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Diffusion on the half line, Reflection method
We consider the Dirichlet problem for the diffusion equation:

ut = kux,x on (0,∞)× (0,∞)

u(x , 0) = φ(x) on [0,∞)

u(0, t) = 0 for t > 0.

(1)

To find a solution formula for this equation we apply the reflection method:

Consider the odd extension of φ to the real line:

φodd (x) =

{
φ(x) x ≥ 0

−φ(−x) x < 0.

The corresponding initial value problem has the solution:

u(x , t) =

∫ ∞
−∞

S(x − y , t)φodd (y)dy .

Since φodd is odd, also x 7→ u(x , t) is odd, that is u(x , t) = −u(−x , t) (Exercise).

Hence u(0, t) = 0 and the restriction v of u to [0,∞)× [0,∞) solves the Dirichlet problem for
the diffusion equation with initial condition φ.

A solution formula of v that only depends on φ is derived as follows

v(x , t) =

∫ ∞
0

S(x − y , t)φ(y)dy +

∫ 0

−∞
S(x − y , t)φodd (y)dy

=

∫ ∞
0

[S(x − y , t)φ(y) + S(x + y , t)φodd (−y)] dy=

∫ ∞
0

[S(x − y , t)− S(x + y , t)]φ(y)dy .
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The solution of the problem (1) is given by the formula

v(x , t) =

∫ ∞
0

[S(x − y , t)− S(x + y , t)]φ(y)dy .

Similar, we can consider the Neumann problem for the diffusion equation:

ut = kux,x on [0,∞)× (0,∞)

u(x , 0) = φ(x) on [0,∞)

ux (0, t) = 0 for t > 0.

To derive a solution formula we apply the same strategy as for the Dirichlet problem.
We consider the following initial value problem for the diffusion equation on the real line:

ut = kux,x on R× (0,∞)

u(x , 0) = φeven(x) on R

where φeven is the even extension of φ to R:

φeven(x) =

{
φ(x) x ≥ 0

φ(−x) x < 0

The solution of this initial value problem will be again even in x : u(x , t) = u(−x , t).
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Diffusion with source term on the half line

Now we consider

ut − kux,x = f (x , t) on (0,∞)× (0,∞)

u(x , 0) = φ(x) on [0,∞)

u(0, t) = h(t) for t > 0.

(2)

for a boundary source function h : [0,∞)→ R in C1([0,∞)).

A strategy to solve this problem is the Substraction method:

We consider v(x , t) = u(x , t)− h(t). If u ∈ C2((0,∞)× (0,∞)) solves the previous problem,
then v ∈ C2((0,∞)× (0,∞)) solves

vt − kvx,x = f (x , t)− h′(t) on [0,∞)× (0,∞)

v(x , 0) = φ(x)− h(0) on [0,∞)

u(0, t) = 0 for t > 0.

To solve this problem we can apply the reflection method as we did for the equation with f ≡ 0.

Then one can check that v(x , t) + h(t) =: u(x , t) solves the problem (2).
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Wave equation with a source term

Consider φ ∈ C2(R), ψ ∈ C1(R) and f ∈ C0(R× (0,∞)) and the inital value problem

ut,t − c2ux,x = f (x , t) on R× (0,∞),

u(x , 0) = φ(x) on R,

ut(x , 0) = ψ(x) on R.

(3)

We can interpret f as an external force that acts on an infinitely long vibrating string.

We will prove

Theorem

The unique solution of the initial value problem (3) is

u(x , t) =
1

2
[φ(x + ct) + φ(x − ct)] +

1

2c

∫ x+ct

x−ct
ψ(y)dy +

1

2c

∫∫
∆x,t

f (y , s)dyds.

The double integral in the formula is on the characteristic space-time triangle ∆x,t corresponding
to the point (x , t) ∈ R× (0,∞). More precisely

1

2c

∫∫
∆x,t

f (y , s)dyds =
1

2c

∫ t

0

∫ x+ct

x−ct
f (y , s)dyds.
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Deriving the solution formual via the operator method
We follow the same ideas as for the diffusion equation.

