MAT351 Partial Differential Equations Lecture 13

October 29, 2020

Diffusion on the half line, Reflection method

We consider the Dirichlet problem for the diffusion equation:

$$
\begin{array}{ccc}
u_{t} & =k u_{x, x} & \text { on }(0, \infty) \times(0, \infty) \\
u(x, 0) & =\phi(x) & \text { on }[0, \infty) \tag{1}\\
u(0, t) & =0 & \text { for } t>0
\end{array}
$$

To find a solution formula for this equation we apply the reflection method:
Consider the odd extension of ϕ to the real line:

$$
\phi_{\text {odd }}(x)= \begin{cases}\phi(x) & x \geq 0 \\ -\phi(-x) & x<0\end{cases}
$$

The corresponding initial value problem has the solution:

$$
u(x, t)=\int_{-\infty}^{\infty} S(x-y, t) \phi_{o d d}(y) d y
$$

Since $\phi_{\text {odd }}$ is odd, also $x \mapsto u(x, t)$ is odd, that is $u(x, t)=-u(-x, t)$ (Exercise).
Hence $u(0, t)=0$ and the restriction v of u to $[0, \infty) \times[0, \infty)$ solves the Dirichlet problem for the diffusion equation with initial condition ϕ.
A solution formula of v that only depends on ϕ is derived as follows

$$
\begin{gathered}
v(x, t)=\int_{0}^{\infty} S(x-y, t) \phi(y) d y+\int_{-\infty}^{0} S(x-y, t) \phi_{\text {odd }}(y) d y \\
=\int_{0}^{\infty}\left[S(x-y, t) \phi(y)+S(x+y, t) \phi_{\text {odd }}(-y)\right] d y=\int_{0}^{\infty}[S(x-y, t)-S(x+y, t)] \phi(y) d y .
\end{gathered}
$$

The solution of the problem (1) is given by the formula

$$
v(x, t)=\int_{0}^{\infty}[S(x-y, t)-S(x+y, t)] \phi(y) d y
$$

Similar, we can consider the Neumann problem for the diffusion equation:

$$
\begin{array}{ccc}
u_{t} & =k u_{x, x} & \text { on }[0, \infty) \times(0, \infty) \\
u(x, 0) & =\phi(x) & \text { on }[0, \infty) \\
u_{x}(0, t) & =0 & \text { for } t>0 .
\end{array}
$$

To derive a solution formula we apply the same strategy as for the Dirichlet problem. We consider the following initial value problem for the diffusion equation on the real line:

$$
\begin{array}{ccc}
u_{t} & =k u_{x, x} & \text { on } \mathbb{R} \times(0, \infty) \\
u(x, 0)=\phi_{\text {even }}(x) & \text { on } \mathbb{R}
\end{array}
$$

where $\phi_{\text {even }}$ is the even extension of ϕ to \mathbb{R} :

$$
\phi_{\text {even }}(x)= \begin{cases}\phi(x) & x \geq 0 \\ \phi(-x) & x<0\end{cases}
$$

The solution of this initial value problem will be again even in $x: u(x, t)=u(-x, t)$.

Diffusion with source term on the half line

Now we consider

$$
\begin{array}{ccc}
u_{t}-k u_{x, x} & =f(x, t) & \text { on }(0, \infty) \times(0, \infty) \\
u(x, 0) & =\phi(x) & \text { on }[0, \infty) \tag{2}\\
u(0, t) & =h(t) & \text { for } t>0 .
\end{array}
$$

for a boundary source function $h:[0, \infty) \rightarrow \mathbb{R}$ in $C^{1}([0, \infty))$.
A strategy to solve this problem is the Substraction method:
We consider $v(x, t)=u(x, t)-h(t)$. If $u \in C^{2}((0, \infty) \times(0, \infty))$ solves the previous problem, then $v \in C^{2}((0, \infty) \times(0, \infty))$ solves

$$
\begin{array}{cccc}
v_{t}-k v_{x, x} & = & f(x, t)-h^{\prime}(t) & \text { on }[0, \infty) \times(0, \infty) \\
v(x, 0) & = & \phi(x)-h(0) & \text { on }[0, \infty) \\
u(0, t) & = & 0 & \text { for } t>0 .
\end{array}
$$

To solve this problem we can apply the reflection method as we did for the equation with $f \equiv 0$.
Then one can check that $v(x, t)+h(t)=: u(x, t)$ solves the problem (2).

