# MAT351 Partial Differential Equations Lecture 14 

November 2, 2020

## Reflection method for wave equations

We will study the following Dirichlet problem for the wave equation on the half-line:

$$
\begin{array}{rlllc}
v_{t, t} & =c^{2} v_{x, x} & \text { on } & (0, \infty) \times \mathbb{R} \\
v(x, 0) & =\phi(x) & \text { on } & (0, \infty) \\
v_{t}(x, 0) & =\psi(x) & \text { on } & (0, \infty)  \tag{1}\\
v(0, t) & =0 & \text { on } & \mathbb{R} .
\end{array}
$$

The reflexion method works the same way as for the diffusion equation.
We consider odd extensions $\phi_{\text {odd }}$ and $\psi_{\text {odd }}$ of $\phi$ and $\psi$ respectively.
Let $u(x, t)$ be the solution of the initial value problem for the wave equation on $\mathbb{R}$. We have the formula

$$
u(x, t)=\frac{1}{2}\left[\phi_{\text {odd }}(x+c t)+\phi_{\text {odd }}(x-c t)\right]+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi_{\text {odd }}(y) d y .
$$

Then $u(x, t)$ is once again odd. In particular we have $u(0, t)=0$ for $t>0$ and we can define the solution $v$ on $[0, \infty) \times \mathbb{R}$ of (1) by restriction of $u$ to $[0, \infty)$.
We observe that for $x \geq c|t|$ it follows that $x-c t, x+c t \geq 0$. Hence

$$
v(x, t)=\frac{1}{2}[\phi(x+c t)+\phi(x-c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi(y) d y \quad x \geq c|t| .
$$

For $0<x<c|t|$ we have $\phi_{\text {odd }}(x-c t)=-\phi(-x+c t)$. Hence

$$
v(x, t)=\frac{1}{2}[\phi(x+c t)+\phi(-x+c t)]+\frac{1}{2 c} \int_{x-c t}^{0}[-\psi(-y)] d y+\frac{1}{2 c} \int_{0}^{x+c t} \psi(y) d y \quad 0<x<c|t| .
$$

We can apply a change of variable $y \mapsto-y$ to the first integral term. We obtain

$$
\begin{aligned}
v(x, t) & =\frac{1}{2}[\phi(c t+x)-\phi(c t-x)]+\frac{1}{2 c} \int_{c t-x}^{0} \psi(y) d y+\frac{1}{2 c} \int_{0}^{x+c t} \psi(y) d y \\
& =\frac{1}{2}[\phi(c t+x)-\phi(c t-x)]+\frac{1}{2 c} \int_{c t-x}^{c t+x} \psi(y) d y \quad 0<x<c|t|
\end{aligned}
$$

The complete solution is given by

$$
v(x, t)= \begin{cases}\frac{1}{2}[\phi(x+c t)+\phi(x-c t)]+\frac{1}{2 c} \int_{x-c t}^{x+c t} \psi(y) d y & \text { if } x \geq c|t| \\ \frac{1}{2}[\phi(c t+x)-\phi(c t-x)]+\frac{1}{2 c} \int_{c t-x}^{c t+x} \psi(y) d y & \text { if } 0<x<c|t|\end{cases}
$$

Finite Interval

Similarly we can also study the problem

$$
\begin{array}{ccccc}
v_{t, t} & = & c^{2} v_{x, x} & \text { on } & (0, I) \times \mathbb{R} \\
v(x, 0) & = & \phi(x) & \text { on } & (0, I) \\
v_{t}(x, 0) & = & \psi(x) & \text { on } & (0, I)  \tag{2}\\
v(0, t)=v(I, t) & = & 0 & \text { on } & \mathbb{R} .
\end{array}
$$

## Diffusion equation with continuous initial data

Let us consider once more

$$
\begin{array}{ccc}
u_{t} & = & k u_{x, x} \\
\text { on } \mathbb{R} \times(0, \infty) \\
\lim _{t \downarrow 0} u(x, t) & = & \phi(x)
\end{array}
$$

This time we assume $\phi \in C^{0}(\mathbb{R})$ and $|\phi(x)| \leq M \forall x \in \mathbb{R}$.
The convolution formula

$$
u(x, t)=\frac{1}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} e^{-\left(\frac{x-y}{\sqrt{4 k t}}\right)^{2}} \phi(y) d y
$$

still makes sense. Indeed, since $|\phi(x)| \leq M$ the integral is finite and bounded from above by $M$ :

$$
|u(x, t)|=\left|\frac{1}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} e^{-\left(\frac{z}{\sqrt{4 k t}}\right)^{2}} \phi(x-z) d z\right| \leq \frac{1}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} e^{-\left(\frac{z}{\sqrt{4 k t}}\right)^{2}} M d z \leq M
$$

A refined satement is that for $m \leq \phi(x) \leq M$ it follows

$$
m \leq \int_{-\infty}^{\infty} S(x-y, t) \phi(y) d y \leq M \quad \forall t>0 \quad \text { (Maximum Principle). }
$$

## Theorem

Let $\phi(x)$ and $u(x, t)$ be as above. Then $u \in C^{\infty}(\mathbb{R} \times(0, \infty))$ such that $u_{t}=k u_{x, x}$ on $\mathbb{R} \times(0, \infty)$ and $\lim _{t \downarrow 0} u(x, t)=\phi(x)$ for every $x \in \mathbb{R}$.

