm that
2 2 &
- X, X — —4 g N .
gt,t — C7gx, c 8§8ng(§ n)

Using the transformation formula we compute the integral

// f(y,s)dyds = // f(y + cs,y — cs)dyds.
Axt Ay,
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The Jacobian determinant of the transformation ®(x, t) = (x + ct,x — ct) is

1 c
det (1 —c) ‘ = 2c.
Hence

L // f(y,s)dyds = % // fod(y,s)Jd(y,s)dyds = // (&, m)dEdn.
c Ax,t 4C Ax,t ‘b( X, t

where

4%2 //‘;(Ax,t) (&, n)dnde = % /jo /0 f(&,m)dnde = —4%2 /njo /:0 F(&,m)dedn.

Hence

| det Dd(x, t)| =

2 82
Onpd&o 4c2

&o
/ / 7, m)dedn=~- / (€0, n)dn= F(€0.10)= F(x. 1).

Hence, we confirmed the PDE. O

MAT351 Partial Differential Equations Lecture 13 October 29, 2020 10/12



Consequences: Wellposedness of the wave equation with a source term
Existence follows from the solution formula.

Uniqueness Let u be a C? solution on R x [0, c0) for the wave equation with source and
initial values ¢ =1 = 0. Then

1 1
5= // f(y,s)dyds = — // [te,e — cux,x]dyds.
c Ayt 2c Ax ¢

By the divergence theorem it follows
1 1

== N - (=cPux, up)dL = —/ N - (—c?ux, ut)dL.
2¢ Jon, 2c Jon, .

This line integral has 3 components: the bottome side
1 x+tc
7/ —cut(y,0)dy =0
2 x—ct

and the side formed by curve s € [0, t] — x + c(t — s). Note that the normal vector on this
side is \/127(1, c) and line integral along this curve comes with a weight v/c2 + 1.
c

—/ cur(x + c(t — s) — Cux(x + c(t — s), s)ds

/ G+ e(t — 9), )]s = 7[u(x £) — u(x + ct, 0)] = Eu(x, 0.

Similar for the remaining term. Hence

1
u(x,t) = % //A f(y,s)dyds.
x,t
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Stability: We claim the wave equation with source is stable. That means small perturbations
of the data functions f, ¢ and % result in small perturbations of the solution u.

How do we measure smallness?
Definition (Maximums Norm on R and R x [0, c0))

Let v € C/(R) and w € CO(R x [0,0)). Define the Maximumnorms:

V|| = max|v(Xx w = max w(x,t
Il = max vl liwliy = max  [w(x, )

From the solution formula we have the following a priori estimate for the solution u on

R x [0, T]:
X+
U - % dy + >~ )| dyd
u(x, )] |<z>(x+ct) B(x — ct)| + /_ct \6(y)\dy + // 5)|dyds
<|l¢ll + T l¥ll + T?|If|l+
Hence

lully < ¢l + Tl + T2 11fll 7 -

If we have to solution u; and uy with corresponding data ¢1, 2, 91,92, f1, fo, then ug — up is
a solution with data ¢1 — ¢, %1 — Y2, i — f> by linearity of the problem.

Hence the estimate for the norm yields stabiltiy w.r.t. the Maximums Norm.
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