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Reflection method for wave equations

We will study the following Dirichlet problem for the wave equation on the half-line:

Vit = C2VX7X on (07 OO) x R
v(x,0) = ¢(x) on (0, 0)
ve(x,0) = ¢(x) on (0, ) @)
v(0,t) = 0 on R.

The reflexion method works the same way as for the diffusion equation.

We consider odd extensions ¢oqq and 1,44 of ¢ and 1) respectively.

Let u(x, t) be the solution of the initial value problem for the wave equation on R. We have the
formula

xX+ct

o) = 5 [oaax-+ €8) + ol — ] + 5 [ voaal)dy.

X—Ci

Then u(x,t) is once again odd. In particular we have u(0,t) = 0 for t > 0 and we can define the
solution v on [0, 00) X R of (1) by restriction of u to [0, c0).

We observe that for x > c|t| it follows that x — ct,x + ¢t > 0. Hence
X+ct

V1) = 5 1ol e+ ol — el + 5 [ wdy x> clel

x—ct
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For 0 < x < c|t| we have ¢ogq(x — ct) = —¢(—x + ct). Hence
1 1 0 1 X+ct

v t) = STt e+ o(—x+ el + 5 [ [munldv+ o [ i)dy 0<x< el
2 2¢ Jx—ct 2¢c Jo

We can apply a change of variable y — —y to the first integral term. We obtain

1 1 1 X+ct
v t) = S lolet +x) = olet =+ 5o [ wtay+ o [ vty
= (a0~ olet — N+ o= [ w(n)dy 0<x< el
2 2c

ct—x

The complete solution is given by

1 X+ct
Sl e+ ol — el +5_ [ vy ifxcld
vix, 1) = i
%[¢(ct+x)—¢(ct—x)]+i/ P(y)dy if0 < x < clt].

2¢ Jet—x
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Finite Interval

Similarly we can also study the problem

Vit = cwx on (0,)xR
Wx0) = #d on o (01) o
ve(x, 0) = (x) on (0,0
v(0,t) =v(,t) = 0 on R.
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Diffusion equation with continuous initial data
Let us consider once more
ut = kuxx onRx(0,00)
limgou(x,t) = ¢(x) on R

This time we assume ¢ € CO(R) and |¢(x)| < M ¥x € R.

The convolution formula

u(x, t) = rrrk / )¢(Y)

still makes sense. Indeed, since \¢(x)| < M the integral is finite and bounded from above by M:

lu(x, t)| = ’ ) o(x — z)dz| < \/m> Mdz < M.

Varkt J- \/7

A refined satement is that for m < ¢(x) < M it follows

oo
m < / S(x—y,t)p(y)dy <M Vt>0 (Maximum Principle).

Theorem

Let ¢(x) and u(x,t) be as above. Then u € C*>(R X (0,00)) such that us = kux x on R x (0, 00)
and limy o u(x, t) = ¢(x) for every x € R.

4
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Proof of the theorem

We check that u is in C*°(R X (0,00)). Let S(x,t) =
We show that

a% /S(X -y, t)p(y)dy = / —-S(x —y, t)¢(y)dy.
Recall that
2 S(x—y,100(y) = fim 1 S(x+h—y,8) = S(x — v, D] 91,

By the dominated convergence theorem for integrals we can pull this limit inside the integral if
the modulus of the limit is bounded by an integrable function.This is indeed the case

7] 1 x-— Lo M |x—y| _lx=y?
—S(x—y,t < |- e e~ Ak .
Ox =y )¢(y)‘ N ‘ VAamkt 2kt \/47rk 2kt

The term on the right hand side has a finite integral on R. Hence

Soulxt) = 75(X s t)(y)dy.

Vakmt

All other derivatives of higher order in x and t will work the same way: we always get an estimate
by function of the form

Cly — x|7e=Cb=”

that has finite integral on R.
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Checking the initial condition
We also know that u satisfies uz = kuy x because S(x, t) does.
Hence, we only need to prove that u satisfies the initial condition for t | 0.

Consider

u(.t) = 009= [ SCx =y 006dy — [ Sty 00dy= [ Sty 0)6(0) — 6(x)
Since ¢ is continous in x, for € > 0 we can choose ¢ > 0 such that

ly =x| <6 = [6(x) —p(y) < e

Hence
o)~ 9091 [ Lo 1900 - o(y)] d
ulx, t) — oX)|> —e t x) — ¢(y)| dy
{y€R:|x—y|>d} V4mkt N———
<2M
+f S(x =y, 1) [6(x) — 6(y)] dy
{yeR:|x—y|<s} ‘—zfe—’
< 2M Ly B
< — e Iz + €.
Vam {zelR:\Z\z%}
It follows that
lim sup lu(x, £) — 6(x)] < ¢
t10
Since € > 0 was arbitrary, it follows that lim. o |u(x, t) — ¢(x)| = 0. O
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Additional Remarks

@ Decay of the solution for t — oco.
For ¢ € CO(R) with |¢| < M we have

(x=y)?

> M o M
u(x,t)| < S(x—y,t d <7/ e #t dy < —— — 0.
O R e e < e

In particular, this means the backwards diffusion equation

ur = —kuy,x on R x (0,00)

is not well-posed because stability fails.

o About uniqueness again: Let ¢1, ¢» € CO(R) with |¢1], |¢2]| < M.
We saw that in the class of solutions with u(x,t) — 0 for |x|] — co we find a unique solution.
But if we drop this assumption uniquness might fail: There are solutions of the heat
equation with u(x, t) — 0 for t | O for all x € R.
See also exercise 10 on page 399 in Choksi's Lecture Notes for an example that hints to
nonuniquness.

MAT351 Partial Differential Equations Lecture 14 November 2, 2020 8/8