Defining the operator A = c ∂
∂x

the PDE takes the form

d
dt
u − A2u = f (t) on R× (0,∞),

u(0) = φ on R,
d
dt
u(0) = ψ on R.

where u(t) = u(·, t) ∈ C2(R) and f (t) = f (·, t) ∈ C0(R) for t > 0.

This equation has again the structure of an ODE of the form

d2

dt2 u − a2u = f (t) on (0,∞),

u(0) = φ ∈ R
u′(0) = ψ ∈ R.

(4)

where f ∈ C0([0,∞)). Let us first consider the case f ≡ 0.

We consider the solutions u1 and u2 for problem with the following initial conditions

u1(0) = 0

u′1(0) = ψ
and

u2(0) = φ

u′2(0) = 0

and the sum u1 + u2 = u is a solution of (4).

Precisely u1(t) = ψ 1
a

sin(at), u2(t) = φ cos(at)and u = ψ 1
a

sin(at) + φ cos(at).
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We can define the solution operator

S(t)ψ = ψ
1

a
sin(at) = u1(t) and

d

dt
[S(t)φ] = φ cos(at) = u2(t).

We note that S(0)ψ = 0 and d
dt

∣∣
t=0

[S(t)φ] = φ.

By Dunhammel’s principle the general solution for the inhomogeneous ODE

d2

dt2 u − a2u = f (t) 6= 0 on R× (0,∞),

u(0) = 0 ∈ R
u′(0) = ψ ∈ R.

(5)

is given by the formula

ũ1(t) = S(t)ψ +

∫ t

0
S(t − s)f (s)ds.

Indeed, since we can check that d2

dt2 [S(t)ψ]− a2S(t)ψ = 0 and

d2

dt2

∫ t

0
S(t − s)f (s)ds = f (t)− a2

[∫ t

0
S(t − s)f (s)ds

]
Now, by linearity

ũ1 + u2 = S(t)ψ +

∫ t

0
S(t − s)f (s)ds +

d

dt
S(t)φ = v

solves the inhomogeneous problem with v(0) = φ and v ′(0) = ψ.
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The same method works for the wave equation with source.First we solve the IVP (3) with f ≡ 0.
By d’Alembert’s formula the solution is

u1(x , t) =
1

2c

∫ x+ct

x−ct
ψ(y)dy = [S(t)ψ](x) for φ = 0 and ψ ∈ C1(R)

where [S(0)ψ](x) = 0 and

u2(x , t) =
1

2
[φ(x + ct) + φ(x − ct)] for φ ∈ C2(R) and ψ = 0.

Observe that u2(x , t) = d
dt

S(t)φ(x) with d
dt

∣∣
t=0

[S(t)φ](x) = φ(x). Then

u1 + u2 =
d

dt
S(t)φ+ S(t)ψ = u

solves the initial value problem for the homogeneous wave equation and

v(x , t) =
d

dt
S(t)φ+ S(t)ψ +

∫ t

0
S(t − s)f (s)(x)ds

is the “candidate” for a solution of the initial value problem of the inhomogeneous wave equation.

This is the formula that shows up in the theorem before. Indeed∫ t

0
S(t − s)f (s)(x)ds =

∫ t

0

1

2c

∫ x+c(t+s)

x−c(t−s)
f (y , s)dyds.
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Proof of the theorem
By linearity of the PDE we only need to check that the function

(x , t) ∈ R× (0,∞) 7→
1

2c

∫∫
∆x,t

f (y , s)dyds =
1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)
f (y , s)dyds

satisfies the inhomogeneous wave equation with initial conditions φ = ψ = 0.

We apply the coordinate change

ξ = x + ct, η = x − ct.

First, we note that the operator ∂2

∂t2 − c2 ∂2

∂x2 becomes 4c2 ∂2

∂ξ∂η
. Indeed let g̃(ξ, η) be defined by

g̃(ξ, η) = g̃(x + ct, x − ct) = g(x , t). We compute

∂

∂x
g(x , t) =

∂

∂ξ
g̃(ξ, η) +

∂

∂η
g(ξ, η),

∂

∂t
g(x , t) = c

∂

∂ξ
g̃(ξ, η)− c

∂

∂η
g(ξ, η).