Wave equation with a source term

Consider $\phi \in C^{2}(\mathbb{R}), \psi \in C^{1}(\mathbb{R})$ and $f \in C^{0}(\mathbb{R} \times(0, \infty))$ and the inital value problem

$$
\begin{array}{ccc}
u_{t, t}-c^{2} u_{x, x} & =f(x, t) & \text { on } \mathbb{R} \times(0, \infty) \\
u(x, 0) & =\phi(x) & \text { on } \mathbb{R} \tag{3}\\
u_{t}(x, 0) & =\psi(x) & \text { on } \mathbb{R}
\end{array}
$$

We can interpret f as an external force that acts on an infinitely long vibrating string. We will prove

Theorem

The unique solution of the initial value problem (3) is

$$
u(x, t)=\frac{1}{2}[\phi(x+c t)+\phi(x-c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi(y) d y+\frac{1}{2 c} \iint_{\Delta_{x, t}} f(y, s) d y d s
$$

The double integral in the formula is on the characteristic space-time triangle $\Delta_{x, t}$ corresponding to the point $(x, t) \in \mathbb{R} \times(0, \infty)$. More precisely

$$
\frac{1}{2 c} \iint_{\Delta_{x, t}} f(y, s) d y d s=\frac{1}{2 c} \int_{0}^{t} \int_{x-c t}^{x+c t} f(y, s) d y d s
$$

Deriving the solution formual via the operator method

 We follow the same ideas as for the diffusion equation.Defining the operator $A=c \frac{\partial}{\partial x}$ the PDE takes the form

$$
\begin{array}{ccc}
\frac{d}{d t} u-A^{2} u & =f(t) & \text { on } \mathbb{R} \times(0, \infty) \\
u(0) & =\phi & \text { on } \mathbb{R} \\
\frac{d}{d t} u(0) & =\psi & \text { on } \mathbb{R} .
\end{array}
$$

where $u(t)=u(\cdot, t) \in C^{2}(\mathbb{R})$ and $f(t)=f(\cdot, t) \in C^{0}(\mathbb{R})$ for $t>0$.
This equation has again the structure of an ODE of the form

$$
\begin{align*}
\frac{d^{2}}{d t^{2}} u-a^{2} u & =f(t) \quad \text { on }(0, \infty) \\
u(0) & =\phi \in \mathbb{R} \tag{4}\\
u^{\prime}(0) & =\psi \in \mathbb{R}
\end{align*}
$$

where $f \in C^{0}([0, \infty))$. Let us first consider the case $f \equiv 0$.
We consider the solutions u_{1} and u_{2} for problem with the following initial conditions

$$
\begin{aligned}
& u_{1}(0)=0 \\
& u_{1}^{\prime}(0)=\psi
\end{aligned} \text { and } \begin{aligned}
& u_{2}(0)=\phi \\
& u_{2}^{\prime}(0)=0
\end{aligned}
$$

and the sum $u_{1}+u_{2}=u$ is a solution of (4).
Precisely $u_{1}(t)=\psi \frac{1}{a} \sin (a t), u_{2}(t)=\phi \cos (a t)$ and $u=\psi \frac{1}{a} \sin (a t)+\phi \cos (a t)$.

We can define the solution operator

$$
S(t) \psi=\psi \frac{1}{a} \sin (a t)=u_{1}(t) \text { and } \frac{d}{d t}[S(t) \phi]=\phi \cos (a t)=u_{2}(t) .
$$

We note that $S(0) \psi=0$ and $\left.\frac{d}{d t}\right|_{t=0}[S(t) \phi]=\phi$.
By Dunhammel's principle the general solution for the inhomogeneous ODE

$$
\begin{align*}
\frac{d^{2}}{d t^{2}} u-a^{2} u & =f(t) \neq 0 \quad \text { on } \mathbb{R} \times(0, \infty), \\
u(0) & =0 \in \mathbb{R} \tag{5}\\
u^{\prime}(0) & =\psi \in \mathbb{R} .
\end{align*}
$$

is given by the formula

$$
\tilde{u}_{1}(t)=S(t) \psi+\int_{0}^{t} S(t-s) f(s) d s
$$

Indeed, since we can check that $\frac{d^{2}}{d t^{2}}[S(t) \psi]-a^{2} S(t) \psi=0$ and

$$
\frac{d^{2}}{d t^{2}} \int_{0}^{t} S(t-s) f(s) d s=f(t)-a^{2}\left[\int_{0}^{t} S(t-s) f(s) d s\right]
$$

Now, by linearity

$$
\tilde{u}_{1}+u_{2}=S(t) \psi+\int_{0}^{t} S(t-s) f(s) d s+\frac{d}{d t} S(t) \phi=v
$$

solves the inhomogeneous problem with $v(0)=\phi$ and $v^{\prime}(0)=\psi$.

