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Separation of Variables: Wave equation

Today we begin to study wave and diffusion equations on a finite interval.

First we consider the wave equation on an intervall [0, l ] of finite length:

ut,t = c2ux,x on R× (0, l)

u(0, x) = φ(x) ut(0, x) = ψ(x) on [0,∞).
(1)

We assume Dirichlet boundary conditions

DC: u(t, 0) = u(t, l) = 0 on R.

Recall that the PDE is linear and homogeneous. Therefore, if u1 and u2 are solutions to (1), then
also u1 + u2 = u is a solution to (1).
This is called superpositon principle.

We will build the general solution for (1) from special ones that are easier to find.

The easier solutions we want to find have the following structure:

u(x , t) = X (x) · T (t)

(Separation of variables).
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Assuming this particular structure the PDE reduces to

X (x)T ′′(t) = c2X ′′(x)T (t)

This yields

−
T ′′

c2T
= −

X ′′

X
= λ.

for a constant λ ∈ R.

The last equation yields two separate differential equations for T and X :

−
T ′′

c2T
= λ and −

X ′′

X
= λ.

For the moment let us assume λ > 0.
Why can we do that?

If λ = 0, we have that X ′′ = 0. It follows that X (x) = C + Dx .

By the boundary condition X (0) = X (l) = 0 it follows X ≡ 0 and u ≡ 0.

If λ > 0 we set β =
√
λ > 0:

T ′′ + β2c2T = 0 & X ′′ + β2X = 0.

We can easily see that the last two equations have the following general solution

T (t) = A cos(βct) + B sin(βct) & X (x) = C cos(βx) + D sin(βx).

for real constants A,B,C ,D ∈ R.
In particular, any u = T · X with such T and X solves ut,t = c2ux,x .
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Now, we would like to choose the constants A,B,C ,D accordingly to given initial and boundary
conditions.

For a given time t0 a solution u(t0, x) = T (t0)X (x) must satify the boundary condition:

0 = X (0) = C 0 = X (l) = D sin(βl)

We are not interested in the trivial solution with D = C = 0.

Hence βl = nπ for n ∈ N = {1, 2, 3, . . . }, the roots of the sine function. Or equivalently

λn = (βn)2 =
(nπ

l

)2
.

Hence

Xn(x) = sin
(nπ

l
x
)
, n ∈ N,

is a family of distinct solutions where D = 1.

Note that each sine function may be multiplied with a function that is contant in x to obtain
another solution.

We obtain an infinite number of solutions of the form

un(x , t) =
(
An cos

(nπ
l
ct
)

+ Bn sin
(nπ

l
ct
))

sin
(nπ

l
x
)

for constants An,Bn ∈ R.
Moreover, any finite sum of these solutions is also a solution:

u(x , t) =
k∑

i=1

(
Ani cos

(niπ
l

ct
)

+ Bni sin
(niπ

l
ct
))

sin
(niπ

l
x
)
.
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Now, assume λ < 0. We will rule out this case. We set β =
√
−λ.

Again we can easily see that the general solutions for T ′′ +λT = 0 and X ′′ +λX = 0 are given by

T (t) = A cosh(βct) + B sinh(βct) & X (x) = C cosh(βx) + D sinh(βx)

The boundary condition again implies 0 = X (l) = D sinh(βx).

This can only occur if D = 0.

A similar argument also rules out the case λ ∈ C\(0,∞)× {0} (complex numbers).

Hence, the relevant numbers λ in the problem are positive.

We note that we also could assume Neumann boundary conditions

NC: ux (t, 0) = ux (t, l) = 0 on R.

for the PDE in the beginning.

Then the considerations for λ are similar as for Dirichlet case. We can rule out that λ < 0.

In the case λ = 0, the equation for X becomes X ′′ = 0. Again we have

X (x) = C + Dx , C ,D ∈ R

Together with the Neumann boundary condition Xx (0) = Xx (l) = 0 we see that for any C ∈ R
the constant function X (x) = C is a solution.
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For λ = β2 > 0 we have the solutions

X (x) = C cos(βx) + D sin(βX )

The Neumann boundary condition imply that

0 = Xx (0) = −Cβ sin(β0) + Dβ cos(β0) = D

Hence D = 0 and Xx (l) = −Cβ sin(βl). Hence, we have again βl = nπ and we define a family of
solutions

X̃n(x) = cos
(nπ

l
x
)

where we set C = 1.

A family of solutions for the PDE with Neumann boundary conditions is then

un(x , t) =
(
A cos(

nπ

l
ct) + B sin(

nπ

l
ct)
)

cos
(nπ

l
x
)

And again finite sums of these solutions are also solultions

u(x , t) =
k∑

i=1

(
A cos(

niπ

l
ct) + B sin(

niπ

l
ct)
)

cos
(niπ

l
x
)
.
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Finally, we want to bring the inital conditions φ and ψ into play.

For this we go back to the Dirichlet condition.

The solution given by the previous formula solves the initial value problem if

φ(x) = u(x , 0) =
k∑

i=1

Ani sin
(niπ

l
x
)

and

ψ(x) = ut(x , 0) =
k∑

i=1

niπc

l
Bni sin

(niπ
l

x
)

Question

Can we approximate any continuous function φ with φ(0) = φ(l) by trigonometric polynomials of
the form

φ̃(x) =
k∑

i=1

Ani sin
(niπ

l
x
)

What does approximation mean in this context?
And do the solutions w.r.t. φ̃ approximate the solution w.r.t. φ?
Or can we maybe write any continuous function φ as series of the form

∞∑
n=1

An sin
(nπ

l
x
)
.
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