It is straightforward to confirm that

gt,t − c2gx,x = −4c2 ∂2

∂ξ∂η
g̃(ξ, η).

Using the transformation formula we compute the integral

1

2c

∫∫
∆x,t

f (y , s)dyds =
1

2c

∫∫
∆x.t

f̃ (y + cs, y − cs)dyds.
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The Jacobian determinant of the transformation Φ(x , t) = (x + ct, x − ct) is

| detDΦ(x , t)| =

∣∣∣∣det

(
1 c
1 −c

)∣∣∣∣ = 2c.

Hence

1

2c

∫∫
∆x,t

f (y , s)dyds =
1

4c2

∫∫
∆x,t

f̃ ◦ Φ(y , s)JΦ(y , s)dyds =
1

4c2

∫∫
Φ(∆x,t )

f̃ (ξ, η)dξdη.

where

1

4c2

∫∫
Φ(∆x,t )

f̃ (ξ, η)dηdξ =
1

4c2

∫ ξ0

η0

∫ ξ

η0

f̃ (ξ, η)dηdξ = −
1

4c2

∫ ξ0

η0

∫ η0

ξ
f̃ (ξ, η)dξdη.

Hence

−4c2 ∂2

∂η0∂ξ0

−1

4c2

∫ ξ0

η0

∫ η0

ξ
f̃ (ξ, η)dξdη=

∂

∂η

∫ η0

ξ0

f (ξ0, η)dη= f̃ (ξ0, η0)= f (x , t).

Hence, we confirmed the PDE.
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Consequences: Wellposedness of the wave equation with a source term
Existence follows from the solution formula.

Uniqueness Let u be a C2 solution on R× [0,∞) for the wave equation with source and
initial values φ = ψ = 0. Then

1

2c

∫∫
∆x,t

f (y , s)dyds =
1

2c

∫∫
∆x,t

[ut,t − c2ux,x ]dyds.

By the divergence theorem it follows

=
1

2c

∫
∂∆x,t

N · (−c2ux , ut)dL =
1

2c

∫
∂∆x,t

N · (−c2ux , ut)dL.

This line integral has 3 components: the bottome side

1

2

∫ x+tc

x−ct
−cut(y , 0)dy = 0

and the side formed by curve s ∈ [0, t] 7→ x + c(t − s). Note that the normal vector on this
side is 1√

c2+1
(1, c) and line integral along this curve comes with a weight

√
c2 + 1.

1

2c

∫ t

0
cut(x + c(t − s)− c2ux (x + c(t − s), s)ds

=
1

2

∫ t

0

d

ds
[u(x + c(t − s), s)]ds =

1

2
[u(x , t)− u(x + ct, 0)] =

1

2
u(x , t).

Similar for the remaining term. Hence

u(x , t) =
1

2c

∫∫
∆x,t

f (y , s)dyds.
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Stability: We claim the wave equation with source is stable. That means small perturbations
of the data functions f , φ and ψ result in small perturbations of the solution u.

How do we measure smallness?

Definition (Maximums Norm on R and R× [0,∞))

Let v ∈ C0(R) and w ∈ C0(R× [0,∞)). Define the Maximumnorms:

‖v‖ = max
x∈R
|v(x)|, ‖w‖T = max

(x,t)∈R×[0,T ]
|w(x , t)|

From the solution formula we have the following a priori estimate for the solution u on
R× [0,T ]:

|u(x , t)| ≤
1

2
|φ(x + ct)− φ(x − ct)|+

1

2c

∫ x+ct

x−ct
|φ(y)|dy +

1

2c

∫∫
∆x,t

|f (y , s)|dyds

≤ ‖φ‖+ T ‖ψ‖+ T 2 ‖f ‖T

Hence

‖u‖T ≤ ‖φ‖+ T ‖ψ‖T + T 2 ‖f ‖T .

If we have to solution u1 and u2 with corresponding data φ1, φ2, ψ1, ψ2, f1, f2, then u1 − u2 is
a solution with data φ1 − φ2, ψ1 − ψ2, f1 − f2 by linearity of the problem.

Hence the estimate for the norm yields stabiltiy w.r.t. the Maximums Norm.
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