The same method works for the wave equation with source. First we solve the IVP (3) with $f \equiv 0$. By d'Alembert's formula the solution is

$$
u_{1}(x, t)=\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi(y) d y=[\mathbf{S}(t) \psi](x) \text { for } \phi=0 \text { and } \psi \in C^{1}(\mathbb{R})
$$

where $[\mathbf{S}(0) \psi](x)=0$ and

$$
u_{2}(x, t)=\frac{1}{2}[\phi(x+c t)+\phi(x-c t)] \text { for } \phi \in C^{2}(\mathbb{R}) \text { and } \psi=0
$$

Observe that $u_{2}(x, t)=\frac{d}{d t} \mathbf{S}(t) \phi(x)$ with $\left.\frac{d}{d t}\right|_{t=0}[\mathbf{S}(t) \phi](x)=\phi(x)$. Then

$$
u_{1}+u_{2}=\frac{d}{d t} \mathbf{S}(t) \phi+\mathbf{S}(t) \psi=u
$$

solves the initial value problem for the homogeneous wave equation and

$$
v(x, t)=\frac{d}{d t} \mathbf{S}(t) \phi+\mathbf{S}(t) \psi+\int_{0}^{t} \mathbf{S}(t-s) f(s)(x) d s
$$

is the "candidate" for a solution of the initial value problem of the inhomogeneous wave equation.

This is the formula that shows up in the theorem before. Indeed

$$
\int_{0}^{t} \mathbf{S}(t-s) f(s)(x) d s=\int_{0}^{t} \frac{1}{2 c} \int_{x-c(t-s)}^{x+c(t+s)} f(y, s) d y d s
$$

Proof of the theorem

By linearity of the PDE we only need to check that the function

$$
(x, t) \in \mathbb{R} \times(0, \infty) \mapsto \frac{1}{2 c} \iint_{\Delta_{x, t}} f(y, s) d y d s=\frac{1}{2 c} \int_{0}^{t} \int_{x-c(t-s)}^{x+c(t-s)} f(y, s) d y d s
$$

satisfies the inhomogeneous wave equation with initial conditions $\phi=\psi=0$.
We apply the coordinate change

$$
\xi=x+c t, \quad \eta=x-c t .
$$

First, we note that the operator $\frac{\partial^{2}}{\partial t^{2}}-c^{2} \frac{\partial^{2}}{\partial x^{2}}$ becomes $4 c^{2} \frac{\partial^{2}}{\partial \xi \partial \eta}$. Indeed let $\tilde{g}(\xi, \eta)$ be defined by $\tilde{g}(\xi, \eta)=\tilde{g}(x+c t, x-c t)=g(x, t)$. We compute

$$
\frac{\partial}{\partial x} g(x, t)=\frac{\partial}{\partial \xi} \tilde{g}(\xi, \eta)+\frac{\partial}{\partial \eta} g(\xi, \eta), \quad \frac{\partial}{\partial t} g(x, t)=c \frac{\partial}{\partial \xi} \tilde{g}(\xi, \eta)-c \frac{\partial}{\partial \eta} g(\xi, \eta)
$$

It is straightforward to confirm that

$$
g_{t, t}-c^{2} g_{x, x}=-4 c^{2} \frac{\partial^{2}}{\partial \xi \partial \eta} \tilde{g}(\xi, \eta)
$$

Using the transformation formula we compute the integral

$$
\frac{1}{2 c} \iint_{\Delta_{x, t}} f(y, s) d y d s=\frac{1}{2 c} \iint_{\Delta_{x . t}} \tilde{f}(y+c s, y-c s) d y d s
$$

The Jacobian determinant of the transformation $\Phi(x, t)=(x+c t, x-c t)$ is

$$
|\operatorname{det} D \Phi(x, t)|=\left|\operatorname{det}\left(\begin{array}{cc}
1 & c \\
1 & -c
\end{array}\right)\right|=2 c .
$$

Hence

$$
\frac{1}{2 c} \iint_{\Delta_{x, t}} f(y, s) d y d s=\frac{1}{4 c^{2}} \iint_{\Delta_{x, t}} \tilde{f} \circ \Phi(y, s) J \Phi(y, s) d y d s=\frac{1}{4 c^{2}} \iint_{\Phi\left(\Delta_{x, t}\right)} \tilde{f}(\xi, \eta) d \xi d \eta
$$

where

$$
\frac{1}{4 c^{2}} \iint_{\Phi\left(\Delta_{x, t}\right)} \tilde{f}(\xi, \eta) d \eta d \xi=\frac{1}{4 c^{2}} \int_{\eta_{0}}^{\xi_{0}} \int_{\eta_{0}}^{\xi} \tilde{f}(\xi, \eta) d \eta d \xi=-\frac{1}{4 c^{2}} \int_{\eta_{0}}^{\xi_{0}} \int_{\xi}^{\eta_{0}} \tilde{f}(\xi, \eta) d \xi d \eta .
$$