## Proof of the theorem

We check that $u$ is in $C^{\infty}(\mathbb{R} \times(0, \infty))$. Let $S(x, t)=\frac{1}{\sqrt{4 \pi k t}} e^{-\left(\frac{x}{\sqrt{4 \pi k t}}\right)^{2}}$. We show that

$$
\frac{\partial}{\partial x} \int S(x-y, t) \phi(y) d y=\int \frac{\partial}{\partial x} S(x-y, t) \phi(y) d y
$$

Recall that

$$
\frac{\partial}{\partial x} S(x-y, t) \phi(y)=\lim _{h \rightarrow 0} \frac{1}{h}[S(x+h-y, t)-S(x-y, t)] \phi(y) .
$$

By the dominated convergence theorem for integrals we can pull this limit inside the integral if the modulus of the limit is bounded by an integrable function. This is indeed the case

$$
\left|\frac{\partial}{\partial x} S(x-y, t) \phi(y)\right| \leq\left|-\frac{1}{\sqrt{4 \pi k t}} \frac{x-y}{2 k t} e^{-\frac{(x-y)^{2}}{4 k t}}\right| M \leq \frac{M}{\sqrt{4 \pi k t}} \frac{|x-y|}{2 k t} e^{-\frac{|x-y|^{2}}{4 k t}} .
$$

The term on the right hand side has a finite integral on $\mathbb{R}$. Hence

$$
\frac{\partial}{\partial x} u(x, t)=\frac{1}{\sqrt{4 k \pi t}} \int_{-\infty}^{\infty} \frac{\partial}{\partial x} S(x-y, t) \phi(y) d y
$$

All other derivatives of higher order in $x$ and $t$ will work the same way: we always get an estimate by function of the form

$$
C|y-x|^{n} e^{-\tilde{C}(x-y)^{2}}
$$

that has finite integral on $\mathbb{R}$.

## Checking the initial condition

We also know that $u$ satisfies $u_{t}=k u_{x, x}$ because $S(x, t)$ does.
Hence, we only need to prove that $u$ satisfies the initial condition for $t \downarrow 0$.
Consider

$$
u(x, t)-\phi(x)=\int_{-\infty}^{\infty} S(x-y, t) \phi(y) d y-\int_{-\infty}^{\infty} S(x-y, t) \phi(x) d y=\int_{-\infty}^{\infty} S(x-y, t)(\phi(y)-\phi(x))
$$

Since $\phi$ is continous in $x$, for $\epsilon>0$ we can choose $\delta>0$ such that

$$
|y-x| \leq \delta \Rightarrow|\phi(x)-\phi(y)| \leq \epsilon
$$

Hence

$$
\begin{aligned}
&|u(x, t)-\phi(x)| \leq \int_{\{y \in \mathbb{R}:|x-y|>\delta\}} \frac{1}{\sqrt{4 \pi k t}} e^{-\frac{(x-y)^{2}}{2 k t}} \underbrace{|\phi(x)-\phi(y)|}_{\leq 2 M} d y \\
&+\int_{\{y \in \mathbb{R}:|x-y| \leq \delta\}} S(x-y, t) \underbrace{|\phi(x)-\phi(y)|}_{\leq \epsilon} d y \\
& \leq \frac{2 M}{\sqrt{4 \pi}} \int_{\left\{z \in \mathbb{R}:|z| \geq \frac{\delta}{\sqrt{k t}}\right\}} e^{-\frac{z^{2}}{4}} d z+\epsilon .
\end{aligned}
$$

It follows that

$$
\limsup _{t \downarrow 0}|u(x, t)-\phi(x)| \leq \epsilon
$$

Since $\epsilon>0$ was arbitrary, it follows that $\lim _{t \downarrow 0}|u(x, t)-\phi(x)|=0$.

## Additional Remarks

- Decay of the solution for $t \rightarrow \infty$.

For $\phi \in C^{0}(\mathbb{R})$ with $|\phi| \leq M$ we have

$$
|u(x, t)| \leq \int_{-\infty}^{\infty} S(x-y, t)|\phi(y)| d y \leq \frac{M}{\sqrt{4 k \pi t}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^{2}}{4 k t}} d y \leq \frac{M}{\sqrt{4 \pi k t}} \rightarrow 0
$$

In particular, this means the backwards diffusion equation

$$
u_{t}=-k u_{x, x} \text { on } \mathbb{R} \times(0, \infty)
$$

is not well-posed because stability fails.

- About uniqueness again: Let $\phi_{1}, \phi_{2} \in C^{0}(\mathbb{R})$ with $\left|\phi_{1}\right|,\left|\phi_{2}\right| \leq M$.

We saw that in the class of solutions with $u(x, t) \rightarrow 0$ for $|x| \rightarrow \infty$ we find a unique solution. But if we drop this assumption uniquness might fail: There are solutions of the heat equation with $u(x, t) \rightarrow 0$ for $t \downarrow 0$ for all $x \in \mathbb{R}$.
See also exercise 10 on page 399 in Choksi's Lecture Notes for an example that hints to nonuniquness.