Hence

$$
-4 c^{2} \frac{\partial^{2}}{\partial \eta_{0} \partial \xi_{0}} \frac{-1}{4 c^{2}} \int_{\eta_{0}}^{\xi_{0}} \int_{\xi}^{\eta_{0}} \tilde{f}(\xi, \eta) d \xi d \eta=\frac{\partial}{\partial \eta} \int_{\xi_{0}}^{\eta_{0}} f\left(\xi_{0}, \eta\right) d \eta=\tilde{f}\left(\xi_{0}, \eta_{0}\right)=f(x, t)
$$

Hence, we confirmed the PDE.

Consequences: Wellposedness of the wave equation with a source term

Existence follows from the solution formula.
Uniqueness Let u be a C^{2} solution on $\mathbb{R} \times[0, \infty)$ for the wave equation with source and initial values $\phi=\psi=0$. Then

$$
\frac{1}{2 c} \iint_{\Delta_{x, t}} f(y, s) d y d s=\frac{1}{2 c} \iint_{\Delta_{x, t}}\left[u_{t, t}-c^{2} u_{x, x}\right] d y d s
$$

By the divergence theorem it follows

$$
=\frac{1}{2 c} \int_{\partial \Delta_{x, t}} N \cdot\left(-c^{2} u_{x}, u_{t}\right) d L=\frac{1}{2 c} \int_{\partial \Delta_{x, t}} N \cdot\left(-c^{2} u_{x}, u_{t}\right) d L .
$$

This line integral has 3 components: the bottome side

$$
\frac{1}{2} \int_{x-c t}^{x+t c}-c u_{t}(y, 0) d y=0
$$

and the side formed by curve $s \in[0, t] \mapsto x+c(t-s)$. Note that the normal vector on this side is $\frac{1}{\sqrt{c^{2}+1}}(1, c)$ and line integral along this curve comes with a weight $\sqrt{c^{2}+1}$.

$$
\begin{aligned}
& \frac{1}{2 c} \int_{0}^{t} c u_{t}\left(x+c(t-s)-c^{2} u_{x}(x+c(t-s), s) d s\right. \\
& \quad=\frac{1}{2} \int_{0}^{t} \frac{d}{d s}[u(x+c(t-s), s)] d s=\frac{1}{2}[u(x, t)-u(x+c t, 0)]=\frac{1}{2} u(x, t)
\end{aligned}
$$

Similar for the remaining term. Hence

$$
u(x, t)=\frac{1}{2 c} \iint_{\Delta_{x, t}} f(y, s) d y d s
$$

Stability: We claim the wave equation with source is stable. That means small perturbations of the data functions f, ϕ and ψ result in small perturbations of the solution u.

How do we measure smallness?

Definition (Maximums Norm on \mathbb{R} and $\mathbb{R} \times[0, \infty)$)

Let $v \in C^{0}(\mathbb{R})$ and $w \in C^{0}(\mathbb{R} \times[0, \infty))$. Define the Maximumnorms:

$$
\|v\|=\max _{x \in \mathbb{R}}|v(x)|, \quad\|w\|_{T}=\max _{(x, t) \in \mathbb{R} \times[0, T]}|w(x, t)|
$$

From the solution formula we have the following a priori estimate for the solution u on $\mathbb{R} \times[0, T]:$

$$
\begin{aligned}
|u(x, t)| & \leq \frac{1}{2}|\phi(x+c t)-\phi(x-c t)|+\frac{1}{2 c} \int_{x-c t}^{x+c t}|\phi(y)| d y+\frac{1}{2 c} \iint_{\Delta_{x, t}}|f(y, s)| d y d s \\
& \leq\|\phi\|+T\|\psi\|+T^{2}\|f\|_{T}
\end{aligned}
$$

Hence

$$
\|u\|_{T} \leq\|\phi\|+T\|\psi\|_{T}+T^{2}\|f\|_{T}
$$

If we have to solution u_{1} and u_{2} with corresponding data $\phi_{1}, \phi_{2}, \psi_{1}, \psi_{2}, f_{1}, f_{2}$, then $u_{1}-u_{2}$ is a solution with data $\phi_{1}-\phi_{2}, \psi_{1}-\psi_{2}, f_{1}-f_{2}$ by linearity of the problem.

Hence the estimate for the norm yields stabiltiy w.r.t. the Maximums Norm.

